Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Biochar
2.2. Characterizations
3. Results
3.1. Particle Size Distribution of Biochar
3.2. Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy
3.3. FTIR Spectroscopy
3.4. Surface Area and Pore Structure
3.5. CO2 Adsorption Characteristics
4. Conclusions
- ZnCl2 activation significantly enhances microporosity and surface area of sawdust-derived biochars, especially at elevated pyrolysis temperatures, making them more effective for gas adsorption applications.
- Pyrolysis temperature plays a critical role in pore development. Samples prepared at 500 °C exhibit higher surface areas and more developed microporous structures than those produced at 300 °C.
- The BET surface area increased from 4.12 m2/g (S500NZC) to 717.60 m2/g (S500ZC) after ZnCl2 activation at 500 °C, demonstrating the powerful effect of chemical activation on pore architecture.
- Average pore diameter reduced significantly upon activation, with S500ZC achieving a narrow average pore size of 14.13 Å, ideal for CO2 adsorption due to its compatibility with the kinetic diameter of CO2 molecules (~3.3 Å).
- CO2 adsorption capacity followed the trend S300NZC < S300ZC < S500NZC < S500ZC, correlating well with micropore area and BET surface area, emphasizing the dominant role of microporosity in CO2 physisorption.
- A maximum CO2 adsorption capacity of 1.58 mmol/g (35.34 cm3/g STP) was achieved by the S500ZC sample, demonstrating the synergy between high pyrolysis temperature and ZnCl2 activation.
- Overall, ZnCl2-activated sawdust biochar at 500 °C emerges as a sustainable, scalable, and efficient material for CO2 capture, offering an excellent balance of high surface area, narrow pore distribution, and eco-friendly synthesis.
- ZnCl2-activated sawdust biochars exhibit superior CO2 adsorption owing to enhanced microporosity and surface functionalities. Moreover, ZnCl2 activation is more sustainable than KOH due to its lower corrosivity, energy demand, and easier post-treatment with potential for zinc recovery and higher biochar yield.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Å | Ångström (10−10 m) |
CO2 | Carbon Dioxide |
°C | Degree Celsius |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
EDS | Energy-Dispersive X-ray Spectroscopy |
FTIR | Fourier-Transform Infrared Spectroscopy |
SEM | Scanning Electron Microscopy |
STP | Standard Temperature and Pressure |
NZC | Non-ZnCl2-Activated Biochar |
ZC | ZnCl2-Activated Biochar |
S300NZC | Sawdust biochar, 300 °C, non-activated |
S300ZC | Sawdust biochar, 300 °C, ZnCl2-activated |
S500NZC | Sawdust biochar, 500 °C, non-activated |
S500ZC | Sawdust biochar, 500 °C, ZnCl2-activated |
P/P0 | Relative Pressure |
µm | Micrometer |
References
- Amer, N.M.; Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent. Biomass Convers. Biorefinery 2024, 14, 7401–7448. [Google Scholar]
- Yang, S.; Yang, D.; Shi, W.; Deng, C.; Chen, C.; Feng, S. Global evaluation of carbon neutrality and peak carbon dioxide emissions: Current challenges and future outlook. Environ. Sci. Pollut. Res. 2023, 30, 81725–81744. [Google Scholar]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; De los Rios-Escalante, P.R.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ.-Sci. 2023, 35, 102693. [Google Scholar]
- Alli, Y.A.; Bamisaye, A.; Bamidele, M.O.; Etafo, N.O.; CHKIRIDA, S.; Lawal, A.; Hammed, V.O.; Akinfenwa, A.S.; Hanson, E.; Nwakile, C. Transforming waste to wealth: Harnessing carbon dioxide for sustainable solutions. Results Surf. Interfaces 2024, 17, 100321. [Google Scholar]
- Nunes, L.J. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon Capture, Utilization, and Storage (CCUS) Technologies: Evaluating the Effectiveness of Advanced CCUS Solutions for Reducing CO2 Emissions. Results Surf. Interfaces 2024, 18, 100381. [Google Scholar]
- Wilkes, M.D.; Mukherjee, S.; Brown, S. Compression system power requirements for various CO2 sources and transportation options. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2021; Volume 50, pp. 1439–1444. [Google Scholar]
- Oyenekan, B.; Huang, S.; Lindsay, I. Application of Post Combustion CO2 Capture to Natural Gas Liquefaction Plants. In Proceedings of the 2nd Annual Gas Processing Symposium, Doha, Qatar, 10–14 January 2010; Elsevier: Amsterdam, The Netherlands, 2010; pp. 11–19. [Google Scholar]
- Nouri, E.; Raouf, F.; Jamali Alyani, S.; Kardan, A.; Mataei Moghaddam, A. Carbon dioxide capture and utilization in post-combustion: A review. Environ. Sci. Pollut. Res. 2025, 32, 14351–14382. [Google Scholar]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.-Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar]
- Zentou, H.; Hoque, B.; Abdalla, M.A.; Saber, A.F.; Abdelaziz, O.Y.; Aliyu, M.; Alkhedhair, A.M.; Alabduly, A.J.; Abdelnaby, M.M. Recent advances and challenges in solid sorbents for CO2 capture. Carbon Capture Sci. Technol. 2025, 15, 00386. [Google Scholar]
- Kwon, C.W.; Tae, S.; Mandal, S. Comparative Analysis of CO2 Adsorption Performance of Bamboo and Orange Peel Biochars. Molecules 2025, 30, 1607. [Google Scholar] [CrossRef]
- Mandal, S.; Ishak, S.; Adnin, R.J.; Lee, D.-E.; Park, T. An approach to utilize date seeds biochar as waste material for thermal energy storage applications. J. Energy Storage 2023, 68, 107739. [Google Scholar]
- Mandal, S.; Ishak, S.; Lee, D.-E.; Park, T. Optimization of eco-friendly Pinus resinosa biochar-dodecanoic acid phase change composite for the cleaner environment. J. Energy Storage 2022, 55, 105414. [Google Scholar]
- Al Masud, M.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GcbBioenergy 2016, 8, 512–523. [Google Scholar]
- Afshar, M.; Mofatteh, S. Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results Eng. 2024, 23, 102433. [Google Scholar]
- Mandal, S.; Ishak, S.; Ariffin, M.A.M.; Lee, D.-E.; Park, T. Effect of pore structure on the thermal stability of shape-stabilized phase change materials. J. Mater. Res. Technol. 2023, 25, 465–479. [Google Scholar]
- Mandal, S.; Ishak, S.; Lee, D.-E.; Park, T. Shape-stabilized orange peel/myristic acid phase change materials for efficient thermal energy storage application. Energy Rep. 2022, 8, 9618–9628. [Google Scholar]
- Ishak, S.; Mandal, S.; Lgaz, H.; Atinafu, D.G.; Mohammad Harmay, N.S.; Lee, H.-S.; Abdul Shukor Lim, N.; Abdullah, M.M.A.B.; Yang, H.-M. Microscopic molecular insights of different carbon chain fatty acids on shape-stabilized phase change composite. J. Therm. Anal. Calorim. 2024, 149, 9203–9221. [Google Scholar]
- Qiao, Y.; Wu, C. Nitrogen enriched biochar used as CO2 adsorbents: A brief review. Carbon Capture Sci. Technol. 2022, 2, 100018. [Google Scholar]
- Zhang, C.; Ji, Y.; Li, C.; Zhang, Y.; Sun, S.; Xu, Y.; Jiang, L.; Wu, C. The application of biochar for CO2 capture: Influence of biochar preparation and CO2 capture reactors. Ind. Eng. Chem. Res. 2023, 62, 17168–17181. [Google Scholar] [PubMed]
- Dong, K.; Zhai, Z.; Guo, A. Effects of pore parameters and functional groups in coal on CO2/CH4 adsorption. ACSOmega 2021, 6, 32395–32407. [Google Scholar]
- Hu, Q.; Jung, J.; Chen, D.; Leong, K.; Song, S.; Li, F.; Mohan, B.C.; Yao, Z.; Prabhakar, A.K.; Lin, X.H. Biochar industry to circular economy. Sci. Total Environ. 2021, 757, 143820. [Google Scholar] [PubMed]
- Li, B.; Hu, J.; Xiong, H.; Xiao, Y. Application and properties of microporous carbons activated by ZnCl2: Adsorption behavior and activation mechanism. ACS Omega 2020, 5, 9398–9407. [Google Scholar]
- Liu, C.; Zhi, Y.; Yu, Q.; Tian, L.; Demir, M.; Colak, S.G.; Farghaly, A.A.; Wang, L.; Hu, X. Sulfur-enriched nanoporous carbon: A novel approach to CO2 adsorption. ACS Appl. Nano Mater. 2024, 7, 5434–5441. [Google Scholar]
- Majumdar, A.; Tran, K.D.; Malhotra, D.; Tran, D.T.; Kim, N.H.; Lee, J.H. Heteroatom-Doped Carbon Allotropes in Water-Splitting Application. In Heteroatom-Doped Carbon Allotropes: Progressin Synthesis, Characterization, and Applications; American Chemical Society: Washington, DC, USA, 2024; pp. 177–222. [Google Scholar]
- Kopitha, K.; Elakneswaran, Y.; Kitagaki, R.; Saito, R.; Tsujino, M.; Nishida, A.; Senboku, H.; Hiroyoshi, N. N-methyldiethanolamine (MDEA) as an effective CO2 absorbent for direct air capture (DAC) in cement-based materials. Chem. Eng. J. 2023, 475, 146067. [Google Scholar]
- Shao, J.; Zhang, J.; Zhang, X.; Feng, Y.; Zhang, H.; Zhang, S.; Chen, H. Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation. Fuel 2018, 224, 138–146. [Google Scholar]
- Shi, J.; Xing, D.; Lia, J. FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 2012, 16, 758–762. [Google Scholar]
- Yang, H.; Yuan, Y.; Tsang, S.C.E. Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem. Eng. J. 2012, 185, 374–379. [Google Scholar]
- Mukome, F.N.; Zhang, X.; Silva, L.C.; Six, J.; Parikh, S.J. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem. 2013, 61, 2196–2204. [Google Scholar]
- Yao, H.; Dai, Q.; You, Z. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures. Constr. Build. Mater. 2015, 101, 536–547. [Google Scholar]
- Thongsamer, T.; Vinitnantharat, S.; Pinisakul, A.; Werner, D. Chitosan impregnation of coconut husk biochar pellets improves their nutrient removal from eutrophic surface water. Sustain. Environ. Res. 2022, 32, 39. [Google Scholar]
- Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M.; Drenchev, N.L. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev. 2020, 121, 1286–1424. [Google Scholar]
- He, F.; Zhou, L.; Fang, M.; Sui, C.; Li, W.; Yang, L.; Li, M.; He, X. Fabrication and simulation analysis of flexible polymethylsilsesquioxane (PMSQ) aerogels by using dimethyl sulfoxide (DMSO) as solvent. Mater. Des. 2019, 173, 107777. [Google Scholar]
- Siipola, V.; Tamminen, T.; Källi, A.; Lahti, R.; Romar, H.; Rasa, K.; Keskinen, R.; Hyväluoma, J.; Hannula, M.; Wikberg, H. Effects of biomass type, carbonization process, and activation method on the properties of bio-based activated carbons. BioResources 2018, 13, 5976–6002. [Google Scholar]
- Grube, M.; Shvirksts, K.; Denina, I.; Ruklisa, M.; Semjonovs, P. Fourier-transform infrared spectroscopic analyses of cellulose from different bacterial cultivations using microspectroscopy and a high-throughput screening device. Vib. Spectrosc. 2016, 84, 53–57. [Google Scholar]
- Choi, Y.-K.; Srinivasan, R.; Kan, E. Facile and economical functionalized hay biochar with dairy effluent for adsorption of tetracycline. ACS Omega 2020, 5, 16521–16529. [Google Scholar] [PubMed]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Temperature dependences of IR spectra of humic substances of brown coal. Agronomy 2021, 11, 1822. [Google Scholar] [CrossRef]
- Slavov, D.; Tomaszewska, E.; Grobelny, J.; Drenchev, N.; Karashanova, D.; Peshev, Z.; Bliznakova, I. FTIR spectroscopy revealed nonplanar conformers, chain order, and packaging density in diOctadecylamine-and Octadecylamine-passivated gold nanoparticles. J. Mol. Struct. 2024, 1314, 138827. [Google Scholar]
- Megbenu, H.K.; Kassym, K.; Ingkar, G.; Balu, A.M.; Shaimardan, M.; Luque, R.; Nuraje, N. Continuous flow synthesis of furfural from biomass-derived waste using a ZnCl2/NaCl catalytic system. Results Eng. 2025, 27, 105680. [Google Scholar]
- Burger, D.; Winter, A.; Subbiahdoss, G.; Oberlerchner, J.T.; Beaumont, M.; Tamada, Y.; Rosenau, T. Partial amorphization of cellulose through zinc chloride treatment: A facile and sustainable pathway to functional cellulose nanofibers with flame-retardant and catalytic properties. ACS Sustain. Chem. Eng. 2020, 8, 13576–13582. [Google Scholar]
- Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Mohamad Nor, N.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as potential adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, H.; Shao, J.; Chen, Y.; Feng, Y.; Wang, X.; Chen, H. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy 2015, 91, 903–910. [Google Scholar]
- Zhang, X.; Zhang, S.; Yang, H.; Feng, Y.; Chen, Y.; Wang, X.; Chen, H. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chem. Eng. J. 2014, 257, 20–27. [Google Scholar]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Joseph, S.; Srivastava, P.; Naidu, R.; Vinu, A. Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure. J. Mater. Chem. A 2017, 5, 21196–21204. [Google Scholar]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. J. CO2 Util. 2018, 26, 281–293. [Google Scholar]
- Shahkarami, S.; Dalai, A.K.; Soltan, J. Enhanced CO2 adsorption using MgO-impregnated activated carbon: Impact of preparation techniques. Ind. Eng. Chem. Res. 2016, 55, 5955–5964. [Google Scholar]
- Ello, A.S.; de Souza, L.K.; Trokourey, A.; Jaroniec, M. Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J. CO2 Util. 2013, 2, 35–38. [Google Scholar]
- Manyà, J.J.; González, B.; Azuara, M.; Arner, G. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem. Eng. J. 2018, 345, 631–639. [Google Scholar]
- Shahkarami, S.; Azargohar, R.; Dalai, A.K.; Soltan, J. Breakthrough CO2 adsorption in bio-based activated carbons. J. Environ. Sci. 2015, 34, 68–76. [Google Scholar]
- Thote, J.A.; Iyer, K.S.; Chatti, R.; Labhsetwar, N.K.; Biniwale, R.B.; Rayalu, S.S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 2010, 48, 396–402. [Google Scholar]
- Boonpoke, A.; Chiarakorn, S.; Laosiripojana, N.; Towprayoon, S.; Chidthaisong, A. Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity. J. Sustain. Energy Environ. 2011, 2, 77–81. [Google Scholar]
- Petrovic, B.; Gorbounov, M.; Soltani, S.M. Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Sci. Technol. 2022, 3, 100045. [Google Scholar]
- Chen, C.; Kim, J.; Ahn, W.-S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel 2012, 95, 360–364. [Google Scholar]
- Ma, X.; Li, L.; Chen, R.; Wang, C.; Li, H.; Wang, S. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Appl. Surf. Sci. 2018, 435, 494–502. [Google Scholar]
- Zhi, Y.; Yin, Y.; Ciren, Q.; Xiao, Q.; Zhao, L.; Demir, M.; Simsek, U.B.; Hu, X.; Wang, L. One-step synthesis of K3PO4-activated phosphorus-enriched carbons for enhanced carbon capture. J. Environ. Chem. Eng. 2025, 13, 116694. [Google Scholar]
Parameter | S300NZC | S300ZC | S500NZC | S500ZC | |
---|---|---|---|---|---|
Transmittance (Red) (%) | 88.4 ± 1.2 | 81.1 ± 1.0 | 60.8 ± 0.8 | 58.6 ± 1.1 | |
Transmittance (Blue) (%) | 88.7 ± 1.4 | 82.1 ± 1.1 | 59.5 ± 1.8 | 57.8 ± 1.2 | |
Median size (μm) | 11.489 ± 0.62 | 8.444 ± 0.48 | 5.704 ± 0.34 | 5.749 ± 0.39 | |
Mean size (μm) | 17.334 ± 0.97 | 9.461 ± 0.51 | 11.494 ± 0.65 | 8.052 ± 0.46 | |
Diameter on cumulative(μm) | 10 (%) | 4.387 ± 0.22 | 4.393 ± 0.20 | 1.616 ± 0.12 | 2.208 ± 0.14 |
50 (%) | 11.489 ± 0.61 | 8.444 ± 0.45 | 5.704 ± 0.33 | 5.749 ± 0.38 | |
90 (%) | 33.330 ± 1.78 | 15.299 ± 0.87 | 25.913 ± 1.35 | 14.589 ± 0.76 |
Biochar ID | Element | C | N | O | P | S | Zn | Cl |
---|---|---|---|---|---|---|---|---|
S300NZC | Mass (%) | 60.1 | 12.7 | 23.8 | 3.2 | 0.2 | - | - |
S300ZC | Mass (%) | 51.2 | 10.2 | 29.1 | 4.2 | 0.4 | 3.23 | 1.67 |
S500NZC | Mass (%) | 65.7 | 15.8 | 15.6 | 2.8 | 0.1 | - | - |
S500ZC | Mass (%) | 64.5 | 15.3 | 12.4 | 4.1 | 0.4 | 1.75 | 1.53 |
Biochar ID | BET Surface Area (m2/g) | Micropore Area (m2/g) | BJH Pore Diameter (Å) |
---|---|---|---|
S300NZC | 4.9574 ± 0.32 | 0.2089 ± 0.02 | 90.172 ± 5.3 |
S300ZC | 4.1229 ± 0.26 | 1.3304 ± 0.05 | 86.059 ± 4.1 |
S500NZC | 458.1404 ± 12.4 | 365.0903 ± 10.2 | 15.578 ± 0.45 |
S500ZC | 717.5997 ± 14.3 | 616.6000 ± 13.7 | 14.134 ± 1.37 |
Biochar ID | CO2 Adsorbed Volume |
---|---|
S300NZC | 8.691 |
S300ZC | 15.5306 |
S500NZC | 33.696 |
S500ZC | 35.3396 |
No | Feedstock | Activation | Pyrolysis at (°C) | Post Surface Treatment | Surface Area (m2/g) | CO2 Intake at 25 °C (mmol/g) | Surface Features | Ref. |
---|---|---|---|---|---|---|---|---|
1. | Korean oak | - | 400 | - | 0.597 | - | [45] | |
2. | Soybean stover | - | 700 | - | - | 0.707 | - | [45] |
3. | Japanese oak | - | 500 | - | - | 0.379 | - | [45] |
4. | Rice husk | HF | 830 | N2& ammonia at 600 °C | 451.02 | 1.8 | 5.03 wt.% N | [46] |
5. | Cotton stalk | KOH | 600 | N2& ammonia at 700 °C | 297 | 1.1 | Amine groups | [47] |
6. | Arundo donax | Chitosan/ZnCl2 | 500 | - | 1863 | 2.1 | 3.91 wt.% N | [48] |
7. | Walnut shell | Mg(NO3)2 6H2O | 900 | Heating in N2 at 500 °C | 292 | 1.9 | Amine groups | [49] |
8. | Whitewood | Mg(NO3)2 6H2O | 500 | Steam activation | 615 | 1.1 | 5.41 wt.% N | [50] |
9. | Africa palm shells | KOH | 600 | - | 365 | 1.9 | Ultra micropores | [51] |
10. | Vine shoots | None | 600 | In CO2 for 3 h at 800 °C | 767 | 1.58 | - | [52] |
11. | Vine shoots | KOH: H2O (5:1) | 600 | Heating at 700 °C for 1 h | 1439 | 1.98 | Presence of N | [52] |
12. | Whitewood | Steam | 500 | - | 840 | 1.34 | Presence of N | [53] |
13. | Whitewood | CO2 | 500 | - | 820 | 1.43 | Presence of N | [53] |
14. | Whitewood | KOH | 500 | - | 1400 | 1.77 | Micro porosity | [53] |
15. | Bamboo stem | None | 500 | - | 9.72 | 1.01 | Micro porosity | [13] |
16. | Orange peel | None | 500 | - | 51.63 | 0.63 | Presence of amine functional groups | [13] |
17. | Soybean | ZnCl2 | 600 | CO2 Physical activation | 811 | 0.93 | Presence of N | [54] |
18. | Bagasse | ZnCl2 | 500 | - | 923 | 1.74 | - | [55] |
19. | Rice husk | ZnCl2 | 500 | - | 927 | 1.29 | - | [55] |
20. | Sawdust | None | 300 | - | 4.95 | 0.39 | Presence of N | Present study |
21. | Sawdust | None | 500 | - | 4.12 | 0.69 | Presence of N | Present study |
22. | Sawdust | ZnCl2 | 300 | - | 458.14 | 1.50 | Presence of O-functional groups | Present study |
23. | Sawdust | ZnCl2 | 500 | - | 717.60 | 1.58 | Presence of O-functional groups | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, K.-S.; Lee, H.-S. Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies. Materials 2025, 18, 3243. https://doi.org/10.3390/ma18143243
Kwon K-S, Lee H-S. Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies. Materials. 2025; 18(14):3243. https://doi.org/10.3390/ma18143243
Chicago/Turabian StyleKwon, Ki-Seok, and Han-Seung Lee. 2025. "Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies" Materials 18, no. 14: 3243. https://doi.org/10.3390/ma18143243
APA StyleKwon, K.-S., & Lee, H.-S. (2025). Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies. Materials, 18(14), 3243. https://doi.org/10.3390/ma18143243