A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations
Abstract
:1. Introduction
2. Lunar Microwave Radiative Transfer Model
3. Lunar Disk Microwave Brightness Temperature Simulations
4. Model Calibration with Satellite Observations
5. Model Performance Evaluation with the Satellite Observations
5.1. AMSU-A
5.2. AMSU-B and MHS
6. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Zhou, J.; Weng, F.; Sun, N.; Anderson, K.; Liu, Q.; Kim, E.J. Developing vicarious calibration for microwave sounding instruments by using lunar radiation. IEEE Geosci. Remote Sens. 2018, 56, 6723–6733. [Google Scholar] [CrossRef]
- Burgdorf, M.; Buehler, S.A.; Lang, T.; Michel, S.; Hans, I. The Moon as a photometric calibration standard for microwave sensors. Atmos. Meas. Tech. 2016, 9, 3467–3475. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Zheng, Y.; Xu, A.; Tang, Z. Microwave Brightness Temperature of the Moon: The Possibility of Setting a Calibration Source of the Lunar Surface. IEEE Geosci. Remote Sens. Lett. 2016, 13, 182–186. [Google Scholar] [CrossRef]
- Williams, J.-P.; Paige, D.A.; Greenhagen, B.T.; Sefton-Nash, E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. ICARUS 2016, 283, 300–325. [Google Scholar] [CrossRef] [Green Version]
- Hayne, P.O.; Bandfield, J.L.; Siegler, M.A.; Vasavada, A.R.; Ghent, R.R.; Williams, J.-P.; Paige, D.A. Global regolith thermophysical properties of the Moon from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. Planets 2017, 122, 2371–2400. [Google Scholar] [CrossRef] [Green Version]
- Krotikov, V.D.; Troitskii, V.S. Radio Emission And Nature of The Moon. Soviet Phys. Uspekhi 1964, 6, 841–871. [Google Scholar] [CrossRef]
- Keihm, S.J.; Cutts, J.A. Vertical-Structure Effects on Planetary Microwave Brightness Temperature Measurements: Applications to the Lunar Regolith. ICARUS 1981, 48, 201–229. [Google Scholar] [CrossRef]
- Keihm, S.J. Effects of Subsurface Volume Scattering on the Lunar Microwave Brightness Temperature Spectrum. ICARUS 1982, 52, 570–584. [Google Scholar] [CrossRef]
- Keihm, S.J. Interpretation of the Lunar Microwave Brightness Temperature Spectrum: Feasibility of Orbital Heat Flow Mapping. ICARUS 1984, 60, 568–589. [Google Scholar] [CrossRef]
- Liu, N.; Jin, Y. Average Brightness Temperature of Lunar Surface for Calibration of Multichannel Millimeter-Wave Radiometer From 89 to 183 GHz and Data Validation. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 1345–1354. [Google Scholar] [CrossRef]
- Hu, G.-P.; Chan, K.L.; Zheng, Y.-C.; Tsang, K.T.; Xu, A.-A. Comparison and evaluation of the Chang’E microwave radiometer data based on theoretical computation of brightness temperatures at the Apollo 15 and 17 sites. ICARUS 2017, 294, 72–80. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Sun, N.; Liu, Q.; Leslie, R.; Anderson, K.; Kim, E.; Lyu, C.-H.; Smith, C.; McCormick, L. 2-D Lunar Microwave Radiance Observations From the NOAA-20 ATMS. IEEE Geosci. Remote Sens. Lett. 2021, 18, 2021–2024. [Google Scholar] [CrossRef]
- Piddington, H.; Minnett, H.C. Microwave thermal radiation from the Moon. Aust. J. Sci. Res. Ser. A 1949, 2, 63–77. [Google Scholar] [CrossRef]
- Jaeger, J.C. The Surface Temperature of the Moon; Provided by the NASA Astrophysics Data System; CSIRO: Canberra, Australia, 1952. [Google Scholar]
- Yang, H.; Burgdorf, M. A Study of Lunar Microwave Radiation Based on Satellite Observations. Remote Sens. 2020, 12, 1129. [Google Scholar] [CrossRef]
- WMO OSCAR. Space-Based Capabilities-Instruments. 2016. Available online: http://www.wmo-sat.info/oscar/instruments (accessed on 29 August 2022).
Sat. | Instr. | Frequency (GHz) | Mean Error (K) | Mean Error (K) | Std. (K) |
---|---|---|---|---|---|
N18 | AMSU-A | 23.8 | 1.87 | 20.44 | 4.12 |
N18 | AMSU-A | 31.4 | −6.32 | 12.16 | 6.32 |
N18 | AMSU-A | 57 | −8.74 | 9.67 | 8.03 |
N18 | AMSU-A | 89 | −9.07 | 9.38 | 4.35 |
Sat. | Instr. | Frequency (GHz) | Mean Error (K) | Mean Error (K) | Std. (K) |
---|---|---|---|---|---|
N15 | AMSU-B | 89 | −0.7 | 18.5 | 9.2 |
N16 | AMSU-B | 89 | −2.2 | 16.4 | 6.7 |
N17 | AMSU-B | 89 | 11 | 30.3 | 6.4 |
N18 | MHS | 89 | 4.9 | 22.5 | 3.6 |
N19 | MHS | 89 | 6.4 | 24.1 | 4.3 |
M-A | MHS | 89 | 6.4 | 25.8 | 5.1 |
MB | MHS | 89 | 2.8 | 22.2 | 3.4 |
MC | MHS | 89 | 11.3 | 30.9 | 7.9 |
N15 | AMSU-B | 150 | 17 | 36.8 | 22.2 |
N16 | AMSU-B | 150 | 23.2 | 42 | 10 |
N17 | AMSU-B | 150 | 9.6 | 28.8 | 22.4 |
N18 | MHS | 157 | −6.6 | 11.2 | 7.2 |
N19 | MHS | 157 | 1.6 | 19.4 | 5.2 |
MA | MHS | 157 | −2.7 | 16.8 | 9.1 |
MB | MHS | 157 | −6.1 | 13.2 | 4.2 |
MC | MHS | 157 | −2 | 17.6 | 8.7 |
N15 | AMSU-B | 183 | 10.2 | 30.2 | 16 |
N16 | AMSU-B | 183 | 10.4 | 28.6 | 10.4 |
N17 | AMSU-B | 183 | −2.2 | 16.8 | 17.3 |
N18 | MHS | 183/190 | 4.4 | 22.1 | 4.1 |
N19 | MHS | 183/190 | 2.3 | 20.1 | 6.6 |
MA | MHS | 183/190 | 4.7 | 24.1 | 6.1 |
MB | MHS | 183/190 | 0.7 | 19.9 | 3.5 |
MC | MHS | 183/190 | 13.3 | 32.8 | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Burgdorf, M. A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations. Remote Sens. 2022, 14, 5501. https://doi.org/10.3390/rs14215501
Yang H, Burgdorf M. A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations. Remote Sensing. 2022; 14(21):5501. https://doi.org/10.3390/rs14215501
Chicago/Turabian StyleYang, Hu, and Martin Burgdorf. 2022. "A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations" Remote Sensing 14, no. 21: 5501. https://doi.org/10.3390/rs14215501
APA StyleYang, H., & Burgdorf, M. (2022). A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations. Remote Sensing, 14(21), 5501. https://doi.org/10.3390/rs14215501