Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,968)

Search Parameters:
Keywords = microbial studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2419 KiB  
Review
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 (registering DOI) - 2 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

27 pages, 1561 KiB  
Article
The Effect of a Pectin Coating with Gamma-Decalactone on Selected Quality Attributes of Strawberries During Refrigerated Storage
by Gabriela Kozakiewicz, Jolanta Małajowicz, Karolina Szulc, Magdalena Karwacka, Agnieszka Ciurzyńska, Anna Żelazko, Monika Janowicz and Sabina Galus
Coatings 2025, 15(8), 903; https://doi.org/10.3390/coatings15080903 (registering DOI) - 2 Aug 2025
Abstract
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, [...] Read more.
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, and compared to uncoated controls. The coatings were evaluated for their effects on fruit mass loss, pH, extract content (°Brix), firmness, color parameters (L*, a*, b*, C*, h*, ΔE), and microbial spoilage. The pectin coating limited changes in extract, pH, and color and slowed firmness loss. Notably, GDL-enriched coatings significantly reduced spoilage (14.29% after 9 days vs. 57.14% in the control) despite accelerating pulp softening. Extract content increased the most in the GDL group (from 9.92 to 12.00 °Brix), while mass loss reached up to 22.8%. Principal Component Analysis (PCA) confirmed coating type as a major factor differentiating sample quality over time. These findings demonstrate the potential of bioactive pectin-based coatings to enhance fruit preservation and support the development of active packaging strategies. Further studies should optimize coating composition and control the release kinetics of functional compounds. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 (registering DOI) - 2 Aug 2025
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 906 KiB  
Article
Integrated Flushing and Corrosion Control Measures to Reduce Lead Exposure in Households with Lead Service Lines
by Fatemeh Hatam, Mirjam Blokker and Michele Prevost
Water 2025, 17(15), 2297; https://doi.org/10.3390/w17152297 (registering DOI) - 2 Aug 2025
Abstract
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase [...] Read more.
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase lead release from lead service lines. This study employs numerical modeling to assess how combined corrosion control and flushing strategies affect lead levels in household taps with lead service lines under reduced water use. To estimate potential health risks, the U.S. EPA model is used to predict the percentage of children likely to exceed safe blood lead levels. Lead exceedances are assessed based on various regulatory requirements. Results show that exceedances at the kitchen tap range from 3 to 74% of usage time for the 5 µg/L standard, and from 0 to 49% for the 10 µg/L threshold, across different scenarios. Implementing corrosion control treatment in combination with periodic flushing proves effective in lowering lead levels under the studied low-consumption scenarios. Under these conditions, the combined strategy limits lead exceedances above 5 µg/L to only 3% of usage time, with none above 10 µg/L. This demonstrates its value as a practical short-term strategy for households awaiting full pipe replacement. Targeted flushing before peak water use reduces the median time that water remains stagnant in household pipes from 8 to 3 h at the kitchen tap under low-demand conditions. Finally, the risk model indicates that the combined approach can reduce the predicted percentage of children with blood lead levels exceeding 5 μg/dL from 61 to 6% under low water demand. Full article
Show Figures

Figure 1

17 pages, 3038 KiB  
Article
Neighbor Relatedness Contributes to Improvement in Grain Yields in Rice Cultivar Mixtures
by You Xu, Qin-Hang Han, Shuai-Shuai Xie and Chui-Hua Kong
Plants 2025, 14(15), 2385; https://doi.org/10.3390/plants14152385 (registering DOI) - 2 Aug 2025
Abstract
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness [...] Read more.
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness gradient of rice cultivars to test whether neighbor relatedness contributes to improvements in grain yields in cultivar mixtures. We experimentally demonstrated the grain yield of rice cultivar mixtures with varying genetic relatedness under both field and controlled conditions. As a result, a closely related cultivar mixture had increased grain yield compared to monoculture and distantly related mixtures by optimizing the root-to-shoot ratio and accelerating flowering. The benefits over monoculture were most pronounced when compared to the significant yield reductions observed in distantly related mixtures. The relatedness-mediated improvement in yields depended on soil volume and nitrogen use level, with effects attenuating under larger soil volumes or nitrogen deficiency. Furthermore, neighbor relatedness enhanced the richness and diversity of both bacterial and fungal communities in the rhizosphere soil, leading to a significant restructuring of the microbial community composition. These findings suggest that neighbor relatedness may improve the grain yield of rice cultivar mixtures. Beneficial plant–plant interactions may be generated by manipulating cultivar kinship within a crop species. A thorough understanding of kinship strategies in cultivar mixtures offers promising prospects for increasing crop production. Full article
(This article belongs to the Special Issue Plant Chemical Ecology—2nd Edition)
Show Figures

Figure 1

25 pages, 6358 KiB  
Article
First Assessment of the Biodiversity of True Slime Molds in Swamp Forest Stands of the Knyszyn Forest (Northeast Poland) Using the Moist Chambers Detection Method
by Tomasz Pawłowicz, Igor Żebrowski, Gabriel Michał Micewicz, Monika Puchlik, Konrad Wilamowski, Krzysztof Sztabkowski and Tomasz Oszako
Forests 2025, 16(8), 1259; https://doi.org/10.3390/f16081259 (registering DOI) - 1 Aug 2025
Abstract
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from [...] Read more.
True slime molds (Eumycetozoa) remain under-explored globally, particularly in water-logged forest habitats. Despite evidence suggesting a high biodiversity potential in the Knyszyn Forest of north-eastern Poland, no systematic effort had previously been undertaken there. In the present survey, plant substrates from eight swampy sub-compartments were incubated for over four months, resulting in the detection of fifteen slime mold species. Four of these taxa are newly reported for northern and north-eastern Poland, while several have been recorded only a handful of times in the global literature. These findings underscore how damp, nutrient-rich conditions foster Eumycetozoa and demonstrate the effectiveness of moist-chamber culturing in revealing rare or overlooked taxa. Current evidence shows that, although slime molds may occasionally colonize living plant or fungal tissues, their influence on crop productivity and tree vitality is negligible; they are therefore better regarded as biodiversity indicators than as pathogens or pests. By establishing a replicable framework for studying water-logged environments worldwide, this work highlights the ecological importance of swamp forests in sustaining microbial and slime mold diversity. Full article
Show Figures

Figure 1

23 pages, 1603 KiB  
Article
Impact of Heat Stress on Rumen Fermentation Patterns and Microbiota Diversity and Its Association with Thermotolerance in Indigenous Goats
by Mullakkalparambil Velayudhan Silpa, Veerasamy Sejian, Chinnasamy Devaraj, Artabandhu Sahoo and Raghavendra Bhatta
Fermentation 2025, 11(8), 450; https://doi.org/10.3390/fermentation11080450 (registering DOI) - 1 Aug 2025
Abstract
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was [...] Read more.
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was conducted to comparatively assess the heat stress responses of two indigenous goat breeds, Nandidurga and Bidri, based on changes associated with the rumen fermentation pattern and distribution pattern of rumen microbiota. A total of 24 adult animals were randomly allocated into four groups of six animals each, NC (n = 6; Nandidurga control), NHS (n = 6; Nandidurga heat stress), BC (n = 6; Bidri control) and BHS (n = 6; Bidri heat stress). The animals were reared in climate chambers for a duration of 45 days wherein the NC and BC animals were maintained under thermoneutral temperature while the NHS and BHS animals were subjected to simulated heat stress. Heat stress was observed to significantly reduce the rumen ammonia, extracellular CMCase, intracellular carboxy methyl cellulase (CMCase) and total CMCase both in Nandidurga and Bidri goats. In addition to this, a significant reduction in acetate, propionate and total volatile fatty acids (VFAs) was observed in Nandidurga goats. The V3–V4 16s rRNA sequencing further revealed a significant alteration in the rumen microbiota in heat-stressed Nandidurga and Bidri goats. While both the breeds exhibited nearly similar responses in the rumen microbial abundance levels due to heat stress, breed-specific differences were also observed. Furthermore, the LEFSe analysis revealed a significant alteration in the abundances of microbes at the genus level, which were observed to be relatively greater in Bidri goats than Nandidurga goats. Furthermore, these alterations were predicted to impair the functional pathways, especially pathways associated with metabolism. This study therefore provided an insight into the rumen microbial dynamics in heat-stressed goats. Though both the breeds exhibited excellent resilience to the subjected heat stress, there were relatively less ruminal alterations in Nandidurga goats than in Bidri goats. Full article
(This article belongs to the Special Issue Research Progress of Rumen Fermentation)
20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 (registering DOI) - 1 Aug 2025
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 (registering DOI) - 1 Aug 2025
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

12 pages, 639 KiB  
Article
Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load
by Pallavi Upadhyay, Arjuna Vallabhaneni, Edward Ager, Barbara Alexander, Adriana Rosato and Vijay Singh
Diagnostics 2025, 15(15), 1939; https://doi.org/10.3390/diagnostics15151939 (registering DOI) - 1 Aug 2025
Abstract
Background: Unambiguous clinical interpretation of PCR results for urinary tract infections (UTIs) remains a challenge. Here we compare and correlate multiplex qPCR results (quantification cycle values) with traditional microbial culture results (colony forming units) for clinical samples. Methods: Serial dilutions [10 [...] Read more.
Background: Unambiguous clinical interpretation of PCR results for urinary tract infections (UTIs) remains a challenge. Here we compare and correlate multiplex qPCR results (quantification cycle values) with traditional microbial culture results (colony forming units) for clinical samples. Methods: Serial dilutions [108 to 100 colony forming units (CFU)/mL] were performed on five Gram-negative and two Gram-positive UTI-causing bacterial pathogens. For each dilution, quantitative cultures on solid media to confirm CFU/mL values and a real-time PCR UTI panel employing a nanofluidic Open ArrayTM platform producing quantification cycle (Cq) values were performed. Cq values were correlated with CFU/mL values, generating a semi-quantitative interpretive scale for clinical samples. The clinical utility of the scale was then assessed using PCR and culture data from 168 clinical urine samples. Results: For Gram-negative bacteria, Cq values of <23, 23 to 28, and >28 corresponded with ≥105 CFU/mL, <105 CFU/mL and negative cultures, respectively. For Gram-positive bacteria, Cq values of <26, 26 to 30, and >30 corresponded with ≥105 CFU/mL, <105 CFU/mL and negative cultures, respectively. Among 168 urine specimens (including 138 Gram-negative and 30 Gram-positive bacteria), there was 83.3% agreement (n = 140/168) and 16.6% non-agreement (n = 28/168) between culture CFU/mL and qPCR Cq. Gram-negative bacteria had higher agreement (87.6%, 121/138) than Gram-positive bacteria (63.3%, 19/30). Conclusions: This study demonstrates that qPCR Cq results can be directly correlated with traditional urine quantitative culture results and reliably identify the clinically relevant cutoff of 105 CFU/mL for detected uropathogens. Full article
(This article belongs to the Special Issue Urinary Tract Infections: Advances in Diagnosis and Management)
Show Figures

Figure 1

23 pages, 2657 KiB  
Article
Enrichment Cultures of Extreme Acidophiles with Biotechnological Potential
by Khussain Valiyev, Aliya Yskak, Elena Latyuk, Alena Artykova, Rakhimbayev Berik, Vadim Chashkov and Aleksandr Bulaev
Mining 2025, 5(3), 49; https://doi.org/10.3390/mining5030049 (registering DOI) - 1 Aug 2025
Abstract
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of [...] Read more.
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of extremely acidophilic microorganisms used in the processes of bioleaching sulfide ores were obtained using nutrient media containing ferrous sulfate, elemental sulfur and a copper sulfide concentrate as nutrient inorganic substrates, with and without the addition of 0.02% yeast extract. The microbial community composition was studied using the sequencing of the V3–V4 hypervariable region of the 16S rRNA genes. The different growth conditions led to changes in the microbial composition and relative abundance of mesophilic and moderately thermophilic, strict autotrophic and mixotrophic microorganisms in members of the genera Acidithiobacillus, Sulfobacillus, Leptospirillum, Acidibacillus, Ferroplasma and Cuniculiplasma. The dynamics of the oxidation of ferrous iron, sulfur, and sulfide minerals (pyrite and chalcopyrite) by the enrichments was also studied in the temperature range of 25 to 50 °C. The study of enrichment cultures using the molecular biological method using the metabarcoding method of variable V3–24 V4 fragments of 16S rRNA genes showed that enrichment cultures obtained under different conditions differed in composition, which can be explained by differences in the physiological properties of the identified microorganisms. Regarding the dynamics of the oxidation of ferrous ions, sulfur, and sulfide minerals (pyrite and chalcopyrite), each enrichment culture was studied at a temperature range of 25 to 50 °C and indicated that all obtained enrichments were capable of oxidizing ferrous iron, sulfur and minerals at different rates. The obtained enrichment cultures may be used in further work to increase bioleaching by using the suitable inoculum for the temperature and process conditions. Full article
Show Figures

Figure 1

20 pages, 1836 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 (registering DOI) - 1 Aug 2025
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 (registering DOI) - 1 Aug 2025
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

31 pages, 1295 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 (registering DOI) - 1 Aug 2025
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Back to TopTop