Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = microporosity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2070 KB  
Article
Changes in Soil Physical Quality, Root Growth, and Sugarcane Crop Yield During Different Successive Mechanized Harvest Cycles
by Igor Queiroz Moraes Valente, Zigomar Menezes de Souza, Gamal Soares Cassama, Vanessa da Silva Bitter, Jeison Andrey Sanchez Parra, Euriana Maria Guimarães, Reginaldo Barboza da Silva and Rose Luiza Moraes Tavares
AgriEngineering 2025, 7(10), 325; https://doi.org/10.3390/agriengineering7100325 - 1 Oct 2025
Abstract
Due to its benefits and efficiency, mechanized sugarcane harvest is a common practice in Brazil; however, continuous traffic of agricultural machinery leads to soil compaction at the end of each harvest cycle. Hence, this study evaluated whether machine traffic affects soil physical and [...] Read more.
Due to its benefits and efficiency, mechanized sugarcane harvest is a common practice in Brazil; however, continuous traffic of agricultural machinery leads to soil compaction at the end of each harvest cycle. Hence, this study evaluated whether machine traffic affects soil physical and hydraulic properties, root growth, and crop productivity in sugarcane areas during different harvest cycles. Four treatments were performed consisting of an area planted with different stages (years) of sugarcane crop: T1 = after the first harvest—plant cane (area 1); T2 = after the second harvest—first ratoon cane (area 2); T3 = after the third harvest—second ratoon cane (area 3); T4 = after fourth harvest—third ratoon cane (area 4). Five sampling sites were considered in each area, constituting five replicates collected from four layers. Two collection positions were considered: wheel track (WT) and planting row (PR). Soil physical properties, root system, productivity, and biometric characteristics of the sugarcane crop were evaluated at depths of 0.00–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m. Traffic during the sugarcane crop growth cycles affected soil physical and hydraulic properties, showing sensitivity to the effects of the different treatments, producing variations in root growth and crop productivity. Plant cane cycle showed lower soil penetration resistance, bulk density, microporosity, higher saturated soil hydraulic conductivity, and macroporosity when compared with the other cycles studied. In the 0.10–0.20 m layer, all treatments produced higher soil penetration resistance and density, and lower saturated soil hydraulic conductivity. Dry biomass, volume, and root area were higher for the plant cane cycle in the 0.00–0.05 m and 0.05–0.10 m layers compared with the other crop cycles. Root dry biomass is directly related to crop productivity in layers up to 0.40 m deep. Sugarcane productivity was affected along the crop cycles, with higher productivity observed in the plant cane and first ratoon cane cycles compared with the second and third ratoon cane cycles. Full article
Show Figures

Figure 1

15 pages, 4098 KB  
Article
Corrosion Resistance Properties of As-Sintered 17-4 PH Samples Additive-Manufactured Through Binder Jetting
by Pietro Forcellese, Wasiq Ali Khan, Tommaso Mancia, Michela Simoncini, Matěj Reiser, Milan Kouřil and Tiziano Bellezze
Metals 2025, 15(10), 1082; https://doi.org/10.3390/met15101082 - 27 Sep 2025
Abstract
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited [...] Read more.
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited isotropic corrosion performance across different build-up orientations and directions. The CPP tests indicated the formation of a passive film with limited stability, while the monitoring of the OCP showed initial instability, followed by stabilization over time. Microstructural analysis indicated the presence of microporosities and a structure consisting of martensitic and ferritic grains in the as-sintered 17-4 PH, alongside copper and niobium segregations at grain boundaries, which may deeply influence localized corrosion susceptibility. These findings suggest that the as-sintered 17-4 PH fabricated through MBJ exhibits comparable corrosion behavior to 17-4 PH additive-manufactured through other techniques in which the sintering process is involved. The study highlights the influence of microstructure on electrochemical performance and underscores the need for post processing treatments to enhance corrosion resistance. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

23 pages, 24962 KB  
Article
Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component
by Dana Bolibruchová, Marek Matejka, Richard Pastirčák and Radka Podprocká
Metals 2025, 15(10), 1065; https://doi.org/10.3390/met15101065 - 23 Sep 2025
Viewed by 113
Abstract
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any [...] Read more.
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any deficiencies in these aspects can lead to a significant reduction in the mechanical properties of the components. This article deals with the influence of plunger speed during high-pressure die casting on microstructure homogeneity and the occurrence of porosity in critical areas of AlSi9Cu3(Fe) alloy castings. Numerical simulations and experimental evaluation demonstrated that with increasing plunger speed, there is a transition from a transitional to a laminar flow regime to a fully turbulent regime, which affects the homogeneity of the alloy and its solidification. Turbulent flow minimizes shrinkage porosity in castings but increases the risk of gas porosity and oxide inclusions due to reoxidation processes, leading to the entrainment of air and oxide layers. Microporosity analysis showed that the lowest occurrence of shrinkage-type pores was found at a plunger speed of 4 m/s due to rapid filling and shorter solidification time. The optimal plunger speed range is between 3 and 3.6 m/s, ensuring a compromise between microstructure stability and minimization of porosity in critical areas. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

19 pages, 3569 KB  
Article
Effect of Acid Treatment on the Structure of Natural Zeolite from the Shankhanai Deposit
by Sandugash Tanirbergenova, Dildara Tugelbayeva, Nurzhamal Zhylybayeva, Aizat Aitugan, Kairat Tazhu, Gulya Moldazhanova and Zulkhair Mansurov
Processes 2025, 13(9), 2896; https://doi.org/10.3390/pr13092896 - 10 Sep 2025
Viewed by 317
Abstract
Natural clinoptilolite from the Shankhanai deposit (Kazakhstan) was modified via acid and thermal treatments to improve its physicochemical and catalytic properties. The zeolite was activated using 10% nitric acid alone, nitric acid followed by thermal treatment (600 °C), and a mixed acid solution [...] Read more.
Natural clinoptilolite from the Shankhanai deposit (Kazakhstan) was modified via acid and thermal treatments to improve its physicochemical and catalytic properties. The zeolite was activated using 10% nitric acid alone, nitric acid followed by thermal treatment (600 °C), and a mixed acid solution (10% HNO3 + 5% CH3COOH) followed by mild thermal treatment (280 °C). Structural, textural, and thermal changes were characterized by XRD, FTIR, BET, TGA, SEM, and EDX. Nitric acid treatment increased the BET surface area from 4.95 to 59.9 m2/g but reduced crystallinity, whereas the dual-acid approach enhanced porosity and acidity while preserving framework integrity. Preliminary catalytic testing in thiophene hydrodesulfurization (HDS) revealed improved conversion (up to 20.7%) in the absence of active metals, confirming the potential of modified clinoptilolite as a catalyst support. The dual-acid method presents a promising, eco-friendly pathway for producing thermally stable and catalytically active zeolitic materials, suitable for selective hydrodesulfurization of thiophene. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

20 pages, 4774 KB  
Review
Review of the Integration of Fused Filament Fabrication with Complementary Methods for Fabricating Hierarchical Porous Polymer Structures
by Savvas Koltsakidis and Dimitrios Tzetzis
Appl. Sci. 2025, 15(17), 9703; https://doi.org/10.3390/app15179703 - 3 Sep 2025
Viewed by 537
Abstract
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures [...] Read more.
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures using fused filament fabrication (FFF), the most widely used polymer additive manufacturing technique. Unlike earlier reviews that consider lattice architectures and foaming chemistries separately, this work integrates both within a single analysis. It begins with an overview of FFF fundamentals and how process parameters affect macropore formation. Design strategies for achieving macroporosity (≳100 µm) with a single thermoplastic are presented and categorized: 2D infill patterns, strut-based lattices, triply periodic minimal surfaces (TPMS), and Voronoi structures, along with functionally graded approaches. The discussion then shifts to functional filaments incorporating chemical or physical blowing agents, thermally expandable or hollow microspheres, and sacrificial porogens, which create microporosity (≲100 µm) either in situ or through post-processing. Each material approach is connected to case studies that demonstrate its application. A comparative analysis highlights the advantages of each method. Key challenges such as viscosity control, thermal gradient management, dimensional instability during foaming, environmental concerns, and the absence of standardized porosity measurement techniques are addressed. Finally, emerging solutions and future directions are explored. Overall, this review provides a comprehensive perspective on strategies that enhance FFF’s capability to fabricate hierarchically porous polymer structures. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

32 pages, 11740 KB  
Article
Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades
by Julita Krassowska
Materials 2025, 18(17), 4105; https://doi.org/10.3390/ma18174105 - 1 Sep 2025
Viewed by 751
Abstract
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), [...] Read more.
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), and cement type (CEM I 42.5, CEM II 42.5R/A-V). The mechanical properties of the fiber-reinforced concretes, including compressive strength, flexural strength, splitting tensile strength, and modulus of elasticity, were evaluated. The addition of recycled carbon fibers significantly improved flexural and splitting tensile strengths, with increases exceeding 60% and 100%, respectively, at the highest fiber dosage (8 kg/m3), attributed to efficient crack-bridging capability. Compressive strength was mainly influenced by the water-to-cement ratio, while the modulus of elasticity showed slight reductions in some mixes due to fiber clustering and increased micro-porosity. Regression analysis indicated that shorter fibers (25 mm) were more effective in enhancing flexural strength, whereas longer fibers (50 mm) improved splitting tensile strength. Classical predictive models generally underestimated the flexural capacity of recycled-carbon-fiber-reinforced concretes, highlighting the need for recalibration. Optical microscopy confirmed uniform fiber dispersion at lower dosages and a dominant pull-out failure mechanism. The findings demonstrate the feasibility of using recycled carbon fibers to enhance the mechanical performance of concrete while supporting sustainability through waste diversion and circular economy strategies. Full article
Show Figures

Figure 1

16 pages, 7360 KB  
Article
Upcycling of Waste PVC into CaCO3/KOH-Modified Porous Carbon for Supercapacitor Applications
by Wenbo Cai, Le Liu, Peng Zhang and Zhidan Lin
Molecules 2025, 30(16), 3420; https://doi.org/10.3390/molecules30163420 - 19 Aug 2025
Viewed by 701
Abstract
This study introduces a green method for converting waste polyvinyl chloride (PVC) into hierarchical porous carbon materials. By using CaCO3 pre-activation to capture HCl and form meso/macroporous frameworks, followed by KOH activation to tune microporosity, high-surface-area porous carbon was successfully produced. The [...] Read more.
This study introduces a green method for converting waste polyvinyl chloride (PVC) into hierarchical porous carbon materials. By using CaCO3 pre-activation to capture HCl and form meso/macroporous frameworks, followed by KOH activation to tune microporosity, high-surface-area porous carbon was successfully produced. The effects of KOH loading ratios (C-PVC:KOH = 1:1 to 1:3) on the primary activated carbon material were systematically investigated. It was found that a ratio of 1:2 (C-KOH-2) yielded optimal material properties, with a specific surface area of 1729 m2 g−1 and an oxygen doping content of 7.37%. Electrochemical measurements revealed that C-KOH-2 exhibited a high specific capacitance of 360.4 F g−1 at 1 A g−1, retaining 72.1% of its capacitance at 10 A g−1. The symmetric supercapacitors achieved an energy density of 9.9 Wh kg−1 at 125 W kg−1, with 93.12% capacitance retention over 5000 cycles. This dual-purpose approach enables the upcycling of PVC waste while promoting the development of high-performance electrodes. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

17 pages, 6842 KB  
Article
Inside the Framework: Structural Exploration of Mesoporous Silicas MCM-41, SBA-15, and SBA-16
by Agnieszka Karczmarska, Wiktoria Laskowska, Danuta Stróż and Katarzyna Pawlik
Materials 2025, 18(15), 3597; https://doi.org/10.3390/ma18153597 - 31 Jul 2025
Cited by 1 | Viewed by 636
Abstract
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional [...] Read more.
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional potential as substrates for molecular immobilization across these diverse applications. This study compares three mesoporous silica powders: MCM-41, SBA-15, and SBA-16. A multi-technique characterization approach was employed, utilizing low- and wide-angle X-ray diffraction (XRD), nitrogen physisorption, and transmission electron microscopy (TEM) to elucidate the structure–property relationships of these materials. XRD analysis confirmed the amorphous nature of silica frameworks and revealed distinct pore symmetries: a two-dimensional hexagonal (P6mm) structure for MCM-41 and SBA-15, and three-dimensional cubic (Im3¯m) structure for SBA-16. Nitrogen sorption measurements demonstrated significant variations in textural properties, with MCM-41 exhibiting uniform cylindrical mesopores and the highest surface area, SBA-15 displaying hierarchical meso- and microporosity confirmed by NLDFT analysis, and SBA-16 showing a complex 3D interconnected cage-like structure with broad pore size distribution. TEM imaging provided direct visualization of particle morphology and internal pore architecture, enabling estimation of lattice parameters and identification of structural gradients within individual particles. The integration of these complementary techniques proved essential for comprehensive material characterization, particularly for MCM-41, where its small particle size (45–75 nm) contributed to apparent structural inconsistencies between XRD and sorption data. This integrated analytical approach provides valuable insights into the fundamental structure–property relationships governing ordered mesoporous silica materials and demonstrates the necessity of combined characterization strategies for accurate structural determination. Full article
Show Figures

Graphical abstract

15 pages, 2190 KB  
Article
Synthesis and Characterization of Covalent Triazine Frameworks Based on 4,4′-(Phenazine-5,10-diyl)dibenzonitrile and Its Application in CO2/CH4 Separation
by Hanibal Othman, Robert Oestreich, Vivian Küll, Marcus N. A. Fetzer and Christoph Janiak
Molecules 2025, 30(15), 3110; https://doi.org/10.3390/molecules30153110 - 24 Jul 2025
Viewed by 505
Abstract
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl [...] Read more.
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl2-to-monomer ratio (10 and 20). N2 adsorption yielded BET surface areas up to 1460 m2g −1. The pBN-CTFs are promising CO2 adsorbents and are comparable to other benchmark CTFs such as CTF-1 with a CO2 uptake of pBN-CTF-10-550 at 293 K of up to 54 cm3 g−1 or 96 mg g−1, with a CO2/CH4 IAST selectivity of 22 for a 50% mixture of CO2/CH4. pBN-CTF-10-400 has a very high heat of adsorption of 79 kJ mol−1 for CO2 near zero coverage in comparison to other CTFs, and it also stays well above the liquefaction heat of CO2 due to its high microporosity of 50% of the total pore volume. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

33 pages, 167102 KB  
Article
Influence of Mineralogical and Petrographic Properties on the Mechanical Behavior of Granitic and Mafic Rocks
by Muhammad Faisal Waqar, Songfeng Guo, Shengwen Qi, Malik Aoun Murtaza Karim, Khan Zada, Izhar Ahmed and Yanjun Shang
Minerals 2025, 15(7), 747; https://doi.org/10.3390/min15070747 - 17 Jul 2025
Viewed by 618
Abstract
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron [...] Read more.
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy (SEM-EDS) methods, with methodical geotechnical characterization to establish quantitative relationships between mineralogical composition and engineering properties. The petrographic studies revealed three lithologic groups: fine-to-medium-grained Shuangjiangkou granite (45%–60% feldspar, 27%–35% quartz, 10%–15% mica), plagioclase-rich anorthosite (more than 90% of plagioclase), and intermediate mangerite (40%–50% of plagioclase, 25%–35% of perthite). The uniaxial compressive strength tests showed great variations: granite (127.53 ± 15.07 MPa), anorthosite (167.81 ± 23.45 MPa), and mangerite (205.12 ± 23.87 MPa). Physical properties demonstrated inverse correlations between mechanical strength and both water absorption (granite: 0.25%–0.42%; anorthosite: 0.07%–0.44%; mangerite: 0.10%–0.25%) and apparent porosity (granite: 0.75%–0.92%; anorthosite: 0.20%–1.20%; mangerite: 0.29%–0.69%), with positive correlations to specific gravity (granite: 1.88–3.03; anorthosite: 2.67–2.90; mangerite: 2.43–2.99). Critical petrographic features controlling mechanical behavior include the following: (1) mica content in granite creating anisotropic properties, (2) extensive feldspar alteration through sericitization increasing microporosity and reducing intergranular cohesion, (3) plagioclase micro-fracturing and alteration to clinozoisite–sericite assemblages in anorthosite creating weakness networks, and (4) mangerite’s superior composition of >95% hard minerals with minimal sheet mineral content and limited alteration. Failure mode analysis indicated distinct patterns: granite experiencing shear-dominated failure (30–45° diagonal planes), anorthosite demonstrated tensile fracturing with vertical splitting, and mangerite showed catastrophic brittle failure with extensive fracture networks. These findings provide quantitative frameworks that relate petrographic features to engineering behavior, offering valuable insights for rock mass assessment and engineering design in similar crystalline rock terrains. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

12 pages, 1442 KB  
Article
Reversible Binding of Nitric Oxide in a Cu(II)-Containing Microporous Metal-Organic Framework
by Konstantin A. Bikov, Götz Schuck and Peter A. Georgiev
Molecules 2025, 30(14), 3007; https://doi.org/10.3390/molecules30143007 - 17 Jul 2025
Viewed by 412
Abstract
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose [...] Read more.
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose of comparison, we also measured the corresponding CO2 adsorption isotherms, and as a result, the isosteric heats of adsorption for the two studied adsorptives were derived, being in the range of 12–15 kJ/mol for NO at loadings up to 0.5 NO molecules per formula unit (f.u.) of the bare compound (C4O3HCu), and 23–25 kJ/mol CO2 in the range 0–1 CO2 per f.u. Microscopically, the mode of NO binding near the square pyramid Cu(II) centers was directly accessed with the use of in situ NO gas adsorption X-ray Absorption Spectroscopy (XAS). Additionally, during the vacuum/temperature activation of the material and consequent NO adsorption, the electronic state of the Cu-species was monitored by observing the corresponding X-ray Near Edge Spectra (XANES). Contrary to the previously anticipated chemisorption mechanism for NO binding at Cu(II) species, we found that at slightly elevated temperatures, under ambient, but also cryogenic conditions, only relatively weak physisorption takes place, with no evidence for a particular adsorption preference to the coordinatively unsaturated Cu-centers of the material. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

13 pages, 3867 KB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 371
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

20 pages, 3348 KB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 581
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

17 pages, 4964 KB  
Article
Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies
by Ki-Seok Kwon and Han-Seung Lee
Materials 2025, 18(14), 3243; https://doi.org/10.3390/ma18143243 - 9 Jul 2025
Viewed by 531
Abstract
This study investigates the synthesis of highly porous ZnCl2-activated biochars derived from sawdust through controlled pyrolysis at 300 °C and 500 °C, aiming to enhance CO2 adsorption performance. The effects of pyrolysis temperature and chemical activation on particle size distribution, [...] Read more.
This study investigates the synthesis of highly porous ZnCl2-activated biochars derived from sawdust through controlled pyrolysis at 300 °C and 500 °C, aiming to enhance CO2 adsorption performance. The effects of pyrolysis temperature and chemical activation on particle size distribution, surface area, and pore structure are systematically analyzed. Particle size analysis reveals that higher pyrolysis temperature and ZnCl2 activation significantly reduce both median and mean particle sizes, resulting in finer and more uniform biochar morphology. BET analysis demonstrates a substantial increase in specific surface area and micropore volume upon ZnCl2 activation, particularly at 500 °C, where the activated biochar (S500ZC) exhibits a high surface area of 717.60 m2/g and a micropore area of 616.60 m2/g. CO2 adsorption isotherms recorded at 25 °C confirm that both thermal treatment and activation markedly enhance adsorption capacity, with the highest uptake of 35.34 cm3/g achieved by S500ZC. The adsorption performance follows the order: S300NZC < S300ZC < S500NZC < S500ZC, closely correlating with microporosity and surface textural development. The findings highlight the potential of ZnCl2-activated biochars as cost-effective, environmentally friendly, and efficient sorbents for scalable CO2 mitigation technologies. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

26 pages, 4761 KB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 466
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop