Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = microbial source tracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 65608 KiB  
Article
Saline Peatland Degradation in the Mezzano Lowland: 66 Years of Agricultural Impacts on Carbon and Soil Biogeochemistry
by Aaron Sobbe, Valentina Brombin, Enzo Rizzo and Gianluca Bianchini
Land 2025, 14(8), 1621; https://doi.org/10.3390/land14081621 - 9 Aug 2025
Viewed by 273
Abstract
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical [...] Read more.
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical data from the Mezzano Lowland (ML) in Northeastern Italy, a former wetland drained over 60 years ago. The transformation, which affected approximately 18,100 hectares, was achieved through the construction of a network of drainage canals and pumping stations capable of removing large volumes of water, enabling intensive agricultural use. Results showed a marked decrease in electrical conductivity (EC) and sulphate concentration, indicating extensive salt leaching from the upper peat soil layers. EC dropped from historical values up to 196 mS/cm (1967–1968) to a current maximum of 4.93 mS/cm, while sulphate levels declined by over 90%. SOM also showed significant depletion, especially in deeper layers (50–100 cm), with losses ranging from 50 to 60 wt%, due to increased aeration and microbial activity post-drainage. These climatic and environmental changes, including a marked reduction in soil salinity and sulphate concentrations due to prolonged leaching, have likely shifted the Mezzano Lowland from a carbon sink to a net source of CO2 and CH4 by promoting microbial processes that enhance methane production under anaerobic conditions. To detect residual peat layers, we used Ground-Penetrating Radar (GPR), which, combined with soil sampling, proved effective for tracking long-term peat soil changes. This approach can inform sustainable land management strategies to prevent further carbon loss and maintain peat soil stability. Full article
Show Figures

Figure 1

18 pages, 1365 KiB  
Article
Marker- and Microbiome-Based Microbial Source Tracking and Evaluation of Bather Health Risk from Fecal Contamination in Galveston, Texas
by Karalee A. Corbeil, Anna Gitter, Valeria Ruvalcaba, Nicole C. Powers, Md Shakhawat Hossain, Gabriele Bonaiti, Lucy Flores, Jason Pinchback, Anish Jantrania and Terry Gentry
Water 2025, 17(15), 2310; https://doi.org/10.3390/w17152310 - 3 Aug 2025
Viewed by 652
Abstract
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the [...] Read more.
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the span of 15 months (March 2022–May 2023), water samples that exceeded the U.S. Environmental Protection Agency-accepted alternative Beach Action Value (BAV) for enterococci of 104 MPN/100 mL were analyzed via microbial source tracking (MST) through quantitative polymerase chain reaction (qPCR) assays. The Bacteroides HF183 and DogBact as well as the Catellicoccus LeeSeaGull markers were used to detect human, dog, and gull fecal sources, respectively. The qPCR MST data were then utilized in a quantitative microbial risk assessment (QMRA) to assess human health risks. Additionally, samples collected in July and August 2022 were sequenced for 16S rRNA and matched with fecal sources through the Bayesian SourceTracker2 program. (3) Overall, 26% of the 110 samples with enterococci exceedances were positive for at least one of the MST markers. Gull was revealed to be the primary source of identified fecal contamination through qPCR and SourceTracker2. Human contamination was detected at very low levels (<1%), whereas dog contamination was found to co-occur with human contamination through qPCR. QMRA identified Campylobacter from canine sources as being the primary driver for human health risks for contact recreation for both adults and children. (4) These MST results coupled with QMRA provide important insight into water quality in Galveston that can inform future water quality and beach management decisions that prioritize public health risks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 1894 KiB  
Article
Microbial Communities’ Composition of Supralittoral and Intertidal Sediments in Two East African Beaches (Djibouti Republic)
by Sonia Renzi, Alessandro Russo, Aldo D’Alessandro, Samuele Ciattini, Saida Chideh Soliman, Annamaria Nistri, Carlo Pretti, Duccio Cavalieri and Alberto Ugolini
Microbiol. Res. 2025, 16(8), 173; https://doi.org/10.3390/microbiolres16080173 - 1 Aug 2025
Viewed by 185
Abstract
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial [...] Read more.
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial communities inhabiting supralittoral–intertidal sediments of two contrasting sandy beaches in the Tadjoura Gulf (Djibouti Republic): Sagallou-Kalaf (SK, rural, siliceous sand) and Siesta Plage (SP, urban, calcareous sand). Sand samples were collected at low tide along 10 m transects perpendicular to the shoreline. Bacterial communities differed significantly between sites and along the sea-to-land gradient, suggesting an influence from both anthropogenic activity and sediment granulometry. SK was dominated by Escherichia-Shigella, Staphylococcus, and Bifidobacterium, associated with human and agricultural sources. SP showed higher richness, with enriched marine-associated genera such as Hoeflea, Xanthomarina, and Marinobacter, also linked to hydrocarbon degradation. Fungal diversity was less variable, but showed significant shifts along transects. SK communities were dominated by Kluyveromyces and Candida, while SP hosted a broader fungal assemblage, including Pichia, Rhodotorula, and Aureobasidium. The higher richness at SP suggests that calcium-rich sands, possibly due to their buffering capacity and greater moisture retention, offer more favorable conditions for microbial colonization. Full article
Show Figures

Graphical abstract

25 pages, 4957 KiB  
Article
Monitoring of the Single-Cell Behavior of an Escherichia coli Reporter Strain Producing L-phenylalanine in a Scale-Down Bioreactor by Automated Real-Time Flow Cytometry
by Prasika Arulrajah, Sophi Katharina Riessner, Anna-Lena Heins and Dirk Weuster-Botz
BioTech 2025, 14(3), 54; https://doi.org/10.3390/biotech14030054 - 3 Jul 2025
Viewed by 416
Abstract
Large-scale bioprocesses often suffer from spatial heterogeneities, which impact microbial performance and often lead to phenotypic population heterogeneity. To better understand these effects at the single-cell level, this study applied, for the first time, automated real-time flow cytometry (ART-FCM) to monitor L-phenylalanine production [...] Read more.
Large-scale bioprocesses often suffer from spatial heterogeneities, which impact microbial performance and often lead to phenotypic population heterogeneity. To better understand these effects at the single-cell level, this study applied, for the first time, automated real-time flow cytometry (ART-FCM) to monitor L-phenylalanine production with an Escherichia coli triple reporter strain in a fed-batch process with glycerol as the carbon source. The strain was cultivated in both a well-mixed stirred-tank bioreactor (STR) and a scale-down two-compartment bioreactor (TCB), consisting of an STR and a coiled flow inverter (CFI) in bypass, to simulate spatial heterogeneities. ART-FCM enabled autonomous, high-frequency sampling every 20 min, allowing for real-time tracking of fluorescence signals linked to growth (rrnB-mEmerald), oxygen availability (narGHIJ-CyOFP1), and product formation (aroFBL-mCardinal2). The STR exhibited uniform reporter expression and higher biomass accumulation, while the TCB showed delayed product formation and pronounced phenotypic diversification depending on the set mean residence time in the CFI. Single-cell fluorescence distributions revealed that the shorter mean residence time in the CFI resulted in pronounced subpopulation formation, whereas longer exposure attenuated heterogeneity, indicating transcriptional adaptation. This finding highlights a critical aspect of scale-down studies: increased exposure duration to perturbations can enhance population robustness. Overall, this study demonstrates the relevance of ART-FCM, in combination with a multi-reporter strain, as a pioneering tool for capturing dynamic cellular behavior and correlating it to process performance, providing deeper insights into microbial heterogeneity under fluctuating bioprocess conditions. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
Microbial Contamination in Urban Marine Sediments: Source Identification Using Microbial Community Analysis and Fecal Indicator Bacteria
by Ellinor M. Frank, Carolina Suarez, Isabel K. Erb, Therese Jephson, Elisabet Lindberg and Catherine J. Paul
Microorganisms 2025, 13(5), 983; https://doi.org/10.3390/microorganisms13050983 - 25 Apr 2025
Viewed by 784
Abstract
We investigated the presence of the fecal indicator bacteria Escherichia coli, and other taxa associated with sewage communities in coastal sediments, near beaches with reported poor bathing water quality, focusing on the influence of effluent from a local wastewater treatment plant (WWTP) [...] Read more.
We investigated the presence of the fecal indicator bacteria Escherichia coli, and other taxa associated with sewage communities in coastal sediments, near beaches with reported poor bathing water quality, focusing on the influence of effluent from a local wastewater treatment plant (WWTP) and combined sewer overflows (CSO). Using a three-year dataset, we found that treated wastewater effluent is a significant source of sewage-associated taxa and viable E. coli in the sediments and that no seasonal differences were observed between spring and summer samples. CSO events have a local and temporary effect on the microbial community of sediments, distinct from that of treated wastewater effluent. Sediments affected by CSO had higher abundances of families Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae. Sewage releases may also impact the natural community of the sediments, as higher abundances of marine sulfur-cycling bacteria were noticed in locations where sewage taxa were also abundant. Microbial contamination at locations distant from known CSO and treatment plant outlets suggests additional sources, such as stormwater. This study highlights that while coastal sediments can be a reservoir of E. coli and contain sewage-associated taxa, their distribution and potential origins are complex and are likely not linked to a single source. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Environments)
Show Figures

Graphical abstract

17 pages, 4454 KiB  
Article
Where Do Milk Microbes Originate? Traceability of Microbial Community Structure in Raw Milk
by Shuqi Li, Yuwang Zhang, Chenjian Liu and Xiaoran Li
Foods 2025, 14(9), 1490; https://doi.org/10.3390/foods14091490 - 24 Apr 2025
Cited by 1 | Viewed by 668
Abstract
Variations in ecological environments (including milk collection equipment and milk storage tanks in the pasture) and seasonal changes may contribute to raw milk contamination, thereby affecting food safety. The composition, structure, and relationships between raw milk and microbial communities in these environments are [...] Read more.
Variations in ecological environments (including milk collection equipment and milk storage tanks in the pasture) and seasonal changes may contribute to raw milk contamination, thereby affecting food safety. The composition, structure, and relationships between raw milk and microbial communities in these environments are not well understood. In this study, 84 samples from spring and autumn in Luxian County, Yunnan Province, China, were collected for high-throughput sequencing technology. The results showed that the skin on the nipple surface and the environment (including the wiping samples of the automatic milking machine and the inner cover of the milk tank) had the greatest impact on microbial community composition in raw milk, followed by dung. In addition, microbial diversity in autumn samples was significantly higher, likely due to seasonal factors, including increased rainfall and reduced ultraviolet radiation. By analyzing the microbial community of raw milk and its environmental source, this study traced the origin of microorganisms in milk, providing insights for further exploration of the interaction between the pasture environment and raw milk microorganisms. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

18 pages, 5328 KiB  
Article
Rigorous Process for Isolation of Gut-Derived Extracellular Vesicles (EVs) and the Effect on Latent HIV
by Nneoma C. J. Anyanwu, Lakmini S. Premadasa, Wasifa Naushad, Bryson C. Okeoma, Mahesh Mohan and Chioma M. Okeoma
Cells 2025, 14(8), 568; https://doi.org/10.3390/cells14080568 - 9 Apr 2025
Viewed by 807
Abstract
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is [...] Read more.
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is lacking. Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate EVs from colonic content (ColEVs). PVPP facilitates the isolation of pure, non-toxic, and functionally active ColEVs that were internalized by cells and functionally activate HIV LTR promoter. ColEVs isolated without PVPP have a reductive effect on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) without living cells, suggesting that ColEVs contain reductases capable of catalyzing the reduction of MTT to formazan. The assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ~12 h (5 h preprocessing, 7 h isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. This protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Additionally, GI-derived EVs may serve as a window into the pathogenesis of diseases. Full article
Show Figures

Figure 1

27 pages, 7772 KiB  
Article
Priority Effect of Endophyte Community in Newly Fallen Leaves of Quercus acutissima Carruth. on Litter Decomposition and Saprotrophic Microbial Community
by Dongmei Yang, Yonghui Lin, Zaihua He, Xingbing He and Xiangshi Kong
Forests 2025, 16(2), 249; https://doi.org/10.3390/f16020249 - 28 Jan 2025
Cited by 1 | Viewed by 901
Abstract
This study examines the role of endophytic microbial colonization on the decomposition of oak leaf litter, a high-quality substrate in forest ecosystems. Over a one-year incubation, we observed a significant reduction in mass loss in colonized litter (46%) compared to non-colonized litter (80%), [...] Read more.
This study examines the role of endophytic microbial colonization on the decomposition of oak leaf litter, a high-quality substrate in forest ecosystems. Over a one-year incubation, we observed a significant reduction in mass loss in colonized litter (46%) compared to non-colonized litter (80%), indicating an inhibitory effect of endophytes on decomposition. Structural equation modeling revealed a bimodal impact of endophytic microbes, with an initial enhancement followed by a pronounced inhibition as decomposition progressed. Extracellular enzyme stoichiometry showed phosphorus limitation became significant, particularly with endophytic colonization, contributing to reduced decomposition rates. Microbial diversity analyses exposed the variable impacts of endophytic colonization on fungal and bacterial communities, with taxa such as Helotiales (order) and Burkholderia–Caballeronia–Paraburkholderia (genus) significantly affected. The identification of 16 keystone species, mostly endophytic bacteria, underscored their pivotal influence on decomposition processes. Despite initial endophytic impacts, abundant carbon resources promoted stochastic colonization, potentially surpassing the effects of early endophytic establishment. This study provides insights into the priority effects of endophytic colonization and niche differentiation, offering a foundation for further research into the mechanisms underlying these processes and their ecological consequences in various ecosystems. Full article
(This article belongs to the Special Issue Carbon, Nitrogen, and Phosphorus Storage and Cycling in Forest Soil)
Show Figures

Figure 1

13 pages, 6818 KiB  
Article
The Microbial Diversity and Traceability Analysis of Raw Milk from Buffalo Farms at Different Management Ranks in Guangxi Province
by Wenhao Miao, Dong Wang, Ling Li, Enghuan Hau, Jiaping Zhang, Zongce Shi, Li Huang, Qingkun Zeng and Kuiqing Cui
Foods 2024, 13(24), 4080; https://doi.org/10.3390/foods13244080 - 17 Dec 2024
Viewed by 1251
Abstract
Farm management has a significant impact on microbial composition and may affect the quality of raw buffalo milk. This study involved a diversity analysis and traceability of the microbial communities in raw buffalo milk from three buffalo farms at different management ranks in [...] Read more.
Farm management has a significant impact on microbial composition and may affect the quality of raw buffalo milk. This study involved a diversity analysis and traceability of the microbial communities in raw buffalo milk from three buffalo farms at different management ranks in Guangxi Province, China. The microbial composition of the raw buffalo milk and its environmental sources were investigated using 16S rRNA gene sequencing and bioinformatics analysis. The results demonstrated that different management ranks significantly influenced microbial composition in milk, with the primary sources of contamination varying across farms. The env.OPS_17 was the predominant differential bacterium in farm rank A, whereas Enterobacteriaceae, Aerococcaceae, and Planococcaceae were dominant in farm rank B. The Fast Expectation–Maximization for Microbial Source Tracking model revealed that while the sources of microbial contamination varied across farms at different management ranks, the teat and teat liner consistently emerged as the primary sources of microbial contamination in raw buffalo milk. This study provides important insights into how different farm management ranks affect the microbial composition of raw buffalo milk, highlighting the importance of improved management practices during milk production, particularly in cleaning the milking equipment and farm environment, as these are key factors in ensuring the quality and safety of raw buffalo milk. Full article
(This article belongs to the Topic Advances in Animal-Derived Non-Cow Milk and Milk Products)
Show Figures

Figure 1

20 pages, 3181 KiB  
Article
Foodborne Pathogen Prevalence and Biomarker Identification for Microbial Contamination in Mutton Meat
by Gayathri Muthusamy, Subburamu Karthikeyan, Veeranan Arun Giridhari, Ahmad R. Alhimaidi, Dananjeyan Balachandar, Aiman A. Ammari, Vaikuntavasan Paranidharan and Thirunavukkarasu Maruthamuthu
Biology 2024, 13(12), 1054; https://doi.org/10.3390/biology13121054 - 16 Dec 2024
Viewed by 1908
Abstract
Microbial contamination and the prevalence of foodborne pathogens in mutton meat and during its slaughtering process were investigated through microbial source tracking and automated pathogen identification techniques. Samples from mutton meat, cutting boards, hand swabs, knives, weighing balances, and water sources were collected [...] Read more.
Microbial contamination and the prevalence of foodborne pathogens in mutton meat and during its slaughtering process were investigated through microbial source tracking and automated pathogen identification techniques. Samples from mutton meat, cutting boards, hand swabs, knives, weighing balances, and water sources were collected from four different retail sites in Coimbatore. Total plate count (TPC), yeast and mold count (YMC), coliforms, E. coli, Pseudomonas aeruginosa, Salmonella, and Staphylococcus were examined across 91 samples. The highest microbial loads were found in the mutton-washed water, mutton meat, and cutting board samples. The automated pathogen identification system identified Staphylococcus species as the predominant contaminant and also revealed a 57% prevalence of Salmonella. Further analysis of goat meat inoculated with specific pathogens showed distinct volatile and metabolite profiles, identified using gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analyses, including principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), and sparse partial least squares discriminant analysis (sPLS-DA), identified potential biomarkers for pathogen contamination. The results highlight the significance of cross-contamination in the slaughtering process and suggest the use of volatile compounds as potential biomarkers for pathogen detection. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety (Volume II))
Show Figures

Figure 1

17 pages, 4507 KiB  
Article
The Relationship Between Soil and Gut Microbiota Influences the Adaptive Strategies of Goitered Gazelles in the Qaidam Basin
by Yiran Wang, Bin Li, Bo Xu and Wen Qin
Animals 2024, 14(24), 3621; https://doi.org/10.3390/ani14243621 - 15 Dec 2024
Cited by 1 | Viewed by 1235
Abstract
The gut microbiota is integral to the health and adaptability of wild herbivores. Interactions with soil microbiota can shape the composition and function of the gut microbiota, thereby influencing the hosts’ adaptive strategies. As a result, soil microbiota plays a pivotal role in [...] Read more.
The gut microbiota is integral to the health and adaptability of wild herbivores. Interactions with soil microbiota can shape the composition and function of the gut microbiota, thereby influencing the hosts’ adaptive strategies. As a result, soil microbiota plays a pivotal role in enabling wild herbivores to thrive in extreme environments. However, the influence of soil microbiota from distinct regions on host’s gut microbiota has often been overlooked. We conducted the first comprehensive analysis of the composition and diversity of gut and soil microbiota in goitered gazelles across six regions in the Qaidam Basin, utilizing source tracking and ecological assembly process analyses. Significant differences were observed in the composition and diversity of soil and gut microbiota among the six groups. Source tracking analysis revealed that soil microbiota in the GangciGC (GC) group contributed the highest proportion to fecal microbiota (8.94%), while the Huaitoutala (HTTL) group contributed the lowest proportion (1.80%). The GC group also exhibited the lowest α-diversity in gut microbiota. The observed differences in gut microbial composition and diversity among goitered gazelles from six regions in the Qaidam Basin were closely tied to their adaptive strategies. Ecological assembly process analysis indicated that the gut microbiota were primarily influenced by stochastic processes, whereas deterministic processes dominated most soil microbial groups. Both the differences and commonalities in gut and soil microbiota play essential roles in enabling these gazelles to adapt to diverse environments. Notably, the utilization pattern of soil microbiota by gut microbiota did not align with regional trends in gut microbial α-diversity. This discrepancy may be attributed to variations in environmental pressures and the gut’s filtering capacity, allowing gazelles to selectively acquire microbiota from soil to maintain homeostasis. This study highlights the significant regional variation in gut and soil microbiota diversity among goitered gazelle populations in the Qaidam Basin and underscores the critical role of soil-derived microbiota in their environmental adaptation. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

21 pages, 4443 KiB  
Article
Assessment of Chicken Fecal Contamination Using Microbial Source Tracking (MST) and Environmental DNA (eDNA) Profiling in Silway River, Philippines
by Lonny Mar Opog, Joan Cecilia Casila, Rubenito Lampayan, Marisa Sobremisana, Abriel Bulasag, Katsuhide Yokoyama and Soufiane Haddout
J. Xenobiot. 2024, 14(4), 1941-1961; https://doi.org/10.3390/jox14040104 - 12 Dec 2024
Viewed by 2161
Abstract
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup [...] Read more.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River. While there were technical reports in the early 2000s about poultry farming, this is the first study where fecal coliform from poultry farming was detected in the Silway River using highly sensitive protocols like qPCR. This study characterized the effect of flow velocity and physicochemical water quality parameters on chicken fecal contamination. Gene markers such as Ckmito and ND5-CD were used to detect and quantify poultry manure contamination through microbial source tracking (MST) and environmental DNA (eDNA) profiling. The results of this study showed the presence of chicken fecal bacteria in all stations along the Silway River. The results revealed that normal levels of water quality parameters such as temperature, pH, and high TSS concentrations create favorable conditions for chicken fecal coliforms to thrive. Multiple regression analysis showed that flow velocity and DO significantly affect chicken fecal contamination. A lower cycle threshold (Ct) value indicated higher concentration of the marker ND5-CD, which means higher fecal contamination. It was found that there was an inverse relationship between the Ct value and both velocity (R2 = 0.55, p = 0.01) and DO (R2 = 0.98, p = 0.2), suggesting that low flow velocity and low DO can lead to higher fecal contamination. Findings of fecal contamination could negatively impact water resources, the health of nearby residents, and surrounding farms and industries, as well as the health and growth of fish. Full article
Show Figures

Figure 1

18 pages, 11138 KiB  
Article
Limited Microbial Contribution in Salt Lake Sediment and Water to Each Other’s Microbial Communities
by Mingxian Han, Huiying Yu, Jianrong Huang, Chuanxu Wang, Xin Li, Xiaodong Wang, Liu Xu, Jingjing Zhao and Hongchen Jiang
Microorganisms 2024, 12(12), 2534; https://doi.org/10.3390/microorganisms12122534 - 9 Dec 2024
Cited by 1 | Viewed by 1103
Abstract
Climate change and human activities have led to frequent exchanges of sedimentary and aquatic microorganisms in lakes. However, the ability of these microorganisms to survive in their respective habitats between saline lake sediment and water remains unclear. In this study, we investigated microbial [...] Read more.
Climate change and human activities have led to frequent exchanges of sedimentary and aquatic microorganisms in lakes. However, the ability of these microorganisms to survive in their respective habitats between saline lake sediment and water remains unclear. In this study, we investigated microbial sources and community composition and metabolic functions in sediments and water in Yuncheng Salt Lake using a combination of source tracking and Illumina MiSeq sequencing. The results showed that 0.10–8.47% of the microbial communities in the sediment came from the corresponding water bodies, while 0.12–10.78% of the sedimentary microorganisms contributed to the aquatic microbial populations, and the microbial contributions depended on the salinity difference between sediment and water. Habitat heterogeneity and salinity variations led to the differences in microbial diversity, community composition, and assembly between sediment and water communities. The assembly of sedimentary communities was mainly controlled by stochastic processes (>59%), whereas the assembly of aquatic communities was mainly controlled by deterministic processes (>88%). Furthermore, sediments had a higher potential for metabolic pathways related to specific biogeochemical functions than lake water. These results provide insights into the survival ability of microorganisms and the mechanisms of microbial community assembly under frequent exchange conditions in saline lakes. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 1507 KiB  
Article
The Identification of Predominant Faecal Contamination Sources in Water Using Host-Specific Genetic Markers in Water-Stressed Rural Communities of Vhembe District Municipality, South Africa
by Mulalo Mudau, Renay Ngobeni-Nyambi and Maggy Ndombo Benteke Momba
Water 2024, 16(23), 3477; https://doi.org/10.3390/w16233477 - 3 Dec 2024
Viewed by 955
Abstract
It is critical to attribute faecal contamination to its original source in order to assess public health risks and implement effective interventions to mitigate future contamination. This study aimed to identify the primary sources of faecal contamination in water using microbial source tracking [...] Read more.
It is critical to attribute faecal contamination to its original source in order to assess public health risks and implement effective interventions to mitigate future contamination. This study aimed to identify the primary sources of faecal contamination in water using microbial source tracking markers in water-stressed rural communities. A total of 1128 water samples were collected sequentially from the main source (river/borehole) to the households. Six host-specific genetic markers were used to detect faecal contamination in the water samples (BacHum and HF183, BacCow, Pig-2-Bac, Cytb and BacCan). Of the 564 water samples tested during the wet season, 37.94% (n = 214) were positive for human and animal-specific Bacteroidales marker genes, while 31.73% (n = 179) of the 564 tested during the dry season were also positive. During the wet season, animal faecal contamination was more prevalent among the positive samples (Cytb: 20.56%, n = 44; BacCan: 19.16%, n = 41). By contrast, human-origin faecal contamination was dominant during the dry season (BacHum: 23.46%, n = 42; HF183: 21.23%, n = 38). Identifying the origin of faecal contamination will assist in implementing targeted intervention strategies for the effective prevention of pathogen transmission in water-stressed rural communities in order to protect public health. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

27 pages, 4071 KiB  
Review
Advances in Emerging Non-Destructive Technologies for Detecting Raw Egg Freshness: A Comprehensive Review
by Elsayed M. Atwa, Shaomin Xu, Ahmed K. Rashwan, Asem M. Abdelshafy, Gamal ElMasry, Salim Al-Rejaie, Haixiang Xu, Hongjian Lin and Jinming Pan
Foods 2024, 13(22), 3563; https://doi.org/10.3390/foods13223563 - 7 Nov 2024
Cited by 4 | Viewed by 3277
Abstract
Eggs are a rich food source of proteins, fats, vitamins, minerals, and other nutrients. However, the egg industry faces some challenges such as microbial invasion due to environmental factors, leading to damage and reduced usability. Therefore, detecting the freshness of raw eggs using [...] Read more.
Eggs are a rich food source of proteins, fats, vitamins, minerals, and other nutrients. However, the egg industry faces some challenges such as microbial invasion due to environmental factors, leading to damage and reduced usability. Therefore, detecting the freshness of raw eggs using various technologies, including traditional and non-destructive methods, can overcome these challenges. As the traditional methods of assessing egg freshness are often subjective and time-consuming, modern non-destructive technologies, including near-infrared (NIR) spectroscopy, Raman spectroscopy, fluorescence spectroscopy, computer vision (color imaging), hyperspectral imaging, electronic noses, and nuclear magnetic resonance, have offered objective and rapid results to address these limitations. The current review summarizes and discusses the recent advances and developments in applying non-destructive technologies for detecting raw egg freshness. Some of these technologies such as NIR spectroscopy, computer vision, and hyperspectral imaging have achieved an accuracy of more than 96% in detecting egg freshness. Therefore, this review provides an overview of the current trends in the state-of-the-art non-destructive technologies recently utilized in detecting the freshness of raw eggs. This review can contribute significantly to the field of emerging technologies in this research track and pique the interests of both food scientists and industry professionals. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop