Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Metabarcoding Analysis
2.2.1. DNA Extraction
2.2.2. 16S and ITS rDNA PCR Amplification
2.2.3. Nanopore Sequencing
2.3. Microbiological Analyses
2.4. Isolation and Identification of Lactic Acid Bacteria
2.5. Phylogenetic Analysis
2.6. Potential Probiotic Features
2.6.1. Resistance to Lysozyme
2.6.2. Tolerance to Acidic pH and Bile Salts
2.6.3. Antibiotic Resistance
2.6.4. Antimicrobial Activity
2.6.5. Early Adhesion and Biofilm Formation
2.7. Statistical Analysis
3. Results
3.1. Profiling of the Microbial Communities of Buffalo Mozzarella CW and RCEW
3.2. Subdominant LAB Identification
3.3. Potential Probiotic Features
3.3.1. Resistance to Lysozyme
3.3.2. Tolerance to Acidic pH and Bile Salts
3.3.3. Antibiotic Resistance
3.3.4. Antimicrobial Activity
3.3.5. Early Adhesion and Biofilm Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CW | Cheese whey |
RCEW | Ricotta cheese exhausted whey |
References
- Garau, V.; Manis, C.; Scano, P.; Caboni, P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy 2021, 2, 469–488. [Google Scholar] [CrossRef]
- Borghese, A.; Chiariotti, A.; Barile, V.L. Buffalo in the World: Situation and Perspectives. In Biotechnological Applications in Buffalo Research; Chauhan, M.S., Selokar, N., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- CLAL, Centro di Analisi del Mercato Caseario—Milk Data Report. Available online: https://www.clal.it (accessed on 2 December 2024).
- Consorzio di Tutela della Mozzarella di Bufala Campana. Production Specification of the Protected Designation of Origin “Mozzarella di Bufala Campana” [Production Regulation]. Official Gazette of the Italian Republic, General Series No. 146, 26 June 2014. Available online: https://agricoltura.regione.campania.it/Tipici/pdf/disciplinare-mozzarella-bufala.pdf (accessed on 2 December 2024).
- Levante, A.; Bertani, G.; Marrella, M.; Mucchetti, G.; Bernini, V.; Lazzi, C.; Neviani, E. The microbiota of Mozzarella di Bufala Campana PDO cheese: A study across the manufacturing process. Front. Microbiol. 2023, 14, 1196879. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Maggiolino, A.; Faccia, M.; Franco, D.; De Palo, P.; Lorenzo, J.M. Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms 2021, 9, 2303. [Google Scholar] [CrossRef]
- Ercolini, D.; De Filippis, F.; La Storia, A.; Iacono, M. “Remake” by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Appl. Environ. Microbiol. 2012, 78, 8142–8145. [Google Scholar] [CrossRef]
- Coppola, S.; Parente, E.; Dumontet, S.; Peccerella, A.L. The microflora of natural whey cultures utilized as starters in the manufacture of Mozzarella cheese from water-buffalo milk. Lait 1988, 68, 295–309. [Google Scholar] [CrossRef]
- Jin, R.; Song, J.; Liu, C.; Lin, R.; Liang, D.; Aweya, J.J.; Weng, W.; Zhu, L.; Shang, J.; Yang, S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13388. [Google Scholar] [CrossRef] [PubMed]
- Vale, A.d.S.; Wiele, N.; Manzoki, M.C.; Maske, B.L.; Molina-Aulestia, D.T.; Viesser, J.A.; Soccol, C.R.; Pereira, G.V.d.M. Strategies for Studying the Microbiome of Fermented Foods. In Trending Topics on Fermented Foods; Martin, J.G.P., De Dea Lindner, J., Melo Pereira, G.V.d., Ray, R.C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Peng, Q.; Shen, T.; Yao, J.; Wei, Y.; Duan, H.; Liu, W. Culturomics: A promising approach for exploring bacterial diversity in natural fermented milk. Food Biosci. 2024, 62, 105383. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L.; Valmorri, S.; Mastrangelo, M.; Suzzi, G. Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiol. 2007, 24, 592–600. [Google Scholar] [CrossRef]
- Beccaccioli, M.; Grottoli, A.; Scarnati, L.; Faino, L.; Reverberi, M. Nanopore Hybrid Assembly of Biscogniauxia mediterranea Isolated from Quercus cerris Affected by Charcoal Disease in an Endangered Coastal Wood. Microbiol. Resour. Announc. 2021, 10, e0045021. [Google Scholar] [CrossRef]
- Mora, D.; Fortina, M.G.; Nicastro, G.; Parini, C.; Manachini, P.L. Genotypic characterization of thermophilic bacilli: A study on new soil isolates and several reference strains. Res. Microbiol. 1998, 149, 711–722. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Beccaccioli, M.; Moricca, C.; Faino, L.; Reale, R.; Mineo, M.; Reverberi, M. The Neolithic site “La Marmotta”: DNA metabarcoding to identify the microbial deterioration of waterlogged archeological wood. Front. Microbiol. 2023, 14, 1129983. [Google Scholar] [CrossRef]
- Marasco, R.; Gazzillo, M.; Campolattano, N.; Sacco, M.; Muscariello, L. Isolation and Identification of Lactic Acid Bacteria from Natural Whey Cultures of Buffalo and Cow Milk. Foods 2022, 11, 233. [Google Scholar] [CrossRef]
- Calabrese, F.M.; Ameur, H.; Nikoloudaki, O.; Celano, G.; Vacca, M.; Junior, W.J.; Manzari, C.; Vertè, F.; Di Cagno, R.; Pesole, G.; et al. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 2022, 10, 148. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Samedi, L.; Charles, A.L. Isolation and characterization of potential probiotic Lactobacilli from leaves of food plants for possible additives in pellet feeding. Ann. Agric. Sci. 2019, 64, 55–62. [Google Scholar] [CrossRef]
- Fujimuri, S. Gastric acid level of humans must decrease in the future. World J. Gastroenterol. 2020, 26, 6706–6709. [Google Scholar] [CrossRef]
- Prasad, J.; Gill, H.; Smart, J.; Gopal, P.K. Selection Characterization of Lactobacillus Bifidobacterium Strains for Use as Probiotics. Int. Dairy J. 1998, 8, 993–1002. [Google Scholar] [CrossRef]
- Schifano, E.; Tomassini, A.; Preziosi, A.; Montes, J.; Aureli, W.; Mancini, P.; Miccheli, A.; Uccelletti, D. Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021, 9, 2290. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Antibiotic Susceptibility of Potentially Probiotic Lactobacillus Species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Toma, L.; Provot, C.; Ascenzioni, F.; Sperduti, I.; Prignano, G.; Gallo, M.T.; Pimpinelli, F.; Bordignon, V.; Bernardi, T. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria. Front. Microbiol. 2016, 7, 1429. [Google Scholar] [CrossRef]
- Truglio, M.; Sivori, F.; Cavallo, I.; Abril, E.; Licursi, V.; Fabrizio, G.; Cardinali, G.; Pignatti, M.; Toma, L.; Valensise, F.; et al. Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Sci. Rep. 2024, 14, 2722. [Google Scholar] [CrossRef]
- Cocolin, L.; Ercolini, D. Zooming into food-associated microbial consortia: A “cultural” evolution. Curr. Opin. Food sci. 2015, 2, 43–50. [Google Scholar] [CrossRef]
- Rossi, M.; Martínez-Martínez, D.; Amaretti, A.; Ulrici, A.; Raimondi, S.; Moya, A. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environ. Microbiol. Rep. 2016, 8, 399–406. [Google Scholar] [CrossRef]
- Castellana, S.; Bianco, A.; Capozzi, L.; Del Sambro, L.; Simone, D.; Iammarino, M.; Nardelli, V.; Caffò, A.; Trisolini, C.; Castellana, A.; et al. Microbial Community Profiling from Natural Whey Starter to Mozzarella among Different Artisanal Dairy Factories in Apulia Region (Italy). Fermentation 2023, 9, 911. [Google Scholar] [CrossRef]
- Damoczi, J.; Knoops, A.; Martou, M.-S.; Jaumaux, F.; Gabant, P.; Mahillon, J.; Veening, J.-W.; Mignolet, J.; Hols, P. Uncovering the arsenal of class II bacteriocins in salivarius streptococci. Commun. Biol. 2024, 7, 1511. [Google Scholar] [CrossRef]
- Alexandraki, V.; Kazou, M.; Blom, J.; Pot, B.; Papadimitriou, K.; Tsakalidou, E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front. Microbiol. 2019, 10, 2916. [Google Scholar] [CrossRef]
- Sousa-Silva, M.; Vieira, D.; Soares, P.; Casal, M.; Soares-Silva, I. Expanding the Knowledge on the Skillful Yeast. Cyberlindnera Jadinii. J. Fungi. 2021, 7, 36. [Google Scholar] [CrossRef]
- Godana, E.A.; Edo, G.S.; Yang, Q.; Zhang, X.; Zhao, L.; Wang, K.; Legrand, N.N.; Zhang, H. Wickerhamomyces anomalus: A promising yeast for controlling mold growth and diverse biotechnological applications. Trends Food Sci. Technol. 2024, 151, 104649. [Google Scholar] [CrossRef]
- Chai, C.Y.; Ke, T.; Niu, Q.H.; Hui, F.L. Diversity of Wickerhamomyces (Wickerhamomycetaceae, Saccharomycetales) in China with the description of four new species. Front. Microbiol. 2024, 15, 1338231. [Google Scholar] [CrossRef]
- Elbrecht, V.; Leese, F. Can DNA-Based Ecosystem Assessments Quantify Species Abundance? Testing Primer Bias and Biomass—Sequence Relationships with an Innovative Metabarcoding Protocol. PLoS ONE 2015, 10, e0130324. [Google Scholar] [CrossRef]
- Chakraborty, C.; Doss, C.G.P.; Patra, B.C.; Bandyopadhyay, S. DNA barcoding to map the microbial communities: Current advances and future directions. Appl. Microbiol. Biotechnol. 2014, 98, 3425–3436. [Google Scholar] [CrossRef]
- Meziti, A.; Rodriguez-R, L.M.; Hatt, J.K.; Peña-Gonzalez, A.; Levy, K.; Konstantinidis, K.T. The Reliability of Metagenome-Assembled Genomes (MAGs) in Representing Natural Populations: Insights from Comparing MAGs against Isolate Genomes Derived from the Same Fecal Sample. Appl. Environ. Microbiol. 2021, 87, e02593-20. [Google Scholar] [CrossRef]
- Ramos-Barbero, M.D.; Martin-Cuadrado, A.B.; Viver, T.; Santos, F.; Martinez-Garcia, M.; Antón, J. Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and the Ugly. Syst. Appl. Microbiol. 2019, 42, 30–40, Erratum in Syst. Appl. Microbiol. 2020, 42, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Hammadi, N.A.N.; Hasson, S.O.; Al-Awady, M.J. Probiotic Applications of Leuconostoc Mesenteroides: Antibacterial Activity Against MDR Pathogenic Bacteria: Aplikasi Probiotik Leuconostoc Mesenteroides: Aktivitas Antibakteri Terhadap Bakteri Patogen MDR. Indones. J. Health Sci. Med. 2025, 2, 10–21070. [Google Scholar] [CrossRef]
- Enuh, B.M.; Gedikli, S.; Aytar Çelik, P.; Çabuk, A. Genome sequence and probiotic potential of newly isolated Enterococcus durans strain MN187066. Lett. Appl. Microbiol. 2023, 76, ovad035. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.I.; Jeong, Y.; Kang, C.H. Evaluation of Safety and Probiotic Potential of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 Isolated from Kimchi, a Korean Fermented Cabbage. Microorganisms 2022, 10, 2070. [Google Scholar] [CrossRef]
- Avram-Hananel, L.; Stock, J.; Parlesak, A.; Bode, C.; Schwartz, B. E durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation. Dis. Colon. Rectum 2010, 53, 1676–1686. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to Qualify Microorganisms as "Probiotic" in Foods and Dietary Supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagler, R.M.; Klein, I.; Zarzhevsky, N.; Drigues, N.; Reznick, A.Z. Characterization of the differentiated antioxidant profile of human saliva. Free Radic. Biol. Med. 2002, 32, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, J. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int. 2020, 136, 109571. [Google Scholar] [CrossRef]
- Álvarez-Cisneros, Y.M.; Ponce-Alquicira, E. Antibiotic resistance in Lactic acid bacteria. In Antimicrobial Resistance—A Global Threat; Intechopen: London, UK, 2018; pp. 53–73. [Google Scholar] [CrossRef]
- Salvetti, E.; Campedelli, I.; Larini, I.; Conedera, G.; Torriani, S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021, 9, 491. [Google Scholar] [CrossRef]
- Tegegne, B.A.; Kebede, B. Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon 2022, 8, e09725. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Gullifa, G.; Risoluti, R.; Mazzoni, C.; Barone, L.; Papa, E.; Battistini, A.; Martin Fraguas, R.; Materazzi, S. Microencapsulation by a Spray Drying Approach to Produce Innovative Probiotics-Based Products Extending the Shelf-Life in Non-Refrigerated Conditions. Molecules 2023, 28, 860. [Google Scholar] [CrossRef]
- Gullifa, G.; Mazzoni, C.; Albertini, C.; Cirilli, R.; Mammone, F.R.; Materazzi, S.; Risoluti, R. Innovative microencapsulation strategy to produce probiotic based products with a dual impact on human heath. J. Drug Deliv. Sci. Technol. (JDDST) 2025, 106, 106570. [Google Scholar] [CrossRef]
- Comerlato, C.B.; Prichula, J.; Siqueira, F.M.; Ritter, A.C.; Varela, A.P.M.; Mayer, F.Q.; Brandelli, A. Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet. Mol. Biol. 2022, 45, e20210201. [Google Scholar] [CrossRef]
- Han, K.I.; Shin, H.D.; Lee, Y.; Baek, S.; Moon, E.; Park, Y.B.; Cho, J.; Lee, J.H.; Kim, T.J.; Manoharan, R.K. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals 2021, 17, 1383. [Google Scholar] [CrossRef]
- Haibo, L.; Jian, W.; Yaping, W.; Yongdong, G.; Wei, W. Comprehensive assessment of Enterococcus faecalis SN21-3: Probiotic features and safety evaluation for potential animal use. Food Biosci. 2024, 58, 103688. [Google Scholar] [CrossRef]
- Dapkevicius Md, L.E.; Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Malcata, F.X. Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021, 10, 821. [Google Scholar] [CrossRef]
- Bybee, S.N.; Scorza, A.V.; Lappin, M.R. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef]
- Franz, C.M.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef]
- Jahan, M.; Zhanel, G.G.; Sparling, R.; Holley, R.A. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis. Int. J. Food Microbiol. 2015, 199, 78–85. [Google Scholar] [CrossRef]
- Graham, K.; Stack, H.; Rea, R. Safety, beneficial and technological properties of enterococci for use in functional food applications—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef] [PubMed]
- Daca, A.; Jarzembowski, T. From the Friend to the Foe-Enterococcus faecalis Diverse Impact on the Human Immune System. Int. J. Mol. Sci. 2024, 25, 2422. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Interpretative Zone Diameters (mm) | |||||
---|---|---|---|---|---|---|
Group | Name | Class/Subclass | Disk Concentration (µg) | R | MS | S |
Inhibitors of cell wall synthesis | Cefuroxime | β-lactams/cephalosporins 2G | 30 | ≤15 | 16–17 | ≥18 |
Cephalothin | β-lactams/cephalosporins 1G | 30 | ≤14 | 15–17 | ≥18 | |
Ampicillin | β-lactams/aminopenicillins | 10 | ≤12 | 13–15 | ≥16 | |
Cefotaxime | β-lactams/cephalosporins 3G | 30 | ≤14 | 15–22 | ≥23 | |
Aztreonam | β-lactams/monobactams | 30 | ≤15 | 16–21 | ≥22 | |
Vancomycin | Glycopeptides | 30 | ≤14 | 15–16 | ≥17 | |
Penicillin G | β-lactams/natural penicillins | 10 | ≤19 | 20–27 | ≥28 | |
Inhibitors of protein synthesis | Gentamicin | Aminoglycosides | 10 | ≤12 | - | ≥13 |
Chloramphenicol | Amphenicols | 30 | ≤13 | 14–17 | ≥18 | |
Amikacin | Aminoglycosides | 30 | ≤15 | 16–17 | ≥18 | |
Streptomycin | Aminoglycosides | 25 | ≤11 | 12–14 | ≥15 | |
Tetracycline | Tetracyclines | 30 | ≤14 | 15–18 | ≥19 | |
Clindamycin | Lincosamides | 2 | ≤8 | 9–11 | ≥12 | |
Erythromycin | Macrolides | 15 | ≤13 | 14–17 | ≥18 | |
Inhibitors of nucleic acid synthesis | Rifampicin | Rifamycins | 30 | ≤14 | 15–17 | ≥18 |
Incubation Time (h) | Ln. mesenteroides RCEW1 | E. faecalis CW1 | E. durans RCEW2 |
---|---|---|---|
0.3% bile salts in PBS | |||
0 | 7.14 ± 0.12 | 7.07 ± 0.10 | 7.11 ± 0.06 |
1 | 7.15 ± 0.05 | 6.98 ± 0.25 | 6.85 ± 0.22 |
2 | 6.81 ± 0.13 * | 6.49 ± 0.20 * | 6.85 ± 0.14 |
3 | 6.72 ± 0.12 * | 6.50 ± 0.17 * | 6.70 ± 0.20 |
0.5% bile salts in PBS | |||
0 | 6.57 ± 0.01 | 6.24 ± 0.05 | 7.06 ± 0.04 |
1 | 5.43 ± 0.1 ** | 4.88 ± 0.17 ** | 6.82 ± 0.06 |
2 | 4.49 ± 0.08 *** | 4.46 ± 0.02 *** | 6.08 ± 0.07 *** |
3 | 4.34 ± 0.06 **** | 3.99 ± 0.17 ** | 6.02 ± 0.06 **** |
Antibiotic | Interpretative Zone Diameters | ||
---|---|---|---|
Ln. mesenteroides RCEW1 | E. faecalis CW1 | E. durans RCEW2 | |
Inhibitors of cell wall synthesis | |||
Cefuroxime | R | R | R |
Cephalothin | R | R | R |
Ampicillin | R | MS | S |
Cefotaxime | R | R | R |
Aztreonam | R | R | MS |
Vancomycin | R | S | R |
Penicillin G | MS | MS | S |
Inhibitors of protein synthesis | |||
Gentamicin | MS | R | S |
Chloramphenicol | S | S | S |
Amikacin | R | R | R |
Streptomycin | MS | R | S |
Tetracycline | S | S | S |
Clindamycin | S | S | S |
Erythromycin | S | S | S |
Inhibitors of nucleic acid synthesis | |||
Rifampicin | S | S | S |
Ln. mesenteroides RCEW1 | E. faecalis CW1 | E. durans RCEW2 | ||
---|---|---|---|---|
Lysozyme resistance | 50 | P | P | P |
100 | - | P | P | |
Low pH resistance | 3 | P | P | P |
2 | - | - | - | |
Bile salts resistance | 0.3% | P | P | P |
0.5% | - | - | - | |
Antibiotic susceptibility | In. cell wall synth. | - | - | P |
In. protein synth. | P | P | P | |
In. nucleic acid synth. | P | P | P | |
Antimicrobial activity | B. cereus NCIMB9373 | P | P | P |
S. aureus NCIMB949 | P | P | P | |
P. aeruginosa PA01 | - | - | - | |
E. coli NCIMB11943 | - | - | - | |
Adhesion ability | 5 h | - | P | - |
24 h | - | P | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonfanti, A.; Silvestri, R.; Novellino, E.; Tenore, G.C.; Schiano, E.; Iannuzzo, F.; Reverberi, M.; Faino, L.; Beccaccioli, M.; Sivori, F.; et al. Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains. Microorganisms 2025, 13, 1804. https://doi.org/10.3390/microorganisms13081804
Bonfanti A, Silvestri R, Novellino E, Tenore GC, Schiano E, Iannuzzo F, Reverberi M, Faino L, Beccaccioli M, Sivori F, et al. Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains. Microorganisms. 2025; 13(8):1804. https://doi.org/10.3390/microorganisms13081804
Chicago/Turabian StyleBonfanti, Andrea, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, and et al. 2025. "Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains" Microorganisms 13, no. 8: 1804. https://doi.org/10.3390/microorganisms13081804
APA StyleBonfanti, A., Silvestri, R., Novellino, E., Tenore, G. C., Schiano, E., Iannuzzo, F., Reverberi, M., Faino, L., Beccaccioli, M., Sivori, F., Rizzello, C. G., & Mazzoni, C. (2025). Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains. Microorganisms, 13(8), 1804. https://doi.org/10.3390/microorganisms13081804