Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Alloy and Castings
2.2. Melt Preparation and Casting Process
2.3. Equipment and Evaluation Process
2.3.1. ProCAST Simulation
2.3.2. Sample Preparation
2.3.3. Optical and Electron Microscopy
2.3.4. Prorosity Evaluation
3. Results
3.1. Numerical Simulation ProCAST
3.2. Microstructure Evaluation
3.3. Porosity
3.3.1. X-Ray Evaluation
3.3.2. Microporosity Evaluation
4. Discussion
5. Conclusions
- Plunger speed has a decisive influence on casting quality. The results showed that with increasing speed from 2 m/s to 4 m/s, there is a transition from transitional to laminar flow to fully turbulent flow, which fundamentally affects the homogeneity of the alloy in the mold and its solidification process.
- The microstructure of eutectic silicon reacts to flow dynamics. At lower speeds, lamellae were observed. With increasing speed, the lamellae thinned and grew into elongated morphologies, which is related to the altered temperature field, faster solidification, and local undercooling caused by bifilms, which suppress convection and thus contribute to the overall refinement of the grain.
- GD 120 casting exhibits higher thermal inertia and higher sensitivity to changes in plunger speed. Conversely, in GD 55, due to faster cooling, no significant change in microstructure was observed depending on the filling speed.
- Analysis of the porosity of the casting showed that the most favorable results were achieved at a piston speed of 3 m/s, followed by samples cast at 3.6 m/s. At these speeds, optimal mold filling with effective venting was achieved. However, higher speeds led to a significant increase in defects due to turbulence, which carried surface oxides-bifilms into the melt. These bifilms serve as the primary sites of pore nucleation, while dissolved hydrogen serves as the gas for their expansion during solidification.
- The presence of intermetallic phases was consistent in all samples. Identified phases of type α-Al(Fe,Mn,Cr)Si and Al7Cu2Fe differed in morphology depending on the sampling location and filling speed. Compact αAl phases are less harmful, but the occurrence of lamellar Al7Cu2Fe can adversely affect casting strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matejka, M.; Bolibruchová, D.; Podprocká, R. The Influence of Returnable Material on Internal Homogeneity of the High-Pressure Die-Cast AlSi9Cu3(Fe) Alloy. Metals 2021, 11, 1084. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015; p. 639. ISBN 9780444635099. [Google Scholar] [CrossRef]
- Majernikova, M.; Majernik, J.; Podaril, M.; Sramhauser, K. Methodology Assessment of The Gating System Numerical Design of High-Pressure Die Casting with Regard to the Material Applicability. MM Sci. J. 2024, 8036. [Google Scholar] [CrossRef]
- Ragan, E. Die Casting of Metals; FMT TUKE: Presov, Slovakia, 2007; 383p, ISBN 978-80-8073-979-9. (In Slovak) [Google Scholar]
- Sigworth, G.K.; Williams, E.M.; Chesonis, D.C. Gas Fluxing of Molten Aluminum: An Overview. In Essential Readings in Light Metals; Springer: Cham, Switzerland, 2016; pp. 65–70. [Google Scholar] [CrossRef]
- Campbell, J. An overview of the effects of bifilms on the structure and properties of cast alloys. Metall. Mater. Trans. B 2006, 37, 857–863. [Google Scholar] [CrossRef]
- Campbell, J. A Personal View of Microstructure and Properties of Al Alloys. Materials 2021, 14, 1297. [Google Scholar] [CrossRef]
- Cao, H.; Shen, C.; Wang, C.; Xu, H.; Zhu, J. Direct Observation of Filling Process and Porosity Prediction in High Pressure Die Casting. Materials 2019, 12, 1099. [Google Scholar] [CrossRef]
- Ansari, S.; Bayans, M.; Rasimarzabadi, F.; Nobes, D. Flow visualization of the Newtonian and non-Newtonian behavior of fluids in a Tesla-diode valve. In Proceedings of the 5th International Conference on Experimental Fluid Mechanics ICEFM 2018 MunichAt, Munich, Germany, 2–4 July 2018. [Google Scholar]
- Adamane, A.R.; Arnberg, L.; Fiorese, E.; Timelli, G.; Bonollo, F. Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al-Si alloys: A review. Int. J. Metalcast. 2015, 9, 43–53. [Google Scholar] [CrossRef]
- Kumar, K.S.; Sawale, J.K.; Rao, S. Study of effect of process parameter setting on porosity levels of aluminium pressure die casting process using Taguchi Methodology. J. Mech. Civ. Eng. 2013, 9, 12–17. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.Y.; Chen, C.M.; Saputro, I.E.; Mardiono, I.; Ho, M.-H.; Huang, C.-F.; Lee, S.-C.; Fuh, Y.-K. Experimental and Numerical Investigation of Porosity Characteristics on the Variability in Mechanical Properties of High-Pressure Die Casting (HPDC) AlSi12MgMn Alloys of the Cover Plate of Hydraulic System. Int. J. Metalcast. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Lordan, E.; Dou, K.; Wang, S.; Fan, Z. Influence of porosity characteristics on the variability in mechanical properties of high pressure die casting (HPDC) AlSi7MgMn alloys. J. Manuf. Process. 2020, 56, 500–509. [Google Scholar] [CrossRef]
- Cao, L.; Liao, D.; Sun, F.; Chen, T.; Teng, Z.; Tang, Y. Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. J. Adv. Manuf. Technol. 2018, 94, 807–815. [Google Scholar] [CrossRef]
- Yang, J.; Liu, B.; Shu, D.; Li, H.; Yang, Q.; Hu, T.; Wang, Z.; Zeng, Y.; Haung, J.; Tang, X.; et al. Effect of Casting Pressure on Porosity, Microstructure, and Mechanical Properties of Large Die Casting Aluminum Alloy Parts. J. Metalcast. 2025. [Google Scholar] [CrossRef]
- Wang, T.; Huang, J.; Fu, H.; Yu, K.; Yao, S. Influence of Process Parameters on Filling and Feeding Capacity during High-Pressure Die-Casting Process. Appl. Sci. 2022, 12, 4757. [Google Scholar] [CrossRef]
- Govindarao, R.; Eshwara, K.; Srinivasa Rao, P. Defect analysis and remedies in the high pressure diecasting process with ADC-12 alloy. Am. J. Multidiscip. Res. Dev. 2025, 4, 1–8. [Google Scholar]
- Ramnath, V.; Elanchezhian, C.; Chandrasekhar, V.; Kumar, A.; Asif, S.; Mohamed, G.; Raj, D.; Kumar, C. Analysis and Optimization of Gating System for Commutator End Bracket. Procedia Mater. Sci. 2014, 6, 1312–1328. [Google Scholar] [CrossRef][Green Version]
- Easton, M.; StJohn, D.H. Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng. A 2008, 486, 8–13. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Yang, B.; Bai, J.; Guan, R. A Calculation Model for Cooling Rate of Aluminum Alloy Melts during Continuous Rheo-Extrusion. Materials 2021, 14, 5684. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, H.; Peng, W.; Lin, B.; Shao, Y.; Lin, L.; Fu, B.; Yu, Z. The Effect of Process Parameters on the Properties and Microstructure of A380 Aluminum Alloy Casting with Different Wall Thicknesses. Crystals 2023, 13, 587. [Google Scholar] [CrossRef]
- Fiorese, E.; Bonollo, F.; Battaglia, E. A Tool for Predicting the Effect of the Plunger Motion Profile on the Static Properties of Aluminium High Pressure Die Cast Components. Metals 2018, 8, 798. [Google Scholar] [CrossRef]
- Kowalczyk, W.; Dańko, R.; Górny, M.; Kawalec, M.; Burbelko, A. Influence of High-Pressure Die Casting Parameters on the Cooling Rate and the Structure of EN-AC 46000 Alloy. Materials 2022, 15, 5702. [Google Scholar] [CrossRef]
- Xin, L.; Wang, G.; Qing, J. Understanding the intrinsic framework of the Hall-Petch relationship of metals from the view of the electronic-structure level. Acta Mater. 2025, 292, 121071. [Google Scholar] [CrossRef]
- de Gouveia, G.L.; Kakitani, R.; Gomes, L.F.; Afonso, C.R.M.; Cheung, N.; Spinelli, J.E. Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties. J. Mater. Res. 2019, 34, 1381–1394. [Google Scholar] [CrossRef]
- Xiao, J.; Li, X. Asymptotic Solutions of Steady Lamellar Eutectic Growth in Directional Solidification for Small Tangent Values of the Contact Angles. Crystals 2024, 14, 93. [Google Scholar] [CrossRef]
- Risse, J.H.; Trempa, M.; Huber, F.; Höppel, H.W.; Bartels, D.; Schmidt, M.; Reimann, C.; Friedrich, J. Microstructure and Mechanical Properties of Hypereutectic Al-High Si Alloys up to 70 wt.% Si-Content Produced from Pre-Alloyed and Blended Powder via Laser Powder Bed Fusion. Materials 2023, 16, 657. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.I.; Castro-Roman, M.; Escobedo-Bocardo, J.C.; Garcia-Pastor, F.; Herrera-Trejo, M. Effect of cooling rate and Mg content on the Al–Si eutectic for Al–Si–Cu–Mg alloys. Mater. Charact. 2014, 95, 211–218. [Google Scholar] [CrossRef]
- Laukli, H.I. High Pressure Die Casting of Aluminium and Magnesium Alloys—Grain Structure and Segregation Characteristics. Ph.D. Thesis, Norwegian University of Science and Technolog, Trondheim, Norway, 2004. [Google Scholar]
- Brůna, M.; Galcik, M.; Pastircak, R.; Kantorikova, E. Effect of Gating System Design on the Quality of Aluminum Alloy Castings. Metals 2024, 14, 312. [Google Scholar] [CrossRef]
- Pradhan, A.R.; Pattnaik, S.; Sutar, M.K. Defects caused by air bubbles during casting filling process: A review. Int. J. Manag. Tech. Eng. 2018, 8, 1–5. [Google Scholar]
- Bate, C.; King, P.; Sim, J.; Manogharan, G. A Novel Approach to Visualize Liquid Aluminum Flow to Advance Casting Science. Materials 2023, 16, 756. [Google Scholar] [CrossRef] [PubMed]
Element | Si | Fe | Cu | Mn | Mg | Cr | Ni |
---|---|---|---|---|---|---|---|
[wt. %] | 10.27 | 0.722 | 2.13 | 0.158 | 0.129 | 0.021 | 0.068 |
Casting Parameter | GD 120 | GD 55 |
---|---|---|
Die casting press used | CLH 630.02P | CLH 400.02P |
Starting temperature of the stationary die | 180 ± 5 °C | 190 ± 5 °C |
Part weight | 2.40 kg | 2.30 kg |
Maximal pressure in the cold chamber | 95 MPa | 65 MPa |
Active chamber length | 485 mm | 470 mm |
Solidification time | 20 s | 25 s |
Plunger speed | 2; 3; 3.6; 4 m/s | |
Melt temperature | 700 ± 10 °C | |
Starting temperature of the moving die | 180 ± 5 °C | |
Pressing time | 7 s | |
Cold chamber diameter | 80 mm |
GD 120 | GD 55 | |
---|---|---|
Casting parameters | Based on real life casting conditions | |
Number of generated 2D elements | 1,647,567 | 836,817 |
Number of generated 3D elements | 7,423,657 | 6,257,198 |
Method of filling | High pressure die casting | |
Stop criterion for die filling simulation | Final temperature of 445 °C reached in the Whole volume |
Gate n. | 2 m/s | 3 m/s | 3.6 m/s | 4 m/s | ||||
---|---|---|---|---|---|---|---|---|
Max. [m/s] | Average [m/s] | Max. [m/s] | Average [m/s] | Max. [m/s] | Average [m/s] | Max. [m/s] | Average [m/s] | |
1 | 42.2 | 27 | 64 | 40 | 73.8 | 47 | 82.4 | 53 |
2 | 33.1 | 25 | 49.1 | 37 | 60 | 47 | 68.5 | 53 |
3 | 19.2 | 28 | 29.2 | 44 | 34.9 | 50 | 37.2 | 56 |
4 | 18.3 | 28 | 28.1 | 43 | 33.1 | 50 | 36.7 | 56 |
5 | 33.5 | 28 | 53.1 | 41 | 62.9 | 50 | 70.2 | 56 |
Casting | Piston Velocity (m/s) | Pore Surface Size (mm2) | Pore Surface Ratio (%) | ||
---|---|---|---|---|---|
Average | Maximum | Minimum | Average | ||
120 | 2 | 0.436 | 2.75 | 0.02 | 8.07 |
3 | 0.244 | 0.91 | 0.01 | 2.79 | |
3.6 | 0.283 | 2.08 | 0.01 | 4.38 | |
4 | 0.337 | 2.62 | 0.02 | 5.39 | |
55 | 2 | 0.489 | 4.93 | 0.02 | 5.46 |
3 | 0.172 | 0.72 | 0.01 | 3.07 | |
3.6 | 0.192 | 2.12 | 0.01 | 3.96 | |
4 | 0.329 | 2.54 | 0.02 | 4.55 |
Casting | Piston Velocity (m/s) | Pore Surface Size (µm2) | Pore Surface Ratio (%) | ||
---|---|---|---|---|---|
Average | Maximum | Minimum | Average | ||
120 | 2 | 126 | 7080 | 0.7 | 1.56 |
3 | 279 | 14298 | 0.6 | 3.3 | |
3.6 | 277 | 9349 | 3.1 | 2.1 | |
4 | 196 | 3737 | 7.5 | 0.9 | |
55 | 2 | 65 | 7274 | 0.8 | 1.34 |
3 | 269 | 8587 | 1.5 | 2.6 | |
3.6 | 121 | 3598 | 2.3 | 1.8 | |
4 | 104 | 2008 | 2.2 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolibruchová, D.; Matejka, M.; Pastirčák, R.; Podprocká, R. Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component. Metals 2025, 15, 1065. https://doi.org/10.3390/met15101065
Bolibruchová D, Matejka M, Pastirčák R, Podprocká R. Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component. Metals. 2025; 15(10):1065. https://doi.org/10.3390/met15101065
Chicago/Turabian StyleBolibruchová, Dana, Marek Matejka, Richard Pastirčák, and Radka Podprocká. 2025. "Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component" Metals 15, no. 10: 1065. https://doi.org/10.3390/met15101065
APA StyleBolibruchová, D., Matejka, M., Pastirčák, R., & Podprocká, R. (2025). Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component. Metals, 15(10), 1065. https://doi.org/10.3390/met15101065