Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments, Models and Data
2.1.1. NOAA Operational Microwave Sounding Radiometers
2.1.2. The CRTM and Its Internal and Boundary Condition Input Sources
2.2. Methods to Collocate GNSS RO and ECMWF HRES Soundings and Estimate Simulated MW Tb Uncertainties
2.2.1. Collocating GNSS RO and ECMWF HRES Soundings at MW Sensor Data Locations and Timestamps
2.2.2. Estimating CRTM MW Tb Simulation Uncertainties
3. Results and Discussion
3.1. Average ECMWF HRES and GNSS RO Temperature and Water Vapor Soundings and Their Differences
3.2. Near-Nadir Global-Average CRTM-Simulated MW Sounder , and Time Series and Statistics
3.3. Annual Regional-Average and Time-Series Statistics
3.3.1. Individual Single-Sensor and Regional-Average Statistics
3.3.2. Individual Inter-Sensor and Regional-Average Statistics
3.3.3. Bulk Regional-Average and Statistics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- English, S.J.; Renshaw, R.J.; Dibben, P.C.; Smith, A.J.; Rayer, P.J.; Poulsen, C.; Saunders, F.W.; Eyre, J.R. A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Q. J. R. Meteorol. Soc. 2000, 126, 2911–2931. [Google Scholar]
- McNally, A.P.; Derber, J.C.; Wu, W.-S.; Katz, B.B. The use of TOVS level-1 radiances in the NCEP SSI analysis system. Q. J. R. Meteorol. Soc. 2000, 129, 689–724. [Google Scholar] [CrossRef]
- Weng, F. Passive Microwave Remote Sensing of the Earth: For Meteorological Applications; Wiley: New York, NY, USA, 2017; 363p. [Google Scholar]
- Zou, C.-Z.; Goldberg, M.D.; Cheng, Z.; Grody, N.C.; Sullivan, J.T.; Cao, C.; Tarpley, D. Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res. 2006, 111, D19114. [Google Scholar] [CrossRef]
- Spencer, R.W.; Christy, J.R.; Braswell, W.D.; Norris, W.B. Estimation of tropospheric temperature trends from MSU Channels 2 and 4. J. Atmos. Ocean. Technol. 2006, 23, 417–423. [Google Scholar] [CrossRef]
- Mears, C.; Schabel, M.; Wentz, F. A reanalysis of the MSU Channel 2 tropospheric temperature record. J. Clim. 2003, 16, 3650–3664. [Google Scholar] [CrossRef]
- Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G. Global warming: Evidence from satellite observations. Geophys. Res. Lett. 2000, 27, 3517–3520. [Google Scholar] [CrossRef]
- Brown, S.T.; Ruf, C.S. Determination of an Amazon Hot Reference Target for the On-Orbit Calibration of Microwave Radiometers. J. Atmos. Ocean. Technol. 2005, 22, 1340–1352. [Google Scholar] [CrossRef]
- Weng, F.; Zou, X.; Wang, X.; Yang, S.; Goldberg, M.D. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res. 2012, 117, D19112. [Google Scholar] [CrossRef]
- Iacovazzi, R.; Lin, L.; Sun, N.; Liu, Q. NOAA Operational Microwave Sounding Radiometer Data Quality Monitoring and Anomaly Assessment Using COSMIC GNSS Radio-Occultation Soundings. Remote Sens. 2020, 12, 828. [Google Scholar] [CrossRef]
- Iacovazzi, R.; Liu, Q.; Zhou, X.; Zhou, X.; Kireev, S.; Sun, N.; Ho, S. COSMIC-2 soundings impacts on a RO-based NOAA microwave satellite data quality monitoring system. Terr. Atmos. Ocean. Sci. 2022, 33, 9. [Google Scholar] [CrossRef]
- Weng, F.; Zou, X.; Sun, N.; Yang, H.; Tian, M.; Blackwell, W.J.; Wang, X.; Lin, L.; Anderson, K. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos. 2013, 118, 11187–11200. [Google Scholar] [CrossRef]
- JPSS ATMS Sensor Data Record (SDR) Science Team. JPSS ATMS SDR Calibration Algorithm Theoretical Basis Document, Version 1; Doc. D0001-M01-S01-001_JPSS_ATBD_ATMS_SDR_B, JPSS Ground Project; JPSS ATMS Sensor Data Record (SDR) Science Team: USA, 2022; p. 52. [Google Scholar]
- Han, Y.; Weng, F.; Zou, X.; Yang, H.; Scott, D. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements. J. Geophys. Res. Atmos. 2016, 121, 4933–4950. [Google Scholar] [CrossRef]
- Yang, H.; Iacovazzi, R.; Sun, N.; Liu, Q.; Leslie, R.V.; Sammons, M.; Fuentes, J.; Kim, E.; Lyu, C.-H.; Abraham, S. ATMS Radiance Data Products Calibration and Evaluation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5302211. [Google Scholar] [CrossRef]
- Han, Y.; van Delst, P.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. JCSDA Community Radiative Transfer Model (CRTM)—Version 1; NOAA Technical Report; NESDIS: Silver Spring, MD, USA, 2006; Volume 122, 40p. [Google Scholar]
- Weng, F. Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci. 2007, 64, 3803–3811. [Google Scholar] [CrossRef]
- Han, Y.; van Delst, P.; Weng, F.; Liu, Q.; Gro, D.; Yan, B.; Chen, Y.; Vogel, R. Current status of the JCSDA community radiative transfer model (CRTM). In Proceedings of the 17th International ATOVS Study Conference, Monterey, CA, USA, 14–20 April 2010; World Meteorological Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Shouguo, D.; Yang, P.; Weng, F.; Liu, Q.; Han, Y.; van Delst, P.; Li, J.; Baum, B. Validation of the community radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1050–1064. [Google Scholar]
- Bean, B.R.; Dutton, E.J. Radio Meteorology; U.S. Government Printing Office: Washington, DC, USA, 1966; 435p. [Google Scholar]
- Healy, S.; Eyre, J. Retrieving temperature, water vapor and surface pressure information from refractivity-index profiles derived by radio occultation: A simulation study. Q. J. R. Meteorol. Soc. 2000, 126, 1661–1683. [Google Scholar] [CrossRef]
- Palmer, P.I.; Barnett, J.; Eyre, J.; Healy, S. A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure. J. Geophys. Res. 2000, 105, 17513–17526. [Google Scholar] [CrossRef]
- Ho, S.-P.; Kireev, S.; Shao, X.; Zhou, X.; Jing, X. Processing and Validation of the STAR COSMIC-2 Temperature and Water Vapor Profiles in the Neutral Atmosphere. Remote Sens. 2022, 14, 5588. [Google Scholar] [CrossRef]
- Kishore, P.; Namboothiri, S.P.; Jiang, J.H.; Sivakumar, V.; Igarashi, K. Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys. 2008, 8, 8327–8355. [Google Scholar] [CrossRef]
- Yu, X.; Xie, F.; Ao, C.O. Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic. Atmos. Meas. Tech. 2018, 11, 2051–2066. [Google Scholar] [CrossRef]
- Anthes, R.A.; Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- Ho, S.-P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Weng, F.; Zhao, L.; Ferraro, R.; Poe, G.; Li, X.; Grody, N. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 2003, 38, 8086–8096. [Google Scholar] [CrossRef]
- Grody, N.; Zhao, J.; Ferraro, R.; Weng, F.; Boers, R. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res. 2001, 106, 2943–2953. [Google Scholar] [CrossRef]
- Heidinger, A.K.; O’Dell, C.; Bennartz, R.; Greenwald, T. The Successive-Order-of-Interaction Radiative Transfer Model. Part I: Model Development. J. Appl. Meteorol. Climatol. 2006, 45, 1388–1402. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Heidinger, A.K.; Greenwald, T.; Bauer, P.; Bennartz, R. The Successive-Order-of-Interaction Radiative Transfer Model. Part II: Model Performance and Applications. J. Appl. Meteorol. Climatol. 2006, 45, 1403–1413. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F. Advanced doubling-adding method for radiative transfer in planetary atmosphere. J. Atmos. Sci. 2006, 63, 3459–3465. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F.; English, S.J. An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250. [Google Scholar] [CrossRef]
Instrument | Satellite Platform | Ops Start Date | Orbit LTAN on Ops Start Date/Orbit Drift Maintenance | July 2022 Status |
---|---|---|---|---|
AMSU-A | POES NOAA-15 | 15 December 1998 | 1930/No | Ops (Channel 11 and 14 not functional) |
AMSU-A | POES NOAA-16 | 20 March 2001 | 1400/No | Decom (09 June 2014) |
AMSU-A | POES NOAA-17 | 24 June 2002 | 1400/No | Decom (10 April 2013) |
AMSU-A | POES NOAA-18 | 30 August 2005 | 1400/No | Ops |
AMSU-A | POES NOAA-19 | 02 June 2009 | 1400/No | Ops |
AMSU-A | EPS Metop-A | 15 May 2007 | 2130/Yes | Decom (30 November 2021) |
AMSU-A | EPS Metop-B | 29 January 2013 | 2130/Yes | Ops |
AMSU-A | EPS Metop-C | 21 March 2019 | 2130/Yes | Ops |
ATMS | Suomi NPP | 06 March 2012 | 1330/Yes | Ops |
ATMS | JPSS NOAA-20 | 30 May 2018 | 1330/Yes | Ops |
GNSS RO Program | Number Sensors | Orbit Perigee/Apogee (Inclination) | Earth Coverage | Number Samples Per Day | Vertical/Horizontal Resolution (Elevation Cutoff) |
---|---|---|---|---|---|
COSMIC-1 | 6 | 770 km/830 km (72°) | Global | 0–70 | 0.1 km/300 km (39.9 km) |
KOMPSAT-5 | 1 | 559 km/562 km (96.7°) | Global | 140–200 | 0.1 km/300 km (39.9 km) |
COSMIC-2 | 6 | 530 km/551 km (24°) | 45°S to 45°N | 3000–5000 | 0.05 km/300 km (Tropopause) 0.1 km/300 km (Tropopause to 59.9 km) |
Channel | Single-Sensor (2 ATMS and 5 AMSU-A) | Inter-Sensor (10 ATMS-to-AMSU-A Pairs) | ||||||
---|---|---|---|---|---|---|---|---|
ATMS(AMSU-A) | Mean | RMS STD | /300 K | NSF | Mean | RMS STD | /300 K | NSF |
2(2) | 1.26 | 0.11 | 4.2 × 10−3 | 10−3 | −0.04 | 0.11 | 3.9 × 10−4 | 10−4 |
3(3) | 1.07 | 0.09 | 3.8 × 10−3 | 10−3 | 0.00 | 0.10 | 3.3 × 10−4 | 10−4 |
5(4) | 0.24 | 0.05 | 8.2 × 10−4 | 10−3 | 0.04 | 0.04 | 1.9 × 10−4 | 10−4 |
6(5) | 0.00 | 0.04 | 1.3 × 10−4 | 10−4 | 0.03 | 0.03 | 1.4 × 10−4 | 10−4 |
7(6) | −0.11 | 0.05 | 4.0 × 10−4 | 10−4 | 0.02 | 0.02 | 9.4 × 10−5 | 10−4 |
8(7) | −0.16 | 0.06 | 5.7 × 10−4 | 10−3 | 0.02 | 0.02 | 9.4 × 10−5 | 10−4 |
9(8) | −0.18 | 0.08 | 6.6 × 10−4 | 10−3 | 0.02 | 0.02 | 9.4 × 10−5 | 10−4 |
10(9) | −0.14 | 0.11 | 5.9 × 10−3 | 10−3 | 0.05 | 0.03 | 1.9 × 10−4 | 10−4 |
11(10) | −0.13 | 0.14 | 6.4 × 10−3 | 10−3 | 0.06 | 0.04 | 2.4 × 10−4 | 10−4 |
12(11) | −0.12 | 0.18 | 7.2 × 10−3 | 10−3 | 0.07 | 0.07 | 3.3 × 10−4 | 10−4 |
13(12) | −0.08 | 0.29 | 1.0 × 10−3 | 10−3 | 0.08 | 0.11 | 4.5 × 10−4 | 10−4 |
14(13) | 0.02 | 0.50 | 1.7 × 10−3 | 10−3 | 0.11 | 0.17 | 6.7 × 10−4 | 10−3 |
15(14) | −0.17 | 0.76 | 2.6 × 10−3 | 10−3 | 0.12 | 0.22 | 8.4 × 10−4 | 10−3 |
All Channel | 0.28 * | 0.28 | 1.3 × 10−3 | 10−3 | 0.05 * | 0.10 | 3.7 × 10−4 | 10−4 |
DS Identifier | DS Class |
---|---|
Latitude (L) | Tropics (L[TR]) 23.5°S–23.5°N |
Sub-Tropics (L[ST]) 35.0°S–23.5°S and 23.5°N–35.0°N | |
Mid-Latitudes (L[ML]) 60.0°S–35.0°S and 35.0°N–60.0°N | |
Global (GL) 60°S–60°N | |
Satellite Orbit Node (SON) | Ascending (SON[A]) |
Descending (SON[D]) | |
Surface (SRF) | Land (SRF[Lnd]) |
Ocean (SRF[Ocn]) | |
Instrument Scan Angle (ISA) | −52.725° ISA 1 |
0.555° ISA 49 | |
52.725° ISA 96 | |
Channel (Ch) | ATMS Ch 2, 7, 10 and 15 |
AMSU-A Ch 2, 6, 9 and 14 |
Channel | Single-Sensor (2 ATMS, 5 AMSU-A and 7 DS) | Inter-Sensor (21 Instr. Pairs and 7 DS) | ||||
---|---|---|---|---|---|---|
ATMS(AMSU-A) | Mean ISA 1/ISA 49 | RMS STD ISA 1/ISA 49 | NSF ISA 1/ISA 49 | Mean ISA 1/ISA 49 | RMS STD ISA 1/ISA 49 | NSF ISA 1/ISA 49 |
2(2) ^ | 2.19/1.15 | 0.38/0.20 | 10−2/10−3 | −0.01/−0.02 | 0.29/0.17 | 10−3/10−3 |
3(3) ^ | 0.76/0.96 | 0.19/0.16 | 10−3/10−3 | −0.07/−0.00 | 0.13/0.12 | 10−4/10−4 |
5(4) ^ | −0.02/0.22 | 0.14/0.16 | 10−4/10−3 | 0.02/0.03 | 0.08/0.10 | 10−4/10−4 |
6(5) ^ | −0.11/0.00 | 0.10/0.14 | 10−4/10−4 | 0.01/0.02 | 0.04/0.08 | 10−4/10−4 |
7(6) | −0.18/−0.11 | 0.08/0.10 | 10−3/10−4 | 0.01/0.01 | 0.03/0.04 | 10−4/10−4 |
8(7) | −0.18/−0.16 | 0.09/0.08 | 10−3/10−3 | 0.01/0.01 | 0.04/0.03 | 10−4/10−4 |
9(8) | −0.16/−0.18 | 0.11/0.08 | 10−3/10−3 | 0.02/0.01 | 0.04/0.03 | 10−4/10−4 |
10(9) | −0.13/−0.16 | 0.15/0.12 | 10−3/10−3 | 0.03/0.02 | 0.06/0.05 | 10−4/10−4 |
11(10) | −0.11/−0.13 | 0.20/0.16 | 10−3/10−3 | 0.03/0.03 | 0.08/0.06 | 10−4/10−4 |
12(11) | −0.07/−0.10 | 0.31/0.23 | 10−3/10−3 | 0.04/0.03 | 0.13/0.09 | 10−4/10−4 |
13(12) | 0.06/−0.03 | 0.52/0.38 | 10−3/10−3 | 0.04/0.04 | 0.19/0.15 | 10−3/10−3 |
14(13) | 0.16/0.11 | 0.82/0.63 | 10−3/10−3 | 0.04/0.04 | 0.23/0.20 | 10−3/10−3 |
15(14) | −0.46/−0.02 | 1.08/0.91 | 10−3/10−3 | 0.02/0.04 | 0.24/0.23 | 10−3/10−3 |
All Channels | 0.35 */0.26 * | 0.41/0.36 | 10−3/10−3 | 0.03 */0.02 * | 0.15/0.12 | 10−3/10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacovazzi, S.; Liu, Q.; Yang, H.; Fuentes, J.; Sun, N. Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures. Remote Sens. 2023, 15, 4162. https://doi.org/10.3390/rs15174162
Iacovazzi S, Liu Q, Yang H, Fuentes J, Sun N. Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures. Remote Sensing. 2023; 15(17):4162. https://doi.org/10.3390/rs15174162
Chicago/Turabian StyleIacovazzi, Siena, Quanhua Liu, Hu Yang, James Fuentes, and Ninghai Sun. 2023. "Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures" Remote Sensing 15, no. 17: 4162. https://doi.org/10.3390/rs15174162
APA StyleIacovazzi, S., Liu, Q., Yang, H., Fuentes, J., & Sun, N. (2023). Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures. Remote Sensing, 15(17), 4162. https://doi.org/10.3390/rs15174162