A Retrospective Satellite Analysis of the June 2012 North American Derecho
Abstract
:1. Introduction
1.1. Background
1.2. Storm Microphysical and Thermodynamic Processes
1.3. Storm Dynamic Processes
2. Materials and Methods
3. Results: DCS Evolution and Impact
3.1. Derecho Genesis: Transition from Elevated to Surface-Based Convection
3.2. Derecho Mature Stage and MCV Development
3.3. DCS Re-Intensification over the Mid-Atlantic Region
4. Discussion
- Collect and exploit surface-based observations, including measurements from tower platforms and Doppler radar-measured reflectivity and wind velocity. This step promotes the enhanced use of the network of private and university-partnered ground-based MWRPs, as well as the archival of profiler datasets;
- Ground-based microwave and radio profiler instruments, including MWRPs and NEXRAD, to obtain vertical temperature, humidity, and wind velocity profiles. This step continues encouragement of algorithm development and multi-instrument synergistic interpretation of existing data assets. This multi-instrument simultaneous viewing of a single event provides a wealth of data and insight into the physics of severe storms. Plotting of Hovmӧller diagrams of equivalent potential temperature (θe) from MWRP soundings is highly encouraged to monitor diurnal trends thermodynamic structure and attendant stability conditions in the lower troposphere;
- Satellite-based 2-D plan-view images of brightness temperature and vertical profiles of temperature and humidity, and derived parameters related to potential temperature. Modifying sounding profiles with surface observations of temperature and humidity is an additional step that improves the representation of the ambient environment especially when performed with co-located MWRP sounding retrievals.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujita, T.T. The downburst, microburst and macroburst. In Satellite and Mesometeorology Research Paper 210; University of Chicago: Chicago, IL, USA, 1985; 122p. [Google Scholar]
- Wakimoto, R. Forecasting Dry Microburst Activity over the High Plains. Mon. Weather Rev. 1985, 113, 1131–1143. [Google Scholar] [CrossRef] [Green Version]
- Johns, R.H.; Hirt, W.D. Derechos: Widespread Convectively Induced Windstorms. Weather Forecast. 1987, 2, 32–49. [Google Scholar] [CrossRef]
- Ashley, W.S.; Mote, T.L. Derecho Hazards in the United States. Bull. Am. Meteorol. Soc. 2005, 86, 1577–1592. [Google Scholar] [CrossRef]
- Proctor, F.H. Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci. 1989, 46, 2143–2165. [Google Scholar] [CrossRef] [Green Version]
- Pryor, K.L. Progress and Developments of Downburst Prediction Applications of GOES. Weather Forecast. 2015, 30, 1182–1200. [Google Scholar] [CrossRef]
- Banacos, P.C.; Ekster, M.L. The Association of the Elevated Mixed Layer with Significant Severe Weather Events in the Northeastern United States. Weather Forecast. 2010, 25, 1082–1102. [Google Scholar] [CrossRef]
- Smull, B.F.; Houze, R.A. Rear Inflow in Squall Lines with Trailing Stratiform Precipitation. Mon. Weather Rev. 1987, 115, 2869–2889. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L. The Role of Convectively Generated Rear-Inflow Jets in the Evolution of Long-Lived Mesoconvective Systems. J. Atmos. Sci. 1992, 49, 1826–1847. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.C. A Simple Model of Evaporatively Driven Dowadraft: Application to Microburst Downdraft. J. Atmos. Sci. 1985, 42, 1004–1023. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Roberts, R.D. Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective. Mon. Weather Rev. 2006, 134, 23–47. [Google Scholar] [CrossRef]
- Przybylinski, R.W. The Bow Echo: Observations, Numerical Simulations, and Severe Weather Detection Methods. Weather Forecast. 1995, 10, 203–218. [Google Scholar] [CrossRef]
- Corfidi, S.F.; Evans, J.S.; Johns, R.H. About Derechos. 2022. Available online: http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm (accessed on 27 May 2022).
- Furgione, L.K. The Historic Derecho of June 29, 2012. 2013. Available online: https://www.weather.gov/media/publications/assessments/derecho12.pdf (accessed on 27 May 2022).
- Moller, A.R. 2001: Severe local storms forecasting. In Severe Convective Storms; Doswell, C.A., Ed.; Springer: Boston, MA, USA, 2001; pp. 443–480. [Google Scholar]
- Srivastava, R.C. A Model of Intense Downdrafts Driven by the Melting and Evaporation of Precipitation. J. Atmos. Sci. 1987, 44, 1752–1774. [Google Scholar] [CrossRef] [Green Version]
- Knupp, K.R. Numerical Simulation of Low-Level Downdraft Initiation within Precipitating Cumulonimbi: Some Preliminary Results. Mon. Weather Rev. 1989, 117, 1517–1529. [Google Scholar] [CrossRef] [Green Version]
- Knupp, K.R. Structure and evolution of a long-lived, microburst producing storm. Mon.Wea. Rev. 1996, 124, 2785–2806. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Klemp, J.B.; Rotunno, R. Structure and Evolution of Numerically Simulated Squall Lines. J. Atmos. Sci. 1988, 45, 1990–2013. [Google Scholar] [CrossRef] [Green Version]
- Johns, R.H. Meteorological Conditions Associated with Bow Echo Development in Convective Storms. Weather Forecast. 1993, 8, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, J.M.; Forbes, G.S. Mesoscale convective systems. In Severe Convective Storms; Doswell, C.A., Ed.; Springer: Boston, MA, USA, 2001; pp. 323–357. [Google Scholar]
- Davis, C.A.; Weisman, M.L. Balanced Dynamics of Mesoscale Vortices Produced in Simulated Convective Systems. J. Atmos. Sci. 1994, 51, 2005–2030. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Weisman, M.L.; Klemp, J.B. Three-Dimensional Evolution of Simulated Long-Lived Squall Lines. J. Atmos. Sci. 1994, 51, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Westwater, R.E.; Crewell, S.; Matzler, C. Surface-based microwave and millimeter wave radiometric remote sensing of the troposphere: A tutorial. IEEE Geosci. Remote Sens. Soc. Newsl. 2005, 134, 16–33. [Google Scholar]
- Young, J.A. Static Stability. In Encyclopedia of Atmospheric Sciences, 1st ed.; Holton, J.R., Curry, J., Pyle, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 2114–2120. [Google Scholar]
- August, T.; Klaes, D.; Schlüssel, P.; Hultberg, T.; Crapeau, M.; Arriaga, A.; O’Carroll, A.; Coppens, D.; Munro, R.; Calbet, X. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1340–1371. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Weng, F.; Grody, N.C.; Zhao, L. Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett. 2000, 27, 2669–2672. [Google Scholar] [CrossRef]
- Solheim, F.; Godwin, J.R.; Westwater, E.R.; Keihm, S.J.; Marsh, K.; Han, Y.; Ware, R. Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci. 1998, 33, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Cimini, D.; Nelson, M.; Güldner, J.; Ware, R. Forecast indices from a ground-based microwave radiometer for operational meteorology. Atmos. Meas. Tech. 2015, 8, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Bunkers, M.J.; Klimowski, B.A. The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment. In Proceedings of the 21st Conference Severe Local Storms, San Antonio, TX, USA, 11–16 August 2002; pp. 11–16. [Google Scholar]
- Pryor, K.L. Advances in downburst monitoring and prediction with GOES-16. In Proceedings of the 17th Conference on Mesoscale Processes, San Diego, CA, USA, 24–27 July 2017. [Google Scholar]
- Liu, G.; Curry, J.A.; Sheu, R.-S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data. J. Geophys. Res. Earth Surf. 1995, 100, 13811–13826. [Google Scholar] [CrossRef]
- Stewart, S.R. The Prediction of Pulse-Type Thunderstorm Gusts Using Vertically Integrated Liquid Water Content (VIL) and the Cloud Top Penetrative Downdraft Mechanism. NOAA Technical Memorandum NWS SR-136. 1991. Available online: https://repository.library.noaa.gov/view/noaa/7204 (accessed on 9 April 2022).
- Choi, E.C.; Hidayat, A.F. Gust factors for thunderstorm and non-thunderstorm winds. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1683–1696. [Google Scholar] [CrossRef]
- Smith, B.E. Mesoscale structure of a derecho-producing convective system: The southern Great Plains storms of May 4 1989. In Proceedings of the 16th Conference on Severe Local Storms, Kananaskis Park, AB, Canada, 22–26 October 1990; pp. 428–433. [Google Scholar]
- White, B.A.; Blyth, A.M.; Marsham, J.H. Simulations of an observed elevated mesoscale convective system over southern England during CSIP IOP 3. Q. J. R. Meteorol. Soc. 2016, 142, 1929–1947. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.; Xiong, X.; Salomonson, V. Status of terra MODIS and aqua modis. Adv. Space Res. 2003, 32, 2099–2106. [Google Scholar] [CrossRef]
METAR Station | Date/ Time | Peak Wind | G | ΔT | MWR MWPI | MWR WGP | IASI MWPI | IASI WGP | Ret Time |
---|---|---|---|---|---|---|---|---|---|
DPA | 29/1602 | 23.7 | 2.42 | −5 | 4.8 | 24.7 | 3.8 | 22.6 | 1623 |
MFD | 29/2136 | 19 | 1.85 | −8 | 1.9 | 19.5 | NA | NA | 2100 |
IAD | 30/0235 | 30.4 | 2.27 | −9 | 6.8 | 30.4 | 6.4 | 29.3 | 0200 |
DCA | 30/0252 | 31.4 | 2.54 | −10 | 6.8 | 30.4 | 6.4 | 29.3 | 0200 |
BWI | 30/0305 | 29.3 | 1.78 | −10 | 6 | 28.3 | 6.4 | 29.3 | 0200 |
Peak Wind to MWPI | ΔT to MWPI | Peak Wind to ΔT | |
---|---|---|---|
R | 0.98 | 0.52 | 0.68 |
R2 | 0.96 | 0.27 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pryor, K.; Demoz, B. A Retrospective Satellite Analysis of the June 2012 North American Derecho. Remote Sens. 2022, 14, 3479. https://doi.org/10.3390/rs14143479
Pryor K, Demoz B. A Retrospective Satellite Analysis of the June 2012 North American Derecho. Remote Sensing. 2022; 14(14):3479. https://doi.org/10.3390/rs14143479
Chicago/Turabian StylePryor, Kenneth, and Belay Demoz. 2022. "A Retrospective Satellite Analysis of the June 2012 North American Derecho" Remote Sensing 14, no. 14: 3479. https://doi.org/10.3390/rs14143479
APA StylePryor, K., & Demoz, B. (2022). A Retrospective Satellite Analysis of the June 2012 North American Derecho. Remote Sensing, 14(14), 3479. https://doi.org/10.3390/rs14143479