Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Bibliometrics Analysis
3. Results and Discussion
3.1. Main Topics in Bibliometric Analysis (2001–2024)
3.2. Annual Production of Scientific Articles
3.3. Most Relevant Sources
3.4. Global Citations
3.5. Local Citations
3.6. Most Relevant Keywords in the Literature on Arbuscular Mycorrhizal Fungi in Tropical Forest Restoration
3.7. Keywords Dynamics
3.8. Networks of Co-Occurrence Among Keywords
3.9. Trending Topics
3.10. Geographic Clusters
3.11. Relevance and Development of the Research Topics
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balvanera, P. Los Servicios Ecosistémicos Que Ofrecen Los Bosques Tropicales. Ecosistemas 2012, 21, 136–147. [Google Scholar]
- Boyd, J.; Banzhaf, S. What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef]
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of Degraded Tropical Forest Landscapes. Science (1979) 2005, 310, 1628–1632. [Google Scholar] [CrossRef]
- Benayas, J.; Newton, A.; Diaz, A.; Bullock, J.M. Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Science (1979) 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Smith, S.E.E.; Read, D.J.J. Mycorrhizal Symbiosis; Academic Press; Elsevier: Great Britain, UK, 2008; Volume 3, ISBN 9780123705266. [Google Scholar]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Schüβler, A.; Schwarzott, D.; Walker, C. A New Fungal Phylum, the Glomeromycota: Phylogeny and Evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Koide, R.T.; Mosse, B. A History of Research on Arbuscular Mycorrhiza. Mycorrhiza 2004, 14, 145–163. [Google Scholar] [CrossRef]
- Clark, R.; Zeto, S. Mineral Acquisition by Arbuscular Mycorrhizal Plants. J. Plant Nutr. 2000, 23, 867–902. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-H.; Eo, J.-K.; Ka, K.-H.; Eom, A.-H. Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems. Mycobiology 2013, 41, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Messa, V.; Savioli, M. Improving Sustainable Agriculture with Arbuscular Mycorrhizae. Rhizosphere 2021, 19, 100412. [Google Scholar] [CrossRef]
- Hu, W.; Pan, L. Applications of Mycorrhizal Fungi in Agriculture and Forestry. In Microbial Bioprocesses; Shukla, P., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–20. [Google Scholar]
- Duarte, A.G.; Maherali, H. A Meta-Analysis of the Effects of Climate Change on the Mutualism between Plants and Arbuscular Mycorrhizal Fungi. Ecol. Evol. 2022, 12, e8518. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, X.; Cheng, Y.; Wu, G.; Dong, X.; He, X.; Zhao, G. Multidimensional Analysis Reveals Environmental Factors That Affect Community Dynamics of Arbuscular Mycorrhizal Fungi in Poplar Roots. Front. Plant Sci. 2023, 13, 1068527. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, L.; Granzow-De La Cerda, I. Biodiversidad y Conservación de Bosques Neotropicales. Ecosistemas 2012, 21, 1–2. [Google Scholar]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority Ecoregions for Global Conservation. Ann. Mo. Bot. Gard. 2002, 89, 199. [Google Scholar] [CrossRef]
- Marinho, F.; Da Silva, I.; Oehl, F.; Maia, L. Checklist of Arbuscular Mycorrhizal Fungi in Tropical Forests. Sydowia 2018, 70, 107–127. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science (1979) 2007, 316, 4. [Google Scholar] [CrossRef]
- van der Heijden, M.; Boller, T.; Wiemken, A.; Sanders, I. Different Arbuscular Mycorrhizal Fungal Species Are Potential Determinants of Plant Community Structure. Ecology 1998, 79, 2082–2091. [Google Scholar] [CrossRef]
- Watson-Guido, W.; Rivera-Méndez, W. Comunicación En Las Asociaciones Simbióticas: Mecanismos Entre Hongos Micorrícicos Arbusculares, Plantas y Organismos Edáficos. Agron. Mesoam. 2024, 35, 1–16. [Google Scholar] [CrossRef]
- Wrigth, S.F.; Upadhyaya, A. A Survey of Soils for Aggregate Stability and Glomalin, a Glycoprotein Produced by Hyphae of Arbuscular Mycorrhizal Fungi. Plant Soil. 1998, 198, 97–107. [Google Scholar]
- Rillig, M.C.; Wright, S.F.; Nichols, K.A.; Schmidt, W.F.; Torn, M.S. Large Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Pools in Tropical Forest Soils. Plant Soil. 2001, 233, 167–177. [Google Scholar] [CrossRef]
- Reinhart, K.; Callaway, R. Soil Biota and Invasive Plants. New Phytol. 2006, 170, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Bunn, R.A.; Ramsey, P.W.; Lekberg, Y. Do Native and Invasive Plants Differ in Their Interactions with Arbuscular Mycorrhizal Fungi? A Meta-Analysis. J. Ecol. 2015, 103, 1547–1556. [Google Scholar] [CrossRef]
- Simard, S.W.; Perry, D.A.; Jones, M.D.; Myrold, D.D.; Durall, D.M.; Molina, R. Net Transfer of Carbon between Ectomycorrhizal Tree Species in the Field. Nature 1997, 388, 579–582. [Google Scholar] [CrossRef]
- Avila-Salem, M.; Montesdeoca, F.; Orellana, M.; Pacheco, K.; Alvarado, S.; Becerra, N.; Marín, C.; Borie, F.; Aguilera, P.; Cornejo, P. Soil Biological Properties and Arbuscular Mycorrhizal Fungal Communities of Representative Crops Established in the Andean Region from Ecuadorian Highlands. J. Soil. Sci. Plant Nutr. 2020, 20, 2156–2163. [Google Scholar] [CrossRef]
- Asmelash, F.; Bekele, T.; Birhane, E. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Front. Microbiol. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Schultz, P.A.; Michael Miller, R.; Jastrow, J.D.; Rivetta, C.V.; Bever, J.D.; Miller, R.M.; Jastrow, J.D.; Rivetta, C.V.; Bever, J.D.; Michael Miller, R.; et al. Evidence of a Mycorrhizal Mechanism for the Adaptation of Andropogon Gerardii (Poaceae) to High- and Low-nutrient Prairies. Am. J. Bot. 2001, 88, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Mangan, S.A.; Adler, G.H. Seasonal Dispersal of Arbuscular Mycorrhizal Fungi by Spiny Rats in a Neotropical Forest. Oecologia 2002, 131, 587–597. [Google Scholar] [CrossRef]
- Kardol, P.; Cornips, N.; Van Kempen, M.; Bakx-Schotman, J.; Van Der Putten, W. Microbe-Mediated Plant-Soil Feedback Causes Historical Contingency Effects in Plant Community Assembly. Ecol. Monogr. 2007, 77, 147–162. [Google Scholar] [CrossRef]
- Koziol, L.; Schultz, P.A.; House, G.L.; Bauer, J.T.; Middleton, E.L.; Bever, J.D. The Plant Microbiome and Native Plant Restoration: The Example of Native Mycorrhizal Fungi. Bioscience 2018, 68, 996–1006. [Google Scholar] [CrossRef]
- Tonietto, R.K.; Larkin, D.J. Habitat Restoration Benefits Wild Bees: A Meta-Analysis. J. Appl. Ecol. 2018, 55, 582–590. [Google Scholar] [CrossRef]
- Figueiredo, A.; Boy, J.; Guggenberger, G. Common Mycorrhizae Network: A Review of the Theories and Mechanisms Behind Underground Interactions. Front. Fungal Biol. 2021, 2, 735299. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling Mycorrhiza-Induced Resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Barto, E.K.; Hilker, M.; Müller, F.; Mohney, B.K.; Weidenhamer, J.D.; Rillig, M.C. The Fungal Fast Lane: Common Mycorrhizal Networks Extend Bioactive Zones of Allelochemicals in Soils. PLoS ONE 2011, 6, e27195. [Google Scholar] [CrossRef]
- Cantor, A.; Hale, A.; Aaron, J.; Traw, M.B.; Kalisz, S. Low Allelochemical Concentrations Detected in Garlic Mustard-Invaded Forest Soils Inhibit Fungal Growth and AMF Spore Germination. Biol. Invasions 2011, 13, 3015–3025. [Google Scholar] [CrossRef]
- Achatz, M.; Morris, E.K.; Müller, F.; Hilker, M.; Rillig, M.C. Soil Hypha-Mediated Movement of Allelochemicals: Arbuscular Mycorrhizae Extend the Bioactive Zone of Juglone. Funct. Ecol. 2014, 28, 1020–1029. [Google Scholar] [CrossRef]
- Cipollini, D.; Rigsby, C.M.; Barto, E.K. Microbes as Targets and Mediators of Allelopathy in Plants. J. Chem. Ecol. 2012, 38, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.; Thelen, G.; Rodriguez, A.; Holben, W. Soil Biota and Exotic Plant Invasion. Nature 2004, 427, 731–733. [Google Scholar] [CrossRef]
- Javaid, A. Allelopathic Interactions in Mycorrhizal Associations. Allelopath. J. 2007, 20, 29–42. [Google Scholar]
- Callaway, R.M.; Cipollini, D.; Barto, K.; Thelen, G.C.; Hallett, S.G.; Prati, D.; Stinson, K.; Klironomos, J. Novel Weapons: Invasive Plant Suppresses Fungal Mutualists in America but Not in Its Native Europe. Ecology 2008, 89, 1043–1055. [Google Scholar] [CrossRef]
- Lekberg, Y.; Gibbons, S.M.; Rosendahl, S.; Ramsey, P.W. Severe Plant Invasions Can Increase Mycorrhizal Fungal Abundance and Diversity. ISME J. 2013, 7, 1424–1433. [Google Scholar] [CrossRef]
- Shah, M.A.; Reshi, Z.A.; Khasa, D. Arbuscular Mycorrhizal Status of Some Kashmir Himalayan Alien Invasive Plants. Mycorrhiza 2009, 20, 67–72. [Google Scholar] [CrossRef]
- Vogelsang, K.M.; Bever, J.D. Mycorrhizal Densities Decline in Association with Normative Plants and Contribute to Plant Invasion. Ecology 2009, 90, 399–407. [Google Scholar] [CrossRef]
- Ohsowski, B.M.; Klironomos, J.N.; Dunfield, K.E.; Hart, M.M. The Potential of Soil Amendments for Restoring Severely Disturbed Grasslands. Applied Soil. Ecology 2012, 60, 77–83. [Google Scholar] [CrossRef]
- Pagano, M.; Gupta, V. Overview of the Recent Advances in Mycorrhizal Fungi. In Recent Advances on Mycorrhizal Fungi; Pagano, M.C., Ed.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2016; pp. 8–17. ISBN 978-3-319-24353-5. [Google Scholar]
- Tedersoo, L.; Nilsson, R.H.; Abarenkov, K.; Jairus, T.; Sadam, A.; Saar, I.; Bahram, M.; Bechem, E.; Chuyong, G.; Kõljalg, U. 454 Pyrosequencing and Sanger Sequencing of Tropical Mycorrhizal Fungi Provide Similar Results but Reveal Substantial Methodological Biases. New Phytol. 2010, 188, 291–301. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizal Associations and Other Means of Nutrition of Vascular Plants: Understanding the Global Diversity of Host Plants by Resolving Conflicting Information and Developing Reliable Means of Diagnosis. Plant Soil. 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Huang, M.-H.; Lin, C.-W. Evolution of Research Subjects in Library and Information Science Based on Keyword, Bibliographical Coupling, and Co-Citation Analyses. Scientometrics 2015, 105, 2071–2087. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, F.; Liu, L.; Chen, M.; Sun, D.; Nan, J. How Do Urban Rainfall-Runoff Pollution Control Technologies Develop in China? A Systematic Review Based on Bibliometric Analysis and Literature Summary. Sci. Total Environ. 2021, 789, 148045. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yu, Y.; Zhang, N. Carbon Emissions and Environmental Management Based on Big Data and Streaming Data: A Bibliometric Analysis. Sci. Total Environ. 2020, 733, 138984. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- R Core Team. A Languaje and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2025. [Google Scholar]
- Agnusdei, G.P.; Coluccia, B. Sustainable Agrifood Supply Chains: Bibliometric, Network and Content Analyses. Sci. Total Environ. 2022, 824, 153704. [Google Scholar] [CrossRef] [PubMed]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating Treatment Wetlands: A Review and Bibliometric Analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, X.; Wu, F.; Tang, Z.; Lv, H.; Wang, J.; Fang, M.; Giesy, J.P. Hotpots and Trends of Covalent Organic Frameworks (COFs) in the Environmental and Energy Field: Bibliometric Analysis. Sci. Total Environ. 2021, 783, 146838. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; van der Putten, W.H.; Wall, D.H. Ecological Linkages between Aboveground and Belowground Biota. Science (1979) 2004, 304, 1629–1633. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and Soil Structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between Roots and Microorganisms for Nitrogen: Mechanisms and Ecological Relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qiu, Y.L. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- De Boer, W.; Folman, L.B.; Summerbell, R.C.; Boddy, L.; De Boer, W.; Folman, L.B.; Summerbell, R.C.; Boddy, L.; De Boer, W.; Folman, L.B.; et al. Living in a Fungal World: Impact of Fungi on Soil Bacterial Niche Development. FEMS Microbiol. Rev. 2005, 29, 795–811. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, Minerals and Microbes: Geomicrobiology and Bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal Responses to Biochar in Soil—Concepts and Mechanisms. Plant Soil. 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Leff, J.; Jones, S.; Prober, S.; Barberán, A.; Borer, E.; Firn, J.; Harpole, W.; Hobbie, S.; Hofmockel, K.; Knops, J.; et al. Consistent Responses of Soil Microbial Communities to Elevated Nutrient Inputs in Grasslands across the Globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Klironomos, J.N. Variation in Plant Response to Native and Exotic Arbuscular Mycorrhizal Fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.T.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C.; et al. A Meta-Analysis of Context-Dependency in Plant Response to Inoculation with Mycorrhizal Fungi. Ecol. Lett. 2010, 13, 394–407. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef] [PubMed]
- Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-Mediated Competition between Plants and Decomposers Drives Soil Carbon Storage. Nature 2014, 505, 543–545. [Google Scholar] [CrossRef]
- Phillips, R.P.; Brzostek, E.; Midgley, M.G. The Mycorrhizal-Associated Nutrient Economy: A New Framework for Predicting Carbon-Nutrient Couplings in Temperate Forests. New Phytol. 2013, 199, 41–51. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Weighted Citation: An Indicator of an Article’s Prestige. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1635–1643. [Google Scholar] [CrossRef]
- Ding, Y.; Cronin, B. Popular and/or Prestigious? Measures of Scholarly Esteem. Inf. Process Manag. 2011, 47, 80–96. [Google Scholar] [CrossRef]
- Rafols, I.; Meyer, M. Diversity and Network Coherence as Indicators of Interdisciplinarity: Case Studies in Bionanoscience. Scientometrics 2010, 82, 263–287. [Google Scholar] [CrossRef]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.M. The Contribution of Arbuscular Mycorrhizal Fungi in Sustainable Maintenance of Plant Health and Soil Fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar] [CrossRef]
- Wang, F. Occurrence of Arbuscular Mycorrhizal Fungi in Mining-Impacted Sites and Their Contribution to Ecological Restoration: Mechanisms and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1901–1957. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Gollotte, A.; Binet, M.N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The Key Role of Arbuscular Mycorrhizas in Ecosystem Services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Hazard, C.; Gosling, P.; Van Der Gast, C.J.; Mitchell, D.T.; Doohan, F.M.; Bending, G.D. The Role of Local Environment and Geographical Distance in Determining Community Composition of Arbuscular Mycorrhizal Fungi at the Landscape Scale. ISME J. 2013, 7, 498–508. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. Can. J. Soil. Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef]
- Allen, M.F.; Swenson, W.; Querejeta, J.I.; Egerton-Warburton, L.M.; Treseder, K.K. Ecology of Mycorrhizae: A Conceptual Framework for Complex Interactions among Plants and Fungi. Annu. Rev. Phytopathol. 2003, 41, 271–303. [Google Scholar] [CrossRef]
- Lekberg, Y.; Koide, R.T.; Rohr, J.R.; Aldrich-Wolfe, L.; Morton, J.B. Role of Niche Restrictions and Dispersal in the Composition of Arbuscular Mycorrhizal Fungal Communities. J. Ecol. 2007, 95, 95–105. [Google Scholar] [CrossRef]
- Allen, M.F.; Allen, E.B.; Gómez-Pompa, A. Effects of Mycorrhizae and Nontarget Organisms on Restoration of a Seasonal Tropical Forest in Quintana Roo, Mexico: Factors Limiting Tree Establishment. Restor. Ecol. 2005, 13, 325–333. [Google Scholar] [CrossRef]
- Husband, R.; Herre, E.A.; Turner, S.L.; Gallery, R.; Young, J.P.W. Molecular Diversity of Arbuscular Mycorrhizal Fungi and Patterns of Host Association over Time and Space in a Tropical Forest. Mol. Ecol. 2002, 11, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Tchabi, A.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Arbuscular Mycorrhizal Fungal Communities in Sub-Saharan Savannas of Benin, West Africa, as Affected by Agricultural Land Use Intensity and Ecological Zone. Mycorrhiza 2008, 18, 181–195. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular Mycorrhizae and Terrestrial Ecosystem Processes. Ecol. Lett. 2004, 7, 740–754. [Google Scholar] [CrossRef]
- Jansa, J.; Erb, A.; Oberholzer, H.R.; Šmilauer, P.; Egli, S. Soil and Geography Are More Important Determinants of Indigenous Arbuscular Mycorrhizal Communities than Management Practices in Swiss Agricultural Soils. Mol. Ecol. 2014, 23, 2118–2135. [Google Scholar] [CrossRef] [PubMed]
- Zangaro, W.; Rostirola, L.V.; de Souza, P.B.; de Almeida Alves, R.; Lescano, L.E.A.M.; Rondina, A.B.L.; Nogueira, M.A.; Carrenho, R. Root Colonization and Spore Abundance of Arbuscular Mycorrhizal Fungi in Distinct Successional Stages from an Atlantic Rainforest Biome in Southern Brazil. Mycorrhiza 2013, 23, 221–233. [Google Scholar] [CrossRef]
- Cornejo, P.; Meier, S.; Borie, G.; Rillig, M.C.; Borie, F. Glomalin-Related Soil Protein in a Mediterranean Ecosystem Affected by a Copper Smelter and Its Contribution to Cu and Zn Sequestration. Sci. Total Environ. 2008, 406, 154–160. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Nichols, K. Mycorrhizae: Sustainable Agriculture and Forestry. In Mycorrhizae: Sustainable Agriculture and Forestry; Siddiqui, Z.A., Akhtar, M.S., Futai, K., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 177–194. ISBN 978-1-4020-8769-1. [Google Scholar]
- Tawaraya, K.; Turjaman, M. Use of Arbuscular Mycorrhizal Fungi for Reforestation of Degraded Tropical Forests. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration; Springer: Berlin/Heidelberg, Germany, 2014; pp. 357–373. [Google Scholar]
- Fajardo, L.; Lovera, M.; Arrindell, P.; Aguilar, V.H.; Hasmy, Z.; Cuenca, G. Morphotype-Based Characterization of Arbuscular Mycorrhizal Fungal Communities in a Restored Tropical Dry Forest, Margarita Island-Venezuela. Rev. Biol. Trop. 2015, 63, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Kiers, E.; Lovelock, C.; Krueger, E.; Herre, E. Differential Effects of Tropical Arbuscular Mycorrhizal Fungal Inocula on Root Colonization and Tree Seedling Growth: Implications for Tropical Forest Diversity. Ecol. Lett. 2000, 3, 106–113. [Google Scholar] [CrossRef]
- Sheldrake, M.; Rosenstock, N.; Revillini, D.; Olsson, P.; Mangan, S.; Sayer, E.; Wallander, H.; Turner, B.; Tanner, E. Arbuscular Mycorrhizal Fungal Community Composition Is Altered by Long-term Litter Removal but Not Litter Addition in a Lowland Tropical Forest. New Phytol. 2017, 214, 455–467. [Google Scholar] [CrossRef]
Main Topic | Secondary Topic | WoS | Scopus |
---|---|---|---|
AMF | Ecology | 994 | 798 |
Tropical forest | 556 | 310 | |
Mining | 603 | 317 | |
Degradation | 618 | 449 | |
Landscape | 263 | 119 | |
Bioremediation | 283 | 384 | |
Ecological restoration | 326 | 252 | |
Tropical Zones | 40 | 36 | |
Landscape ecology | 36 | 28 |
Description | Results |
---|---|
Timespan | 2001–2024 |
Sources | 880 |
Documents | 3835 |
Document Average Age | 8.42 |
Average citations per year per doc | 45.55 |
References | 243,986 |
Article | 3037 |
Article: proceedings paper | 36 |
Book | 6 |
Book chapter | 84 |
Other documents | 672 |
Keywords Plus (ID) | 9388 |
Author’s Keywords (DE) | 8693 |
Authors | 10,868 |
Sources | Articles | Percentage % | Impact Factor 2023 |
---|---|---|---|
Mycorrhiza | 128 | 3.34 | 3.3 |
New Phytologist | 115 | 3.00 | 8.3 |
Applied Soil Ecology | 107 | 2.79 | 5.48 |
Science of the Total Environment | 106 | 2.76 | 8.2 |
Plant and Soil | 87 | 2.27 | 4.42 |
Soil Biology & Biochemistry | 87 | 2.27 | 9.8 |
Journal of Ecology | 63 | 1.64 | 5.72 |
International Journal of Phytoremediation | 59 | 1.54 | 4.16 |
Environmental Science and Pollution Research | 55 | 1.43 | 5.8 |
Frontiers in Microbiology | 52 | 1.36 | 4.00 |
Restoration Ecology | 48 | 1.25 | 3.51 |
Frontiers in Plant Science | 44 | 1.15 | 4.1 |
Plos one | 44 | 1.15 | 2.9 |
Ecology | 43 | 1.12 | 4.4 |
Forest Ecology and Management | 41 | 1.07 | 4.02 |
Fungal Ecology | 38 | 0.99 | 1.9 |
Symbiosis | 36 | 0.94 | 2.1 |
Chemosphere | 31 | 0.81 | 8.1 |
Microbial Ecology | 30 | 0.78 | 3.3 |
Forests | 29 | 0.76 | 2.9 |
Author | Year | Journal | DOI | Total Global Citations | TC per Year |
---|---|---|---|---|---|
Wardle et al. [61] | 2004 | Science | 10.1126/science.1094875 | 3337 | 151.68 |
Nguyen et al. [62] | 2016 | Fungal Ecology | 10.1016/j.funeco.2015.06.006 | 2974 | 297.40 |
Philippot et al. [63] | 2013 | Nature Reviews Microbiology | 10.1038/nrmicro3109 | 2316 | 178.15 |
Wang & Qiu [66] | 2006 | Mycorrhiza | 10.1007/s00572-005-0033-6 | 1342 | 67.10 |
Boer et al. [67] | 2005 | FEMS Microbiology Reviews | 10.1016/j.femsre.2004.11.005 | 1340 | 63.81 |
van der Heijden et al. [10] | 2015 | New Phytologist | 10.1111/nph.13288 | 1334 | 121.27 |
Gadd [68] | 2010 | Microbiology (SGM) | 10.1099/mic.0.037143-0 | 1305 | 81.56 |
Schüβler et al. [7] | 2001 | Mycological Research | 10.1017/S0953756201005196 | 1282 | 51.28 |
Rillig & Mummey [64] | 2006 | New Phytologist | 10.1111/j.1469-8137.2006.01750.x | 1110 | 55.50 |
Warnock et al. [69] | 2007 | Plant and Soil | 10.1007/s11104-007-9391-5 | 1046 | 55.05 |
Kuzyakov & Xu [65] | 2013 | New Phytologist | 10.1111/nph.12235 | 1019 | 78.38 |
Leff et al. [70] | 2015 | Proceedings of the National Academy of Sciences (USA) | 10.1073/pnas.1508382112 | 1000 | 90.91 |
Brundrett [50] | 2009 | Plant and Soil | 10.1007/s11104-008-9877-9 | 951 | 55.94 |
Klironomos [71] | 2003 | Ecology | 10.1890/02-0413 | 876 | 38.09 |
Haider et al. [72] | 2021 | Ecotoxicology and Environmental Safety | 10.1016/j.ecoenv.2020.111887 | 864 | 172.80 |
Hoeksema et al. [73] | 2010 | Ecology Letters | 10.1111/j.1461-0248.2009.01430.x | 864 | 54.00 |
Gadd [74] | 2007 | Mycological Research | 10.1016/j.mycres.2006.12.001 | 863 | 45.42 |
Emamverdian A [75] | 2015 | The Scientific World Journal | 10.1155/2015/756120 | 848 | 77.09 |
Averill et al. [76] | 2014 | Nature | 10.1038/nature12901 | 785 | 65.42 |
Phillips et al. [77] | 2013 | New Phytologist | 10.1111/nph.12221 | 779 | 59.92 |
Author | Year | Journal | DOI | Total Local Citations | Global Citations |
---|---|---|---|---|---|
Jeffries et al. [81] | 2003 | Biology and Fertility of Soils | 10.1007/s00374-002-0546-5 | 303 | 826 |
Wang [82] | 2017 | Critical Reviews in Environmental Science and Technology | 10.1080/10643389.2017.1400853 | 147 | 171 |
Klironomos [71] | 2003 | Ecology | 10.1890/02-0413 | 131 | 951 |
Rillig & Mummey [64] | 2006 | New Phytologist | 10.1111/j.1469-8137.2006.01750.x | 129 | 1302 |
Hart & Reader [84] | 2002 | New Phytologist | 10.1046/j.0028-646X.2001.00312.x | 119 | 618 |
Hazard et al. [85] | 2013 | ISME Journal | 10.1038/ismej.2012.127 | 116 | 272 |
Hoeksema et al. [73] | 2010 | Ecology Letters | 10.1111/j.1461-0248.2009.01430.x | 113 | 925 |
Rillig [86] | 2004 | Canadian Journal of Soil Science | 10.4141/S04-003 | 109 | 806 |
Allen et al. [87] | 2003 | Ecological Applications | 10.1146/annurev.phyto.41.052002.095518 | 108 | 116 |
Brundrett [50] | 2009 | Plant Soil | 10.1007/s11104-008-9877-9 | 107 | 1061 |
Lekberg et al. [88] | 2007 | Journal of Ecology | 10.1111/j.1365-2745.2006.01193.x | 97 | 325 |
Allen et al. [89] | 2005 | Restoration Ecology | 10.1111/j.1526-100X.2005.00041.x | 95 | 73 |
Husband et al. [90] | 2002 | Molecular Ecology | 10.1046/j.1365-294X.2002.01647.x | 90 | 330 |
Gianinazzi et al. [83] | 2010 | Mycorrhiza | 10.1007/s00572-010-0333-3 | 86 | 751 |
Tchabi et al. [91] | 2008 | Mycorrhiza | 10.1007/s00572-008-0171-8 | 82 | 144 |
Rillig [92] | 2004 | Ecology Letters | 10.1111/j.1461-0248.2004.00620.x | 78 | 492 |
Jansa et al. [93] | 2014 | Molecular Ecology | 10.1111/mec.12706 | 74 | 197 |
Zangaro et al. [94] | 2013 | Mycorrhiza | 10.1007/s00572-012-0464-9 | 74 | 100 |
van der Heijden et al. [10] | 2015 | New Phytologist | 10.1111/nph.13288 | 73 | 1514 |
Cornejo et al. [95] | 2008 | Science of the Total Environment | 10.1016/j.scitotenv.2008.07.045 | 68 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo, Y.; Avila-Salem, M.E.; Loján, P.; Urgiles-Gómez, N.; Pucha-Cofrep, D.; Aguirre, N.; Benavidez-Silva, C. Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review. Forests 2025, 16, 1266. https://doi.org/10.3390/f16081266
Arévalo Y, Avila-Salem ME, Loján P, Urgiles-Gómez N, Pucha-Cofrep D, Aguirre N, Benavidez-Silva C. Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review. Forests. 2025; 16(8):1266. https://doi.org/10.3390/f16081266
Chicago/Turabian StyleArévalo, Yajaira, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre, and César Benavidez-Silva. 2025. "Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review" Forests 16, no. 8: 1266. https://doi.org/10.3390/f16081266
APA StyleArévalo, Y., Avila-Salem, M. E., Loján, P., Urgiles-Gómez, N., Pucha-Cofrep, D., Aguirre, N., & Benavidez-Silva, C. (2025). Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review. Forests, 16(8), 1266. https://doi.org/10.3390/f16081266