Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content
Abstract
:1. Introduction
2. The Design of Hyper-Spectral Band
2.1. Scientific Objective
The Specifications of Hyper-Spectral Band
3. Method and Model
3.1. Weighting Function
3.2. Information Content and DFS
3.3. Radiative Transfer Simulation Model
4. Results
4.1. Characteristics of the Weighting Functions
4.2. Characteristics of the Information Content and DFS
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aumann, H.; Chahine, M.; Gautier, C.; Goldberg, M.; Kalnay, E.; McMillin, L.; Revercomb, H.; Rosenkranz, P.; Smith Sr, W.; Staelin, D.; et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objective, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Kim, E.; Lyu, C.H.J.; Anderson, K.; Vincent Leslie, R.; Blackwell, W.J. S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos. 2014, 119, 5653–5670. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Dong, C.; Yang, J. Overview of FY-3 Payload and Ground Application System. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4846–4853. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K. Benefits of a hyperspectral microwave sensor. In Proceedings of the 2011 IEEE Sensors Proceedings, Limerick, Ireland, 28–31 October 2011; pp. 1881–1884. [Google Scholar]
- Lipton, A. Satellite sounding channel optimization in the microwave spectrum. IEEE Trans. Geosci. Remote Sens. 2003, 41, 761–781. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C.; Upham, C.A. Hyperspectral Microwave Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Orlandi, E.; Milz, M.; Eriksson, P.; Crewell, S.; Lin, C.C.; Kangas, V. Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case. J. Geophys. Res. Atmos. 2015, 120, 11334–11351. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Buehler, S.A.; Eriksson, P.; Milz, M.; Crewell, S. Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations – Application to a hyperspectral instrument in the microwave. Q. J. R. Meteorl. Soc. 2019, 145, 1–14. [Google Scholar] [CrossRef]
- Kummerow, C.D.; Poczatek, J.C.; Almond, S.; Berg, W.; Jarrett, O.; Jones, A.; Kantner, M.; Kuo, C.P. Hyperspectral Microwave Sensors—Advantages and Limitations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 764–775. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Singapore, 2000. [Google Scholar]
- Rodgers, C.D. Information content and optimisation of high spectral resolution remote measurements. Adv. Space Res. 1998, 21, 361–367. [Google Scholar] [CrossRef]
- Buehler, S.; Eriksson, P.; Kuhn, T.; von Engeln, A.; Verdes, C. ARTS, the atmospheric radiative transfer simulator. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 65–93. [Google Scholar] [CrossRef]
- Eriksson, P.; Buehler, S.; Davis, C.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer simulator, version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [Google Scholar] [CrossRef]
- Matricardi, M. The Generation of RTTOV Regression Coefficients for IASI and AIRS Using a New Profile Training Set and a New Line-by-Line Database; ECMWF: Reading, UK, 2008. [Google Scholar] [CrossRef]
- Lupu, C. Data Assimilation Diagnostics: Assessing the Observations Impact in the Forecast; ECMWF Data Assimilation Training Course; ECMWF: Reading, UK, 2019. [Google Scholar]
- Collard, A. Selection of IASI channels for use in Numerical Weather Prediction. Q. J. R. Meteorl. Soc. 2007, 133, 1977–1991. [Google Scholar] [CrossRef]
- Martinet, P.; Lavanant, L.; Fourrié, N.; Rabier, F.; Gambacorta, A. Evaluation of a revised IASI channel selection for cloudy retrievals with a focus on the Mediterranean basin. Q. J. R. Meteorl. Soc. 2014, 140, 1563–1577. [Google Scholar] [CrossRef]
- Michele, S.D.; Bauer, P. Passive microwave radiometer channel selection basedoncloudandprecipitation information content. Q. J. R. Meteorol. Soc. 2006, 132, 1299–1323. [Google Scholar] [CrossRef]
- Mahfouf, J.F.; Birman, C.; Aires, F.; Prigent, C.; Orlandi, E.; Milz, M. Information content on temperature and water vapour from a hyper-spectral microwave sensor. Q. J. R. Meteorol. Soc. 2015, 141, 3268–3284. [Google Scholar] [CrossRef]
- Misra, S.; Mohammed, P.N.; Guner, B.; Ruf, C.S.; Piepmeier, J.R.; Johnson, J.T. Microwave Radiometer Radio-Frequency Interference Detection Algorithms: A Comparative Study. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3742–3754. [Google Scholar] [CrossRef]
Parameters | Sub-Band 1 | Sub-Band 2 |
---|---|---|
Range (GHz) | 52.6–55.0 | 55.0–57.3 |
Spectral res. (MHz) | 200 | 30 |
Polarization | Vertical | Vertical |
NEDT (K) | 1.0 | 1.0 |
Accuracy (K) | 1.5 | 1.5 |
Spatial res. (Km) | 60 | 60 |
Parameters | L43 | L101 |
---|---|---|
IC (bits) | 17.85 | 13.71 |
DFS | 7.52 | 6.67 |
No. | Ch. No. | Freq. (GHz) | Inf. Cont. (Bits) | DFS |
---|---|---|---|---|
0 | 78 | 56.965 | 1.958 | 0.934 |
1 | 80 | 57.025 | 1.486 | 0.782 |
2 | 88 | 57.265 | 1.307 | 0.732 |
3 | 07 | 53.900 | 1.027 | 0.707 |
4 | 79 | 56.995 | 0.935 | 0.521 |
5 | 55 | 56.275 | 0.913 | 0.662 |
6 | 28 | 55.465 | 0.694 | 0.406 |
7 | 77 | 56.935 | 0.532 | 0.183 |
8 | 01 | 52.700 | 0.508 | 0.264 |
9 | 89 | 57.295 | 0.502 | 0.202 |
Total | – | – | 9.862 | 5.393 |
Parameter | ATMS Type | Hyperspectra |
---|---|---|
mean IC (bits) | 12.21 | 17.85 |
mean DFS | 6.25 | 7.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Yang, J.; Wei, C.; Dou, F.; Xu, W.; An, D.; Luan, Y.; Feng, J.; Zhang, L. Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content. Remote Sens. 2024, 16, 289. https://doi.org/10.3390/rs16020289
Bi Y, Yang J, Wei C, Dou F, Xu W, An D, Luan Y, Feng J, Zhang L. Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content. Remote Sensing. 2024; 16(2):289. https://doi.org/10.3390/rs16020289
Chicago/Turabian StyleBi, Yanmeng, Jun Yang, Caiying Wei, Fangli Dou, Weiwei Xu, Dawei An, Yinghong Luan, Jianfeng Feng, and Lichang Zhang. 2024. "Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content" Remote Sensing 16, no. 2: 289. https://doi.org/10.3390/rs16020289
APA StyleBi, Y., Yang, J., Wei, C., Dou, F., Xu, W., An, D., Luan, Y., Feng, J., & Zhang, L. (2024). Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content. Remote Sensing, 16(2), 289. https://doi.org/10.3390/rs16020289