Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,286)

Search Parameters:
Keywords = microfluidic technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3609 KiB  
Review
Droplet-Based Microfluidics in Single-Bacterium Analysis: Advancements in Cultivation, Detection, and Application
by Haiyan Ma, Yuewen Zhang, Ren Shen and Yanwei Jia
Biosensors 2025, 15(8), 535; https://doi.org/10.3390/bios15080535 - 15 Aug 2025
Abstract
Microorganisms exhibit remarkable diversity, making their comprehensive characterization essential for understanding ecosystem functioning and safeguarding human health. However, traditional culture-based methods entail inherent limitations for resolving microbial heterogeneity, isolating slow-growing microorganisms, and accessing uncultivated microbes. Conversely, droplet-based microfluidics enables a high-throughput and precise [...] Read more.
Microorganisms exhibit remarkable diversity, making their comprehensive characterization essential for understanding ecosystem functioning and safeguarding human health. However, traditional culture-based methods entail inherent limitations for resolving microbial heterogeneity, isolating slow-growing microorganisms, and accessing uncultivated microbes. Conversely, droplet-based microfluidics enables a high-throughput and precise platform for single-bacterium manipulation by physically isolating individual cells within microdroplets. This technology presents a transformative approach to overcoming the constraints of conventional techniques. This review outlines the fundamental principles, recent research advances, and key application domains of droplet-based microfluidics, with a particular focus on innovations in single-bacterium encapsulation, sorting, cultivation, and functional analysis. Applications such as antibiotic susceptibility testing, enzyme-directed evolution screening, microbial interaction studies, and the cultivation of novel bacterial species are discussed, underscoring the technology’s broad potential in microbiological research and biotechnology. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

37 pages, 989 KiB  
Review
In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions
by Ignacio Losada-Fernández, Ane San Martín, Sergio Moreno-Nombela, Leticia Suárez-Cabrera, Leticia Valencia, Paloma Pérez-Aciego and Diego Velasco
Cosmetics 2025, 12(4), 173; https://doi.org/10.3390/cosmetics12040173 - 12 Aug 2025
Viewed by 345
Abstract
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation [...] Read more.
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation an intense field in the past decades. The first alternative methods have been in place for almost a decade, but none as stand-alone replacement for the reference murine Local Lymph Node Assay (LLNA). While strategies to combine data from several methods are being evaluated and refined, individual methods face technical limitations. These include issues related to their applicability to highly lipophilic substances and the lack of reliable potency estimation, which remain important obstacles to their widespread adoption as replacement for animal methods. The unique characteristics of in vitro skin models represented an attractive alternative, potentially overcoming these limitations and offering a more physiologically relevant environment for the assessment of the response in keratinocytes and dendritic cells. In this review, we recapitulate how reconstructed human skin models have been used as platforms for skin sensitisation testing, including the latest approaches using organ-on-a-chip and microfluidic technologies, aimed to develop next-generation organotypic skin models with increased complexity and monitoring capabilities. Full article
Show Figures

Figure 1

22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Viewed by 1047
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

36 pages, 7197 KiB  
Review
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy
by Sungjun Kwak, Hyojeong Lee, Dongjun Yu, Tae-Joon Jeon, Sun Min Kim and Hyunil Ryu
Biosensors 2025, 15(8), 504; https://doi.org/10.3390/bios15080504 - 4 Aug 2025
Viewed by 520
Abstract
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations [...] Read more.
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations by enabling precise intracellular delivery and consistent therapeutic carrier fabrication. This review examines microfluidic strategies for gene delivery at the cellular level. These strategies include mechanoporation, electroporation, and sonoporation. We also discuss the synthesis of lipid nanoparticles, polymeric particles, and extracellular vesicles for systemic administration. Unlike conventional approaches, which treat ex vivo and in vivo delivery as separate processes, this review focuses on integrated microfluidic systems that unify these functions. For example, genetic materials can be delivered to cells that secrete therapeutic extracellular vesicles (EVs), or engineered cells can be encapsulated within hydrogels for implantation. These strategies exemplify the convergence of gene delivery and carrier engineering. They create a single workflow that bridges cell-level manipulation and tissue-level targeting. By synthesizing recent technological advances, this review establishes integrated microfluidic platforms as being fundamental to the development of next-generation NAT systems that are scalable, programmable, and clinically translatable. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

18 pages, 3891 KiB  
Review
Navigating Brain Organoid Maturation: From Benchmarking Frameworks to Multimodal Bioengineering Strategies
by Jingxiu Huang, Yingli Zhu, Jiong Tang, Yang Liu, Ming Lu, Rongxin Zhang and Alfred Xuyang Sun
Biomolecules 2025, 15(8), 1118; https://doi.org/10.3390/biom15081118 - 4 Aug 2025
Viewed by 555
Abstract
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial [...] Read more.
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial glia and neuromelanin—that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis. Yet prolonged conventional 3D culture exacerbates metabolic stress, hypoxia-induced necrosis, and microenvironmental instability, leading to asynchronous tissue maturation—electrophysiologically active superficial layers juxtaposed with degenerating cores. This immaturity/heterogeneity severely limits their utility in modeling adult-onset disorders (e.g., Alzheimer’s disease) and high-fidelity drug screening, as organoids fail to recapitulate postnatal transcriptional signatures or neurovascular interactions without bioengineering interventions. We summarize emerging strategies to decouple maturation milestones from rigid temporal frameworks, emphasizing the synergistic integration of chronological optimization (e.g., vascularized co-cultures) and active bioengineering accelerators (e.g., electrical stimulation and microfluidics). By bridging biological timelines with scalable engineering, this review charts a roadmap to generate translationally relevant, functionally mature brain organoids. Full article
Show Figures

Figure 1

17 pages, 1763 KiB  
Article
Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting
by Yuta Hamachiyo, Chiharu Shiro, Hiroki Nishikawa, Hiroyuki Tomiyama and Shigeru Yamashita
Biosensors 2025, 15(8), 500; https://doi.org/10.3390/bios15080500 - 3 Aug 2025
Viewed by 257
Abstract
In recent years, digital microfluidic biochips (DMFBs), based on microfluidic technology, have attracted attention as compact and flexible experimental devices. DMFBs are widely applied in biochemistry and medical fields, including point-of-care clinical diagnostics and PCR testing. Among them, micro electrode dot array (MEDA) [...] Read more.
In recent years, digital microfluidic biochips (DMFBs), based on microfluidic technology, have attracted attention as compact and flexible experimental devices. DMFBs are widely applied in biochemistry and medical fields, including point-of-care clinical diagnostics and PCR testing. Among them, micro electrode dot array (MEDA) biochips, composed of numerous microelectrodes, have overcome the limitations of conventional chips by enabling finer droplet manipulation and real-time sensing, thus significantly improving experimental efficiency. While various studies have been conducted to enhance the utilization of MEDA biochips, few have considered the shape-dependent velocity characteristics of droplets in routing. Moreover, methods that do take such characteristics into account often face significant challenges in solving time. This study proposes a fast droplet routing method for MEDA biochips that incorporates shape-dependent velocity characteristics by utilizing the distance information to the target cell. The experimental results demonstrate that the proposed method achieves approximately a 67.5% reduction in solving time compared to existing methods, without compromising solution quality. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 287
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 771
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

25 pages, 7101 KiB  
Article
Study on the Influence of Ultrafast Laser Welding Parameters on Glass Bonding Performance
by Aowei Xing, Ziwei Li, Tianfeng Zhou, Zhiyuan Huang, Weijia Guo and Peng Liu
Micromachines 2025, 16(8), 888; https://doi.org/10.3390/mi16080888 - 30 Jul 2025
Viewed by 392
Abstract
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. [...] Read more.
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. These limitations have become major constraints on the advancement of microfluidic chip technologies. Laser bonding of microfluidic chips offers high precision and efficiency. This research first uses an ultrafast laser system to investigate how processing parameters affect weld morphology, identifying the optimal parameter range. Then, this paper proposes two methods for ultrafast-laser bonding of multilayer glass with different thicknesses and performs preliminary experiments to demonstrate their feasibility. The research in this paper could expand the fabrication method of microfluidic chips and lay a foundation for the wider application of microfluidic chips. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

29 pages, 2815 KiB  
Review
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics
by Seungah Lee, Nayra A. M. Moussa and Seong Ho Kang
Nanomaterials 2025, 15(15), 1153; https://doi.org/10.3390/nano15151153 - 25 Jul 2025
Viewed by 473
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of [...] Read more.
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies. Full article
Show Figures

Figure 1

23 pages, 483 KiB  
Review
Microrheological and Microfluidic Approaches for Evaluation of the Mechanical Properties of Blood Cells
by Nadia Antonova and Khristo Khristov
Appl. Sci. 2025, 15(15), 8291; https://doi.org/10.3390/app15158291 - 25 Jul 2025
Viewed by 208
Abstract
Microfluidic methods are an important tool for studying the microrheology of blood and the mechanical properties of blood cells—erythrocytes, leukocytes, and platelets. In patients with diabetes, hypertension, obesity, sickle cell anemia, or cerebrovascular or peripheral vascular diseases, hemorheological alterations are commonly observed. These [...] Read more.
Microfluidic methods are an important tool for studying the microrheology of blood and the mechanical properties of blood cells—erythrocytes, leukocytes, and platelets. In patients with diabetes, hypertension, obesity, sickle cell anemia, or cerebrovascular or peripheral vascular diseases, hemorheological alterations are commonly observed. These include increased blood viscosity and red blood cell (RBC) aggregation, along with reduced RBC deformability. Such disturbances significantly contribute to impaired microcirculation and microvascular perfusion. In blood vessels, abnormal hemorheological parameters can elevate resistance to blood flow, exert greater mechanical stress on the endothelial wall, and lead to microvascular complications. Among these parameters, erythrocyte deformability is a potential biomarker for diseases including diabetes, malaria, and cancer. This review highlights recent advances in microfluidic technologies for in vitro assays of RBC deformability and aggregation, as well as leukocyte aggregation and adhesion. It summarizes the core principles of microfluidic platforms and the experimental findings related to hemodynamic parameters. The advantages and limitations of each technique are discussed, and future directions for improving these devices are explored. Additionally, some aspects of the modeling of the microrheological properties of blood cells are considered. Overall, the described microfluidic systems represent promising tools for investigating erythrocyte mechanics and leukocyte behavior. Full article
(This article belongs to the Special Issue Applications of Microfluidics and Nanofluidics)
Show Figures

Figure 1

21 pages, 844 KiB  
Review
Enzyme Encapsulation in Liposomes: Recent Advancements in the Pharmaceutical and Food Sector
by Angela Merola, Lucia Baldino and Alessandra Procentese
Nanomaterials 2025, 15(15), 1149; https://doi.org/10.3390/nano15151149 - 24 Jul 2025
Viewed by 528
Abstract
Nanocarriers have found numerous applications in pharmaceutical and food sectors due to their unique physical and chemical properties. In particular, liposomes are the most extensively studied kind of nanoparticles for these applications. They are spherical colloidal systems characterized by lipid membranes enclosing an [...] Read more.
Nanocarriers have found numerous applications in pharmaceutical and food sectors due to their unique physical and chemical properties. In particular, liposomes are the most extensively studied kind of nanoparticles for these applications. They are spherical colloidal systems characterized by lipid membranes enclosing an aqueous core. This versatile structure enables the incorporation of hydrophilic, hydrophobic, and amphiphilic molecules, making them optimal candidates for the controlled release of drugs and enzymes. Despite numerous promising applications, liposomes face challenges such as low colloidal stability, inefficient drug encapsulation, and high production costs for large-scale applications. For this reason, innovative methods, such as microfluidics, electroporation, and supercritical CO2, are currently being investigated to overcome these limitations. This review examines the recent applications of liposomes in enzyme encapsulation within the pharmaceutical and food sectors, emphasizing production challenges and emerging technological developments. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

14 pages, 1765 KiB  
Article
Microfluidic System Based on Flexible Structures for Point-of-Care Device Diagnostics with Electrochemical Detection
by Kasper Marchlewicz, Robert Ziółkowski, Kamil Żukowski, Jakub Krzemiński and Elżbieta Malinowska
Biosensors 2025, 15(8), 483; https://doi.org/10.3390/bios15080483 - 24 Jul 2025
Viewed by 465
Abstract
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the [...] Read more.
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the pathogen responsible for diphtheria. The system comprises a microfluidic polymerase chain reaction (micro-PCR) device and an electrochemical DNA biosensor, both fabricated on flexible substrates. The micro-PCR platform offers rapid DNA amplification overcoming the time limitations of conventional thermocyclers. The biosensor utilizes specific molecular recognition and an electrochemical transducer to detect the amplified DNA fragment, providing a clear and direct indication of the pathogen’s presence. The combined system demonstrates the effective amplification and detection of a gene fragment from a toxic strain of C. diphtheriae, chosen due to its increasing incidence. The design leverages lab-on-a-chip (LOC) and microfluidic technologies to minimize reagent use, reduce cost, and support portability. Key challenges in microsystem design—such as flow control, material selection, and reagent compatibility—were addressed through optimized fabrication techniques and system integration. This work highlights the feasibility of using flexible, integrated microfluidic and biosensor platforms for the rapid, on-site detection of infectious agents. The modular and scalable nature of the system suggests potential for adaptation to a wide range of pathogens, supporting broader applications in global health diagnostics. The approach provides a promising foundation for next-generation POC diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
Show Figures

Figure 1

27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 312
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

34 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Viewed by 550
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

Back to TopTop