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Abstract: The observations from satellite microwave-sounding instruments have been widely used
in weather and climate studies. Since the data resolution varies with frequency and satellite viewing
angle, it is normally required that the measurements at each frequency be resampled to obtain
a uniform resolution prior to various applications. In this study, the ATOVS and AVHRR pre-
processing package (AAPP) Fourier transform algorithm is modified for ATMS data and the results
are compared with those derived from Backus–Gilbert inversion (BGI) and the original AAPP. From
the simulated and observed ATMS data, we demonstrated the new algorithm has better results in
terms of imaging quality and noise suppression, compared with BGI and AAPP. In general, our
modified AAPP algorithm reduces the error by at least about 0.5 K in ATMS channels 2 and 6 and at
all the viewing angles.

Keywords: ATMS; resampling; filter algorithm; Backus–Gilbert inversion

1. Introduction

Spaceborne passive microwave observations are proven very valuable for improving
numerical weather prediction and environmental monitoring [1–4]. Compared with in-
frared and visible light instruments, microwave instruments are less affected by clouds
and precipitation and can penetrate into the deep atmosphere. From the same antenna,
the footprint of microwave observations or spatial resolution varies with frequency and
viewing angle [5,6]. Thus, a footprint matching among a set of channels is typically required
to generate a uniform resolution for many applications. For an instrument such as ATMS
with an overlapping field of view across the scan, the footprint matching resamples the
overlapping data and also modifies the measurement noise.

In the past, many algorithms were developed for resampling the microwave data,
including the Backus–Gilbert inversion (BGI) method, scatterometer image reconstruction
(SIR) algorithm, the filtering algorithm, etc. The BGI method solves an integral equation
convolved by the antenna pattern. The brightness temperature within a specified field of
view is derived from the overlapping antenna temperatures. The noise and resolution of
the brightness temperature can be balanced according to specific applications [7–9]. BGI
has been widely used for resampling SSMI, TMI, AMSR-E, and other instruments [10–12].
The SIR algorithm is developed for generating higher-resolution images and requires fewer
computation resources [13–15]. However, Wiener filtering can also process the image
resampling for resolution enhancement [16,17]. Recently, artificial intelligence methods
such as deep learning are used for the resolution enhancement research of microwave
images [18,19].
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In our previous research, the measurements from the Advanced Technology Mi-
crowave Sounder (ATMS) aboard the Suomi-NPP and NOAA-20 satellites are resampled
using BGI for reconstructing AMSU-like data which has a 3.3◦ antenna beam width [20]. An
adaptive window coefficient training method is proposed to obtain a uniform field of view
size across the scan [21]. In the NWP community, the ATOVS and AVHRR pre-processing
package (AAPP) system also includes an ATMS resampling algorithm. Intercomparisons
between BGI and AAPP algorithms show that BGI has a better quality for resolution
enhancement, especially in active weather regions and coastlines. However, the AAPP
algorithm produces a lower noise [6].

This study furthers the AAPP resampling algorithm through the beam width adjust-
ment function. In Section 2, the instrument characteristics and the resampling methodology
are introduced. Section 3 compares the results from three algorithms. Section 4 presents a
discussion, and conclusions are made in Section 5.

2. ATMS Resampling Methodology
2.1. ATMS Instrument

ATMS is designed with 22 channels at a frequency ranging from 23 to 183 GHz. It
has three different spatial resolutions dependent on frequency. The antenna’s half-power
beam width at two low-frequency channels at 23.8 GHz and 31.4 GHz is 5.2◦; those at
channels 3–16 are 2.2◦, and the remaining channels are 1.1◦ [22]. The characteristics of each
channel of the ATMS instrument are shown in Table 1. Note that NEDT was a specified
value. Indeed, the actual noise of ATMS in-orbit performance is much lower than the
specification [22,23].

Table 1. ATMS instrument characteristics.

Channel Center Frequency (GHz) NEDT(K) Beam Width (degree)

1 23.8 0.7 5.2
2 31.4 0.8 5.2
3 50.3 0.9 2.2
4 51.76 0.7 2.2
5 52.8 0.7 2.2
6 53.596 ± 0.115 0.7 2.2
7 54.4 0.7 2.2
8 54.94 0.7 2.2
9 55.5 0.7 2.2
10 57.290344 0.7 2.2
11 57.290344 ± 0.217 0.75 2.2
12 57.290344 ± 0.3222 ± 0.048 1.2 2.2
13 57.290344 ± 0.3222 ± 0.022 1.2 2.2
14 57.290344 ± 0.3222 ± 0.010 1.5 2.2
15 57.290344 ± 0.3222 ± 0.0045 2.4 2.2
16 88.2 3.5 2.2
17 165.5 0.5 1.1
18 183.31 ± 7 0.6 1.1
19 183.31 ± 4.5 0.8 1.1
20 183.31 ± 3 0.8 1.1
21 183.31 ± 1.8 0.8 1.1
22 183.31 ± 1 0.9 1.1

Unifying the spatial resolution of different frequencies is of great significance for the
combination of ATMS and other microwave instruments (such as AMSU-A/B) for meteo-
rological and climate research [24,25]. ATMS collects 96 field of views of measurements
across each scan shown in Figure 1. For channels 1 and 2, the field-of-view (FOV) size
corresponds to 5.2◦ of antenna the beam width whereas for channels 3–16, the FOV size is
about 2.2◦. The FOVs are overlapping in both cross-track and along-track directions.
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At each individual FOV, the ATMS antenna brightness temperature Ta is a function of
the brightness temperatures convolved by the antenna gain G as:

Ta =
∫

Tb(ρ)G(ρ)dA (1)

where Tb represents the brightness temperature observed by FOV.
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Figure 1. Schematic diagram of ATMS scan geometry. For each scan, there are a total of 96 overlapping
field-of-view positions which can be used for resampling.

2.2. Backus–Gilbert Inversion

Using the 3 × 3 or 5 × 5 FOVs in both cross-track and along-track directions, the
overlapping information can be used to construct the brightness temperature of the target
field as shown in the gray area in Figure 2. The resampled antenna brightness temperature
can also be derived as:

TBG
a (k) =

Nch

∑
i=−Nch

Nch

∑
j=−Nch

ak+i,jTa(k + i, j) (2)

where Nch =

{
1 for channel 1–2

2 for channel 3–16
, i, and j usually refer to the direction along the scan line

and across the scan line and ak+i,j represents the resampling coefficient. Therefore, the
BGI resampled brightness temperature TBG

a is estimated as a linear combination of the
adjacent observed Ta. In Equation (2), the two-dimensional window is transformed into a
one-dimensional form. Mathematically, it is an ill-conditioned linear inversion problem,
and regularization must be carefully considered in order to suppress the amplification of
noise during inversion [26]. A dynamic balance is required between resolution and noise.
The resampling coefficient ak+i,j can be obtained by minimizing the error function Q:

Q =
∫ [ Nch

∑
i=−Nch

Nch

∑
j=−Nch

ak+i,jGk+i,j − F(ρ0, ρ)

]2

dA · cos(γ) + (4Trms)
2 ·ω · sin(γ) (3)

where F(ρ0, ρ) represents the target antenna gain, that is, the antenna gain with a half-
power width of 3.3◦; γ is the noise suppression coefficient, which can vary from 0 to π/2.
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When γ is 0, the resolution enhancement effect is the most obvious, but the result will be full
of noise. When γ is π/2, the noise is better suppressed, and the result is only the weighted
average of adjacent windows. ∆Trms is the channel noise of the instrument; the parameter
ω is the scaling factor, which is to make the variables have the same order of magnitude.
According to previous research, ω is taken as 0.001 [27]. The details of solving for the
coefficients ak+i,j can be found in [7]. The calculation of the resampling coefficient ak+i,j
requires the antenna gain G. In this study, the antenna gain G is simulated by a Gaussian
increasing function and projected onto the geodetic coordinate system. Additionally, the
size of the antenna main beam is considered to be 2.5 times the half-power width.

In this paper, the ellipse-shaped FOV points are mapped to the equal latitude and lon-
gitude projection, and the FOV points are gridded with a resolution of 0.1◦. The coefficient
training time grows significantly as the resolution increases. The optimal coefficients at
each scan point location can be reused.
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Figure 2. Schematic diagram of resampling ATMS antenna brightness temperature using BGI (the
colored hollow ellipse represents the original observation FOV, and the gray solid ellipse represents
the FOV at the target resolution).

2.3. AAPP Resampling Algorithm

The method of fast Fourier transform can be used to adjust the beam width of the
antenna. In the frequency domain the convolution between brightness temperature and
antenna gain can be simplified to multiplication, so Equation (1) can be expressed as:

_
T a(ζ) =

_
T b(ζ) · Ĝ(ζ) (4)

where ζ is the frequency and ∧ represents the fast Fourier transformation. It is known that
the Fourier transformation of a Gaussian distribution is still a Gaussian distribution. So, in
the frequency domain, it is easy to simulate the antenna gain using the Gaussian function.

Since
_
T b(ζ) is constant for

_
T a(ζ) with any antenna width, we have:

_
T target(ζ) =

_
T source(ζ) ·

Ĝtarget(ζ)

Ĝsource(ζ)
(5)

The ratio of target to source antenna gain in the frequency domain on the right side
of Equation (5) is an adjustment factor M. Finally, the brightness temperature after beam
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adjustment can be obtained through the inverse Fourier transform. In order to check and
balance the noise, the adjustment factor needs to be regularized, which is expressed as:

M′ =


Ĝtarget(ζ)

Ĝsource(ζ)
· exp(−

(ln Ĝtarget(ζ))
2 · ln 2

(ln c)2 ) 0 < c < 1

Ĝtarget(ζ)

Ĝsource(ζ)
c = 0

(6)

where c is the noise balance parameter and ranges from 0 to 1. For the case of enhanced
resolution, the optimal value of c is 0.4. If c is further reduced, the noise is sharply amplified.
To achieve the effect of noise suppression, M′ should be less than M, which is satisfied
when the parameter c moves between 0 and 1. When resolution smoothing is implemented
to reduce noise, there is no need to suppress noise, and parameter c is set to 0.

The AAPP algorithm can be implemented in the following four steps: the first step
is to pad the image to a power of 2 in each dimension; the second step is to perform the
fast Fourier transform and extract the real part of the complex number; the third step is to
calculate the adjustment coefficient according to the Equation (6) and multiply it by the
brightness temperature in the frequency domain; finally, an inverse fast Fourier transform is
performed to obtain the antenna brightness temperature after the beam adjustment. Addi-
tionally, the AAPP algorithm only takes the orbital files of brightness temperature as inputs
and performs image resolution processing through an adjustment in the frequency domain.
The physical implication of this algorithm is not as comprehensive as the BGI algorithm.

2.4. Modified AAPP Resampling Algorithm

According to previous research and experiments, it is found that the AAPP resampling
algorithm has some issues with the enhancement of image resolution, especially in the
region with a large temperature gradient. The noise cannot be well suppressed if the
parameters c are reduced. In the frequency domain, the brightness temperature after
the fast Fourier transform is multiplied by the adjustment term to achieve the effect of
resolution reconstruction. The adjustment factor directly affects the performance of the
algorithm. Based on the AAPP resampling algorithm, a new form of adjustment factor is
proposed and defined as:

M′′ =
(Ĝtarget(ζ))

α

Ĝsource(ζ)
· exp((1− Ĝtarget(ζ)) · ln(c · k)) (7)

where c is still the noise balance parameter; different from M′ in Equation (6), this paper
puts the polynomial part outside the exponent, and does not fix it in the form of a binary
function but uses the parameter α to control the order of the polynomial; the parameter k is
the scaling factor that makes c vary over a small range. The values of α and k in this paper
are 4 and 100, respectively.

Figure 3a,b compare the beam adjustment effects from two algorithms. The blue and
green curves are the Gaussian distribution function (GDF) after the Fourier transform, cor-
responding to two antenna beam widths of 3.3◦ and 5.2◦ respectively. Equations (6) and (7)
are used for computing GDFs. It can be seen that in the frequency domain, a larger antenna
beam width results in a narrower GDF as shown in the green curve. The black solid and
dash lines show two GDFs corresponding to two adjustment factors to the 5.2◦ antenna
beam width. In the original AAPP resampling algorithm, a larger c has a stronger capability
to suppress the noise. When the parameter c approaches 0, the adjusted beam gradually
approaches the 3.3◦ beam, as shown by the black solid line in Figure 3a. In the modified
AAPP resampling algorithm, we no longer pursue the coincidence of the beams, because
the noise caused by the pursuit of the coincidence of the beams cannot be suppressed
during the image enhancement. As shown in Figure 3b, the smaller c has a stronger ability
for noise suppression. When c is 0.1, the difference between the adjusted beam and the
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5.2◦ beam is very small; as c increases, the adjusted beam becomes wider and wider and
gradually approaches the 3.3◦ beam or is better than 3.3◦.
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algorithm and (b) using a modified AAPP resampling algorithm.

2.5. Algorithm Evaluation and Verification

In this study, BGI, AAPP, and modified AAPP resampling algorithms are compared
by applying them to ATMS detailed as follows:

(1) For the BGI method, the antenna gain function (AGF) projected to the geographic
coordinate system can be used for qualitative evaluations. However, this verification
method does not work for frequency domain algorithms.

(2) Quantitative evaluations are performed using the radiative transfer model simulation
results. First, the atmospheric and surface parameters of typhoon Lekima on 8 August
2019, are generated using the weather research and forecasting (WRF) model with a
resolution of 3 km. Then, these outputs are used as inputs to the fast radiation transfer
model ARMS (advanced radiative transfer modeling system) [28] to simulate the
ATMS brightness temperatures at 22 channels. The brightness temperature fields are
used to construct the actual scene brightness temperature Tb. It is worth noting that
when using ARMS to simulate the brightness temperature, the limb effect of ATMS is
taken into account. Finally, the AGFs of different antenna sizes are convolved with Tb
to obtain the ATMS antenna temperature Ta according to Equation (1). The antenna
temperature with an AGF beam width of 3.3◦ simulated by the model can be used as
the true value, so that the qualitative and quantitative evaluations of the BGI, AAPP,
and modified AAPP resampling algorithms can be carried out. Using mean absolute
error (MAE), root mean square error (RMSE), and BIAS for quantitative evaluation,
the calculation formula is as follows:

MAE =
1
m

M

∑
i=1

∣∣∣Ttrue − Tresampled

∣∣∣ (8)

RMSE =

√√√√ 1
m

M

∑
i=1

(
Ttrue − Tresampled

)2
(9)

BIAS =
1
m

M

∑
i=1

(
Ttrue − Tresampled

)
(10)
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where Ttrue is the true value simulated by the ARMS, and Tresampled is the brightness
temperatures from resampling algorithms.

(3) Observed ATMS data from NOAA-20 satellites are also used for qualitative assessments.

3. Results
3.1. Antenna Gain Function Reconstructed by BGI

When calculating the resampling coefficients by the BGI method, the overlapping infor-
mation between the AGFs is a key element. So, it may be useful to apply resampling coeffi-
cients to the AGF to characterize the effect of resolution reconstruction. Figures 4 and 5 show
the results of resolution enhancement and resolution reduction, respectively. Figure 4a,b are
the normalized AGFs of 5.2◦ and 3.3◦ at the sub-satellite point position in the geographic
coordinate system, respectively; Figure 4c is the result of nine overlapping AGFs as shown
in Figure 2 with a half-power beam width of 5.2◦ resampled by BGI. It can be seen that
the AGF after BGI resolution enhancement is smaller and narrower than the original AGF,
which means that its high-weight value is closer to the center. In order to more intuitively
display the effect of resolution reconstruction, the half-power points (points with a value of
0.5) in the AGF are extracted, and these points are fitted in the form of circles, as shown in
Figure 4d. The green and black curves and points are the half-power circle and half-power
points of 5.2◦ and 3.3◦, respectively, while the red curve and points are the half-power circle
and half-power points after resolution enhancement. From Figure 4d, it can clearly be seen
that the beam width is narrower.
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Figure 5a is an AGF with a half-power width of 2.2◦, Figure 5b is an AGF with a
half-power width of 3.3◦, Figure 5c is the target AGF resampled by BGI using adjacent 5× 5
AGFs with a half-power width of 2.2◦. All AGFs are normalized. Figure 5d are the half-
power curve and half-power points obtained by AGFs. The amplification of the source AGF
and the increase of the half-power width can be seen. As can be seen from Figures 4 and 5,
the BGI method can realize the reconstruction of spatial resolution, the resolution reduction
appears to be easier than resolution enhancement, and the reconstructed half-power fitted
curve is closer to the target value.
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an AGF of 3.3◦ (black), and an AGF resampled by BGI (red). Note that AGF is dimensionless.

By reconstructing the AGF, we can better understand how the BGI algorithm works.
However, it cannot fully represent the relationship between resolution and noise. Specifi-
cally, it cannot reveal the noise amplification effect caused by resolution enhancement and
the smoothing effect caused by resolution reduction. In practical applications, there is a
convolution process between the AGF and the background brightness temperature, which
may affect the selection of parameters.

3.2. Experiments and Comparisons Using Simulated Brightness Temperatures

The ATMS antenna brightness temperatures are simulated by WRF-ARMS and used
to evaluate the three resampling algorithms. In order to make the simulated values closer
to the real observations, random noise is added to the simulated values, and the standard
deviation of the noise is set to the NEDT of each channel specified in ATMS requirements.
Note that this study does not add noise distribution to true values which is the simulated
value with an AGF of 3.3◦.
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The simulated ATMS channel 2 antenna temperature and the resampling results of the
three algorithms are shown in Figure 6. Figure 6a is the antenna brightness temperature of
ATMS channel 2 with Gaussian noise. The half-power width and NEDT of channel 2 are 5.2◦

and 0.8 K, respectively; Figure 6b is the simulated noise-free antenna brightness temperature
true value. Figure 6c–e are the results of the resolution enhancement of the 5.2◦ antenna
brightness temperatures using BGI, AAPP, and modified AAPP resampling algorithms,
respectively. It can be seen that the three algorithms all have the effects of enhancing the
spatial resolution to a certain extent, and all have the side effect of amplifying the noise. By
observing the internal structure of the typhoon, it can be found that the enhancement effect
of the BGI and the modified AAPP resampling algorithm is more obvious and closer to the
true value, while the effect of the original AAPP algorithm is relatively weak. However,
correspondingly, the image after BGI enhancement shows more obvious noise distribution.
It should be noted that the noise trade-off parameters of the three algorithms have been
optimized to minimize the RMSE between the resampled brightness temperatures and the
true values.
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Figure 6. (a) Simulated brightness temperature at channel 2 with 5.2 AGF; (b) simulated brightness
temperature with 3.3 AGF (true without noise); (c) brightness temperature resampled from (a) by
BGI; (d) brightness temperature resampled from (a) by AAPP; (e) brightness temperature resampled
from (a) by modified AAPP. The unit of brightness temperature is K.

To more clearly reveal the difference between the resampling results and truth, Figure 7
shows the difference in brightness temperature and the spatial distribution of the difference.
Figure 7a is the difference between the brightness temperature without image enhancement
and the true value. Figure 7b–d are the difference between the brightness temperature after
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image enhancement and the true value, using BGI, AAPP, and modified AAPP respectively.
The difference in antenna brightness temperatures with different half-power widths is
very obvious, especially in the regions of weather systems such as typhoons and near
coastal boundaries, see Figure 7a. Compared to Figure 7b, the active weather signals are
not enhanced well from AAPP whereas the coastline and typhoon are better illustrated
by BGI in Figure 7c. The enhancement effect of the BGI and modified AAPP is more
consistent, but the noise level of the modified AAPP is significantly lower as shown in
Figure 7d. The noises from BGI are manifested as a stripping pattern whereas those from
modified AAPP appear spotty. Therefore, the modified AAPP algorithm improves the
spatial structure resolution and suppresses the noise. It is the best solution for microwave
sounder resampling applications.
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Figure 7. Brightness temperature differences between (a) 5.2◦ simulations and truth value
(Figure 6a,b); (b) brightness temperature differences between results resampled by BGI and truth
value (Figure 6b,c); (c) brightness temperature differences between results resampled by AAPP
and truth value (Figure 6b,d); (d) brightness temperature differences between results resampled by
modified AAPP and truth value (Figure 6b,e). The unit of brightness temperature differences is K.

Figure 8 shows the effect of algorithm resolution smoothing using the ATMS antenna
brightness temperature at channel 6. The random noise of 0.7 K is added to simulate
the antenna brightness temperature with an AGF of 2.2◦, as shown in Figure 8a. Three
resolution smoothing algorithms are used to obtain a noise-free antenna brightness tem-
perature with an AGF of 3.3◦ as shown in Figure 8b. In resolution smoothing, the noise is
obviously suppressed from three algorithms, especially using AAPP and modified AAPP.
It is apparent that the BGI has a poor result in the image edge since it cannot form a 5 × 5
or 3 × 3 window. As mentioned above, the resolution reduction is easier to achieve than
resolution enhancement, because it does not require the use of penalty terms to suppress
noise, and the resolution reduction itself plays a role in denoising. The original AAPP
excels at reduced resolution, and the modified AAPP maintains its advantages.

Figure 9 shows the distribution of differences between antenna brightness tempera-
tures. Since ATMS channel 6 measures the microwave radiation from the upper atmosphere,
antenna brightness temperatures are not sensitive to the sea-land boundary and active
typhoon signals. The difference in Figure 9a shows the Gaussian noise added to the simula-
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tions. All three algorithms result in lower noise, the results of AAPP and modified AAPP
are very similar but are better than those from the BGI method.
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Figure 8. (a) Simulated brightness temperature at channel 6 with 2.2 AGF; (b) simulated brightness
temperature with 3.3 AGF (true without noise); (c) brightness temperature resampled from (a) by
BGI; (d) brightness temperature resampled from (a) by AAPP; (e) brightness temperature resampled
from (a) by modified AAPP. The unit of brightness temperature is K.
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Figure 9. Brightness temperature differences between (a) 2.2◦ simulations and truth value
(Figure 8a,b); (b) brightness temperature differences between results resampled by BGI and truth
value (Figure 8b,c); (c) brightness temperature differences between results resampled by AAPP
and truth value (Figure 8b,d); (d) brightness temperature differences between results resampled by
modified AAPP and truth (Figure 8b,e). The unit of brightness temperature differences is K.



Remote Sens. 2022, 14, 2781 12 of 18

Taking the antenna brightness temperature with an AGF of 3.3◦ as the ground truth
value, the three quality indicators of BIAS, MAE, and RMSE are calculated and are shown in
Table 2. Due to the added noise to ATMS channel 2, the RMSE between antenna brightness
temperatures with different AGFs can reach 3.5 K. After the resolution reconstruction
algorithm is applied, the RMSE decreases to a certain extent. The commonly used BGI and
AAPP algorithm can reduce the RMSE to about 2.5 K, and the modified AAPP algorithm
proposed in this paper can further reduce the RMSE to about 2 K. Similarly, the MAE error
with the true value is also improved. However, for BIAS, there is no obvious rule, because
BIAS is originally a positive value, but becomes negative after the resolution is enhanced.
For ATMS channel 6, the modified AAPP does not have much improvement compared
with AAPP. Two filtering algorithms can reduce RMSE error by 70%, while BGI can only
reduce it by about 60%. Other channels show the same result.

Table 2. BIAS, MAE, and RMAE errors between the resampled antenna brightness temperature and
the true value of channels 1–16.

Channel Algorithm BIAS (K) MAE (K) RMSE (K)

1

None 0.0947 1.8436 3.7254
BGI −0.1353 1.6522 2.5355

AAPP −0.0556 1.5443 2.7039
Modified AAPP −0.0215 1.3354 2.0239

2

None 0.0709 1.8115 3.5291
BGI −0.1361 1.7288 2.5616

AAPP −0.0411 1.4988 2.6123
Modified AAPP −0.0086 1.377 2.0413

3

None −0.0197 1.0947 1.6852
BGI −0.0001 0.4958 0.8902

AAPP 0.0006 0.4187 0.6336
Modified AAPP −0.0018 0.4273 0.6411

4

None −0.0189 0.7585 1.0934
BGI −0.0086 0.3377 0.5562

AAPP 0.003 0.2998 0.4421
Modified AAPP 0.0067 0.2994 0.4419

5

None −0.0094 0.6162 0.7925
BGI −0.0064 0.2677 0.3753

AAPP 0.0077 0.2363 0.3217
Modified AAPP 0.0076 0.2307 0.3162

6

None 0.0128 0.5637 0.7052
BGI 0.0088 0.2415 0.3364

AAPP −0.0152 0.1621 0.2074
Modified AAPP −0.0146 0.1591 0.2048

7

None −0.0041 0.5727 0.7153
BGI −0.0074 0.2474 0.3397

AAPP 0.0054 0.1338 0.2111
Modified AAPP 0.0063 0.1604 0.2323

8

None 0.0183 0.5620 0.7044
BGI 0.0163 0.2419 0.3340

AAPP −0.0158 0.1170 0.2074
Modified AAPP −0.0138 0.1123 0.2050

9

None 0.0014 0.5603 0.7001
BGI 0.0004 0.2452 0.3334

AAPP 0.0019 0.1599 0.2264
Modified AAPP 0.0021 0.1529 0.2178
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Table 2. Cont.

Channel Algorithm BIAS (K) MAE (K) RMSE (K)

10

None 0.0037 0.5543 0.6972
BGI 0.0031 0.2396 0.3309

AAPP −0.0013 0.1578 0.2308
Modified AAPP 0.0023 0.1701 0.2422

11

None 0.0184 0.5995 0.7843
BGI 0.0163 0.2539 0.3502

AAPP −0.0168 0.1646 0.2422
Modified AAPP −0.0189 0.1701 0.2451

12

None −0.0038 0.9684 1.2103
BGI −0.0028 0.4241 0.5748

AAPP 0.0027 0.2746 0.3892
Modified AAPP 0.0029 0.2758 0.3899

13

None 0.0080 0.9697 1.2165
BGI 0.0110 0.4125 0.5681

AAPP −0.0146 0.2658 0.3933
Modified AAPP −0.0166 0.2701 0.3988

14

None 0.0170 1.2092 1.5156
BGI 0.0194 0.5394 0.7388

AAPP −0.0240 0.3581 0.5211
Modified AAPP −0.0245 0.3602 0.5297

15

None 0.0266 1.9125 2.4030
BGI 0.0230 0.8394 1.1569

AAPP −0.0301 0.5537 0.8132
Modified AAPP −0.0295 0.5501 0.8089

16

None −0.0768 3.1231 4.0295
BGI −0.0377 1.3640 1.9480

AAPP 0.0488 1.2000 1.6611
Modified AAPP 0.0464 1.1892 1.6429

3.3. Experiments and Comparisons Using ATMS Observations

If the experiment is only carried out on the simulated data, there are uncertainties
caused by the radiative transfer model and the simulation method of the antenna brightness
temperature. In this section, the actual ATMS antenna brightness temperatures are used
to evaluate the effect of the resampling algorithms. ATMS TDR data at 0425 UTC on
16 September 2021, are obtained from NOAA class archival.

Figure 10a–c show the resolution enhancement results from BGI, AAPP, and modified
AAPP with a low RMSE for strong noise suppression whereas Figure 10d,e,g show a high
RMSE or a noise suppression. However, the noise trade-off parameters of the three algo-
rithms have their own characteristics, and it is necessary to establish a common standard
for the three algorithms. For the sake of fairness, the RMSE value between the brightness
temperature before and after the resolution enhancement is used as an indicator of the
strength of noise suppression. Low RMSE represents strong noise suppression, and high
RMSE represents weak noise suppression. For strong noise reduction, the RMSE is set to
3.5 K, and the value of the noise trade-off parameter c of the original AAPP is about 0.4.
Brightness temperatures resampled by BGI (Figure 10a) appear noisy, which is in line with
the above analysis. For low noise suppression, the RMSE before and after resampling is set
to 5 K. At this time, the noise trade-off parameter c in the original AAPP is about 0.2. The
results of BGI (Figure 10d) and AAPP (Figure 10e) appear noisy, as we expected, and the
results of AAPP have obvious outliers at the edges of the image; in contrast, the results of
modified AAPP (Figure 10f) not only have lower noise but also have no anomalies at the
edges. It is concluded that the modified AAPP has a good noise suppression effect, and
greatly improves the original resampling algorithm.
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Figure 10. Comparisons of effects of RMSE magnitude on ATMS channel 2 resampling from three
algorithms (a–c) resampled by BGI, AAPP, and modified AAPP, respectively with a low RMSE;
(d–f) resampled by BGI, AAPP, and modified AAPP, respectively with a high RMSE. The unit of
brightness temperature is K.

The average brightness temperature difference at each FOV and each scan line is
calculated for both low RMSE and high RMSE as shown in Figure 11. In Figure 11a,b,
the overall trends of the three curves are the same, and the results of AAPP are generally
consistent with the results of the modified AAPP. The results of BGI are different from
the filtering algorithm, but the difference can basically be kept within 1 K. On the left
side of Figure 11b, the green curve oscillates, indicating that the noise amplification effect
of the BGI algorithm is more obvious. In the case of high RMSE, the average brightness
temperature difference varies over a larger range. It can be seen in Figure 11c,d that the
red curve (results of AAPP) has a sharp increase or decrease at the tail of the curve, while
the gray curve (results of modified AAPP) has no such phenomenon. At the same time, on
the left side of Figure 11d, the oscillation phenomenon of BGI results is more obvious, and
the AAPP results also have an oscillation phenomenon, indicating that the noise of BGI
and AAPP is not well suppressed. In summary, the modified AAPP proposed in this paper
not only overcomes the abnormal phenomenon of the AAPP algorithm at the edge of the
image but also has a better noise suppression effect than AAPP and BGI.

Figure 12 shows the raw observations and resolution smoothing results for ATMS
TDR channel 6. Figure 12a is the original observation of ATMS channel 6, and Figure 12a–c
are the results of reducing the resolution using three algorithms. As can be seen from
the figure, all three algorithms can achieve the effect of noise reduction, and the effect is
equivalent, the difference between the three algorithms is not obvious. This is because the
noise suppression function is not needed when the image resolution is smoothed.
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4. Discussion

This study investigated the quality of the Backus–Gilbert inversion (BGI), AAPP
resampling algorithms, and modified AAPP algorithms for ATMS resolution enhancement
or reduction. The Gaussian distribution function is assumed to represent the antenna gain
function (AGF). The effect of the real antenna gain on the algorithm needs to be further
studied and discussed in our future studies.

It should be pointed out that the conclusions drawn in this paper are largely based on
the simulated data from WRF. More studies are needed for actual observations.

In addition, when resampling the actual observation data, there is no real ATMS
antenna temperature with a half-power width of 3.3◦, which makes it impossible for us
to quantitatively evaluate the performance of the algorithm on the actual observation
data. AMSU has a spatial resolution of 3.3◦ and has a similar frequency design to ATMS.
However, Since ATMS are carried onboard Suomi-NPP or the NOAA-20 satellites and
AMSU are on other NOAA and METOP satellites, it is inconvenient to collocate the data
from two different platforms. Therefore, it is worth thinking about how to quantitatively
evaluate the resolution reconstruction algorithm on the actual observation data set with a
target beam width of 3.3◦.

In this paper, random noise with Gaussian distribution is added to different channels.
For near-surface channels such as channel 1 and channel 2 which have a very large bright-
ness temperature difference between land and ocean, the NEDT noise level of 1 K may
have a very limited impact on the image. However, for those channels with small changes
in brightness temperature, NEDT of 1 K can significantly reduce the image quality. Thus,
when the modified AAPP is applied to ATMS observations the quality of resampled data at
a particular channel is very dependent on the actual ATMS NEDT.

5. Conclusions

A spatial resolution reconstruction is a key step in microwave remote sensing data
processing, which can effectively improve the data quality and application value. In
numerical weather prediction models, most of the data assimilation system is well set for
the observations from AMSU-A brightness temperature. Thus, BGI and AAPP have been
used to unify the spatial resolution of ATMS and AMSU-A. The BGI algorithm has been
widely studied and used, but the research on the AAPP algorithm is very limited to the
NPW community. This study proposes a modified AAPP resampling algorithm to achieve
the unification of the spatial resolution of ATMS and is expected to be applied to more
microwave instruments in the future. The difference between the modified AAPP and
AAPP algorithm is that the adjustment function of the half-power width of the antenna is
different. A polynomial form outside the exponential rather than a binary function form
inside the exponential is used to adjust the antenna gain shape in the frequency domain. In
this study, the fast-radiative transfer model ARMS and mesoscale model WRF are used to
simulate the antenna brightness temperatures at 2.2◦, 3.3◦, and 5.2◦. Compared with BGI
and AAPP, modified AAPP shows smaller errors and lower noise. The modified AAPP
overcomes the problem of poor accuracy of AAPP in the areas with a sharp gradient in
brightness temperatures such as the boundary area of land and sea and active weather
systems. Compared with the BGI algorithm, the resampling accuracy does not change with
scan position.

The performance of the three resampling algorithms is also evaluated on the actual
observation data. The results show that when the half-power width needs to be enhanced to
3.3◦ or less, modified AAPP can better suppress noise and the result of modified AAPP does
not have obvious numerical anomalies at the beginning and end of the scan lines which
are typical of the original AAPP. In addition, the three algorithms are equally effective
in smoothing the high-resolution antenna brightness temperature, and all of them can
effectively reduce the noise levels.
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