Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting
Abstract
1. Introduction
1.1. Digital Microfluidic Biochips (DMFBs)
1.2. Micro Electrode Dot Array (MEDA) Biochips
- Unlike DMFBs, MEDA enables droplet movement in diagonal directions, significantly increasing routing flexibility and allowing faster transportation across the chip.
- By dynamically grouping multiple microelectrodes into functional units, MEDA can alter the size and aspect ratio of droplets during routing. These shape transformations affect the actuation force and resistance encountered during movement, thereby influencing droplet velocity. Consequently, routing strategies must account for these factors.
- With integrated active CMOS logic circuits, real-time sensing can be performed at any location on the chip, drastically reducing sensing response times and enabling fine-grained monitoring during assay execution.
- In MEDA, certain operations, such as lamination-based mixing, complete much faster than in DMFBs. Therefore, the previously accepted assumption that routing time is negligible no longer holds. Minimizing routing time has a significant impact on the overall performance of a bioassay.
1.3. Related Works
2. Proposed Target-Guided Routing
2.1. Problem Description
2.2. Routing Example
2.3. Formulation
3. Experiments
3.1. Setup
3.2. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kihwan, C.; Alphonsus, H.N.; Ryan, F.; Aaron, R.W. Digital Microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440. [Google Scholar] [CrossRef]
- Fair, R.B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluidics 2007, 3, 245–281. [Google Scholar] [CrossRef]
- Azizipour, N.; Avazpour, R.; Rosenzweig, D.H.; Sawan, M.; Ajji, A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020, 11, 599. [Google Scholar] [CrossRef]
- Gibson, L.L.; Fahey, N.M.; Hafer, N.; Buchholz, B.; Dunlap, D.R.; Murphy, R.L.; Achenbach, C.; Stone, C.; Cleeton, R.; O’Neal, J.; et al. The RADx Tech Clinical Studies Core: A Model for Academic Based Clinical Studies. IEEE Open J. Eng. Med. Biol. 2021, 2, 152–157. [Google Scholar] [CrossRef]
- Su, F.; Chakrabarty, K. High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2008, 3, 1. [Google Scholar] [CrossRef]
- Pollack, M.G.; Shenderov, A.D.; Fair, R.B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2002, 2, 96–101. [Google Scholar] [CrossRef]
- Jebrail, M.J.; Bartsch, M.S.; Patel, K.D. Digital microfluidics: A versatile tool for applications in chemistry, biology and medicine. Lab Chip 2012, 12, 2452–2463. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Pamula, V.K.; Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 2004, 4, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, E.; De Rooij, N. Microfluidics meets MEMS. Proc. IEEE 2003, 91, 930–953. [Google Scholar] [CrossRef]
- Nirmala, N.; Gracia Nirmala Rani, D. Enhancing Digital Microfluidic Biochip Operations with Scheduling Interval Method. In Proceedings of the 2025 38th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID), Bangalore, India, 4–8 January 2025; pp. 564–568. [Google Scholar]
- Zeng, J.; Korsmeyer, T. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 2004, 4, 265–277. [Google Scholar] [CrossRef]
- Howladar, P.; Roy, P.; Rahaman, H. A High-performance Homogeneous Droplet Routing Technique for MEDA-based Biochips. J. Emerg. Technol. Comput. Syst. 2019, 15, 38. [Google Scholar] [CrossRef]
- Luo, Y.; Chakrabarty, K.; Ho, T.Y. Error Recovery in Cyberphysical Digital Microfluidic Biochips. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 59–72. [Google Scholar] [CrossRef]
- Sista, R.S.; Ng, R.; Nuffer, M.; Basmajian, M.; Coyne, J.; Elderbroom, J.; Hull, D.; Kay, K.; Krishnamurthy, M.; Roberts, C.; et al. Digital Microfluidic Platform to Maximize Diagnostic Tests with Low Sample Volumes from Newborns and Pediatric Patients. Diagnostics 2020, 10, 21. [Google Scholar] [CrossRef]
- Huang, S.; Connolly, J.; Khlystov, A.; Fair, R.B. Digital Microfluidics for the Detection of Selected Inorganic Ions in Aerosols. Sensors 2020, 20, 1281. [Google Scholar] [CrossRef]
- Ganguli, A.; Mostafa, A.; Berger, J.; Aydin, M.Y.; Sun, F.; de Ramirez, S.A.S.; Valera, E.; Cunningham, B.T.; King, W.P.; Bashir, R. Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 22727–22735. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.K.; Paik, P.; Fair, R.B. Protein stamping for MALDI mass spectrometry using an electrowetting-based microfluidic platform. In Proceedings of the Lab-on-a-Chip: Platforms, Devices, and Applications, Philadelphia, PA, USA, 25–28 October 2004; Volume 5591, pp. 26–32. [Google Scholar]
- Barbulovic-Nad, I.; Yang, H.; Park, P.S.; Wheeler, A.R. Digital microfluidics for cell-based assays. Lab Chip 2008, 8, 519–526. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, Z.; Chakrabarty, K.; Ho, T.Y.; Lee, C.Y. Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 292–313. [Google Scholar] [CrossRef]
- Xu, T.; Chakrabarty, K. Integrated droplet routing in the synthesis of microfluidic biochips. In Proceedings of the 44th Annual Design Automation Conference, San Diego, CA, USA, 4–8 June 2007; pp. 948–953. [Google Scholar]
- Keszocze, O.; Li, Z.; Grimmer, A.; Wille, R.; Chakrabarty, K.; Drechsler, R. Exact routing for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 708–713. [Google Scholar]
- Wang, G.; Teng, D.; Fan, S.-K. Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnol. 2011, 5, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.Y.T.; Shiu, M.F.; Lu, Y.W.; Ho, Y.; Kao, Y.C.; Yang, Y.T.; Wang, G.; Liu, K.M.; Chang, H.C.; Lee, C.Y. A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 µm standard CMOS process. In Proceedings of the 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), Xiamen, China, 9–11 November 2015; pp. 1–4. [Google Scholar]
- Li, Z.; Lai, K.Y.T.; Yu, P.H.; Chakrabarty, K.; Ho, T.Y.; Lee, C.Y. Droplet Size-Aware High-Level Synthesis for Micro-Electrode-Dot-Array Digital Microfluidic Biochips. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 612–626. [Google Scholar] [CrossRef]
- Lai, K.Y.T.; Yang, Y.T.; Lee, C.Y. An Intelligent Digital Microfluidic Processor for Biomedical Detection. J. Signal Process. Syst. 2015, 78, 85–93. [Google Scholar] [CrossRef]
- Li, Z.; Ho, T.Y.; Lai, K.Y.T.; Chakrabarty, K.; Yu, P.H.; Lee, C.Y. High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016; pp. 1–6. [Google Scholar]
- Elfar, M.; Zhong, Z.; Li, Z.; Chakrabarty, K.; Pajic, M. Synthesis of Error-Recovery Protocols for Micro-Electrode-Dot-Array Digital Microfluidic Biochips. ACM Trans. Embed. Comput. Syst. 2017, 16, 127. [Google Scholar] [CrossRef]
- Chakraborty, A.; Datta, P.; Pal, R.K. Design Optimization at the Fluid-Level Synthesis for Safe and Low-Cost Droplet-Based Microfluidic Biochips. In Proceedings of the 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), Pune, India, 6–10 January 2018; pp. 127–132. [Google Scholar]
- Roy, P.; Chakraborty, S.; Bhattacharya, R.; Jana, P.; Dey, P.; Chakraborty, S. Intelligent Transportation of Heterogeneous droplets in DMFB: A Preferential Deviation Based Technique. In Proceedings of the 2023 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, Japan, 29–31 May 2023; Volume 1, pp. 1–6. [Google Scholar]
- Liu, C.H.; Shen, K.C.; Huang, J.D. Reactant Minimization for Sample Preparation on Microfluidic Biochips With Various Mixing Models. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 1918–1927. [Google Scholar] [CrossRef]
- Taajobian, M.; Jahanian, A. Improved experimental time of ultra-large bioassays using a parallelised microfluidic biochip architecture/scheduling. IET Nanobiotechnol 2018, 12, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Shiro, C.; Nishikawa, H.; Kong, X.; Tomiyama, H.; Yamashita, S.; Roy, S. Shape-Dependent Velocity Based Droplet Routing on MEDA Biochips. IEEE Access 2022, 10, 122423–122430. [Google Scholar] [CrossRef]
- Shiro, C.; Nishikawa, H.; Kong, X.; Tomiyama, H.; Yamashita, S. Multi-Droplet Routing based on a Shape-Dependent Velocity Model on MEDA Biochips. In Proceedings of the 2023 International Conference on Electronics, Information, and Communication (ICEIC), Singapore, 5–8 February 2023; pp. 1–4. [Google Scholar]
- Hamachiyo, Y.; Mori, K.; Kawakami, T.; Shiro, C.; Nishikawa, H.; Tomiyama, H.; Yamashita, S. Shape-Dependent Velocity Based Droplet Routing Considering Droplet Separation on MEDA Biochips. In Proceedings of the 2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Okinawa, Japan, 2–5 July 2024; pp. 1–5. [Google Scholar]
- Shulin, W. A Review for Droplet Routing Algorithms on Digital Microfluid Biochip. Appl. Comput. Eng. 2023, 2, 587–594. [Google Scholar] [CrossRef]
- Su, F.; Hwang, W.; Chakrabarty, K. Droplet Routing in the Synthesis of Digital Microfluidic Biochips. In Proceedings of the Design Automation & Test in Europe Conference, Munich, Germany, 6–10 March 2006; Volume 1, pp. 1–6. [Google Scholar]
- Joshi, K.; Velasco, V.; Esfandyarpour, R. A Low-Cost, Disposable and Portable Inkjet-Printed Biochip for the Developing World. Sensors 2020, 20, 3593. [Google Scholar] [CrossRef]
- Li, Z.; Lai, K.Y.T.; Yu, P.H.; Chakrabarty, K.; Ho, T.Y.; Lee, C.Y. Structural and Functional Test Methods for Micro-Electrode-Dot-Array Digital Microfluidic Biochips. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 968–981. [Google Scholar] [CrossRef]
- Torabinia, M.; Farzbod, A.; Moon, H. Electromechanical model to predict the movability of liquids in an electrowetting-on-dielectric microfluidic device. J. Appl. Phys. 2018, 123, 154902. [Google Scholar] [CrossRef]
Character | Meaning |
---|---|
Time droplets to move from source to target | |
Upper bound of the time step t | |
Biochips width and height | |
Position of droplet A(B) at time t | |
Droplet shape at time t | |
Droplet operation number at time t | |
Position of the i-th unavailable cell | |
Droplet shape at the target cell | |
Coordinates of the target cell | |
Distance map to target cell |
Direction | Droplet Behavior |
---|---|
0 | Stay in place |
1 | Move one cell in x-direction |
2 | Move one cell in y-direction |
3 | Move one cell diagonally |
4 | Morph |
5 | Split |
Character | Initial Value | Meaning |
---|---|---|
Problem-dependent | Biochips width and height | |
Upper bound of the time step t | ||
Droplet shape at the start of routing | ||
Droplet shape at the target cell | ||
A(1, 1), B(2, 1) | Coordinates of the droplet at the start | |
(W, H) | Coordinates of the target cell | |
Problem-dependent | Position of the i-th unavailable cell | |
Problem-dependent | Distance map to target cell |
Existing [34] | Proposed | Proposed + t1 con. | |||||
---|---|---|---|---|---|---|---|
Size | Rate | Rou-Time | Sol-Time [s] | Rou-Time | Sol-Time [s] | Rou-Time | Sol-Time [s] |
10% | 10.3 | 1204.1 | 10.3 | 161.1 | 10.2 | 95.8 | |
8 × 8 | 20% | 11.5 | 1341.7 | 11.5 | 658.2 | 11.8 | 255.6 |
30% | 13.3 | 8102.2 | 13.1 | 597.6 | 13.0 | 587.1 | |
10% | 12.2 | 4950.3 | 12.1 | 1192.4 | 11.9 | 2734.4 | |
10 × 10 | 20% | 15.0 | 17,518.9 | 14.6 | 3439.6 | 14.6 | 3918.7 |
30% | 15.0 | 25,669.9 | 17.1 | 11,694.6 | 16.3 | 1839.2 | |
10% | 15.6 | 23,109.5 | 15.4 | 7388.5 | 15.0 | 7827.0 | |
12 × 12 | 20% | 19.3 | 32,265.4 | 18.1 | 22,366.5 | 17.1 | 16,520.4 |
30% | N/A | N/A | 18.6 | 17,692.7 | 19.4 | 17,137.9 | |
All | 13.4 | 11,538.3 | 14.5 | 7191.5 | 14.7 | 6308.1 |
Existing [34] | Proposed | Proposed + t1 con. | |||||
---|---|---|---|---|---|---|---|
Size | Rate | Rou-Time | Sol-Time [s] | Rou-Time | Sol-Time [s] | Rou-Time | Sol-Time [s] |
10% | 10.2 | 1468.1 | 10.2 | 58.3 | 10.2 | 95.8 | |
8 × 8 | 20% | 11.7 | 1588.9 | 11.7 | 834.0 | 11.8 | 255.6 |
30% | 13.2 | 8181.9 | 13.0 | 398.9 | 13.0 | 587.1 | |
10% | 12.0 | 4527.7 | 11.9 | 786.7 | 11.9 | 2734.4 | |
10 × 10 | 20% | 15.0 | 17,518.9 | 14.6 | 3243.0 | 14.6 | 3918.7 |
30% | 15.0 | 25,669.9 | 16.9 | 8903.8 | 16.3 | 1839.2 | |
10% | 15.5 | 24,026.5 | 15.3 | 7573.1 | 15.0 | 7827.0 | |
12 ×12 | 20% | 17.7 | 28,030.8 | 17.1 | 19,421.4 | 17.1 | 16,520.4 |
30% | N/A | N/A | 18.6 | 17,467.5 | 19.4 | 17,137.9 | |
All | 13.5 | 12,546.9 | 14.6 | 6666.6 | 14.7 | 6308.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamachiyo, Y.; Shiro, C.; Nishikawa, H.; Tomiyama, H.; Yamashita, S. Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting. Biosensors 2025, 15, 500. https://doi.org/10.3390/bios15080500
Hamachiyo Y, Shiro C, Nishikawa H, Tomiyama H, Yamashita S. Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting. Biosensors. 2025; 15(8):500. https://doi.org/10.3390/bios15080500
Chicago/Turabian StyleHamachiyo, Yuta, Chiharu Shiro, Hiroki Nishikawa, Hiroyuki Tomiyama, and Shigeru Yamashita. 2025. "Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting" Biosensors 15, no. 8: 500. https://doi.org/10.3390/bios15080500
APA StyleHamachiyo, Y., Shiro, C., Nishikawa, H., Tomiyama, H., & Yamashita, S. (2025). Target-Guided Droplet Routing on MEDA Biochips Considering Shape-Dependent Velocity Models and Droplet Splitting. Biosensors, 15(8), 500. https://doi.org/10.3390/bios15080500