Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = microbial electrolysis cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2710 KB  
Review
Mapping Hydrogen Research Frontiers: A Multi-Query Bibliometric Analysis of Electrochemical and Biotechnological Pathways
by Michele Mascia, Nicola Melis, Vittoria Maria Iris Piro, Maria Grazia Rubanu, Annalisa Vacca and Laura Mais
Energies 2026, 19(1), 166; https://doi.org/10.3390/en19010166 - 28 Dec 2025
Viewed by 280
Abstract
Hydrogen production technologies are undergoing rapid diversification, driven by the dual imperative of decarbonization and resource circularity. While conventional water electrolysis, particularly PEM and alkaline systems, represents a mature and scalable solution for centralized hydrogen generation, biologically mediated pathways such as microbial electrolysis [...] Read more.
Hydrogen production technologies are undergoing rapid diversification, driven by the dual imperative of decarbonization and resource circularity. While conventional water electrolysis, particularly PEM and alkaline systems, represents a mature and scalable solution for centralized hydrogen generation, biologically mediated pathways such as microbial electrolysis cells (MECs), dark fermentation, and anaerobic digestion are gaining visibility as decentralized, low-energy alternatives. This review presents a bibliometric analysis of hydrogen research from 2021 to 2026, based on three multi-query strategies that retrieved 6017 works in MQ1, 7551 works in MQ2, and 1930 works in MQ3. The year 2026 is included in the dataset because Scopus indexes articles already accepted and released in early access, assigning them their forthcoming official publication year. Keyword co-occurrence mapping using VOSviewer highlights thematic clusters and disciplinary shifts. The results reveal a strong dominance of electrochemical research, with biohydrogen production emerging as a distinct but less mature frontier rooted in biotechnology and environmental science. MECs, in particular, occupy a transitional zone between electrochemical and biological paradigms, offering multifunctional platforms for simultaneous waste valorization and hydrogen generation. However, their low Technology Readiness Levels (TRLs) and unresolved engineering challenges limit their current scalability. The comparative analysis of bibliometric queries underscores the importance of integrating electrochemical and biotechnological approaches to build a resilient and context-adaptive hydrogen economy. This study provides a structured overview of the evolving knowledge landscape and identifies key directions for future interdisciplinary research and innovation. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

11 pages, 1241 KB  
Article
Substrate Composition Shapes Methanogenesis, Microbial Ecology, and Digestate Dewaterability in Microbial Electrolysis Cell-Assisted Anaerobic Digestion of Food Waste
by Jiaojiao Yang, Baihui Cui, Xiaodong Xin, Yves Iradukunda and Wangwang Yan
Methane 2026, 5(1), 2; https://doi.org/10.3390/methane5010002 - 25 Dec 2025
Viewed by 245
Abstract
The compositional heterogeneity of food waste greatly influences its bioconversion in microbial electrolysis cell (MEC)-assisted anaerobic digestion (AD), but the underlying mechanism remains unclear. Therefore, this study assessed two typical food wastes, i.e., starch-rich rice and cellulose-rich vegetables, on methane production, microbial constituents, [...] Read more.
The compositional heterogeneity of food waste greatly influences its bioconversion in microbial electrolysis cell (MEC)-assisted anaerobic digestion (AD), but the underlying mechanism remains unclear. Therefore, this study assessed two typical food wastes, i.e., starch-rich rice and cellulose-rich vegetables, on methane production, microbial constituents, and digestate dewaterability in single-chamber MECs. The results demonstrated that, while the rice-fed MEC (258.56 mL/g VS) achieved a higher methane yield compared to the vegetable-fed MEC (161.79 mL/g VS), the latter achieved higher methane purity. Temporal profiles of volatile fatty acids (VFAs) revealed rapid acidification and consumption in rice-fed systems, whereas vegetable-fed MEC exhibited delayed degradation. Additionally, the substrate type greatly influenced digestate dewaterability, since digestate from the vegetable-fed MEC exhibited lower specific resistance to filtration (3.25 × 1012 m/kg vs. 12.46 × 1012 m/kg) and capillary suction time (8.16 s·L/g vs. 19.14 s·L/g) compared to that from the rice-fed MEC. This improvement was likely attributed to high polysaccharides in extracellular polymeric substances (EPS) and cellulose’s structural properties, which promoted the formation of a porous, less compressible sludge cake that facilitated sludge dewaterability. Microbial community analysis revealed a substrate-driven specialization, as the rice-fed MECs enriched exoelectrogens (e.g., Geobacter, Trichococcus) and hydrogenotrophic methanogens (i.e., Methanobacterium), while the vegetables enriched Bacteroides and Methanosarcina. Collectively, these results suggest substrate composition profoundly influences methane yield, metabolic pathways, microbial ecology, and digestate properties in MEC-assisted AD. This work provides key insights into the role of feedstock characteristics in shaping MEC-assisted AD systems. Full article
(This article belongs to the Special Issue Innovations in Methane Production from Anaerobic Digestion)
Show Figures

Figure 1

32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 545
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

25 pages, 4334 KB  
Article
An AI-Driven TiO2-NiFeC-PEM Microbial Electrolyzer for In Situ Hydrogen Generation from POME Using a ZnO/PVA-EDLOSC Nanocomposite Photovoltaic Panel
by Ataur Rahman Md, Mohamad Qatu, Labib Hasan, Rafia Afroz, Mehdi Ghatus and Sany Ihsan
Nanoenergy Adv. 2025, 5(4), 18; https://doi.org/10.3390/nanoenergyadv5040018 - 26 Nov 2025
Viewed by 402
Abstract
Electrolysis and biological processes, such as fermentation and microbial electrolysis cells, offer efficient hydrogen production alongside wastewater treatment. This study presents a novel microbial electrolyzer (ME) comprising a titanium dioxide (TiO2) anode, a nickel–iron–carbon (NiFeC) cathode, and a cellulose nanocrystal proton [...] Read more.
Electrolysis and biological processes, such as fermentation and microbial electrolysis cells, offer efficient hydrogen production alongside wastewater treatment. This study presents a novel microbial electrolyzer (ME) comprising a titanium dioxide (TiO2) anode, a nickel–iron–carbon (NiFeC) cathode, and a cellulose nanocrystal proton exchange membrane (CNC-PEM) designed to generate hydrogen from palm oil mill effluent (POME). The system is powered by a 12 V electric double-layer organic supercapacitor (EDLOSC) integrated with a ZnO/PVA-based solar thin film. Power delivery to the TiO2-NiFeC-PEM electrolyzer is optimized using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Laboratory-scale pilot tests demonstrated effective degradation of POME’s organic content, achieving a hydrogen yield of approximately 60%. Additionally, the nano-structured ZnO/CuO–ZnO/PVA solar film facilitated stable power supply, enhancing in situ hydrogen production. These results highlight the potential of the EDLOSC-encased ZnO/PVA-powered electrolyzer as a sustainable solution for hydrogen generation and industrial wastewater treatment. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Figure 1

40 pages, 2206 KB  
Review
Technological Approaches for the Capture and Reuse of Biogenic Carbon Dioxide Towards Sustainable Anaerobic Digestion
by Anastasia Theodoropoulou, Dimitra Antonia Bagaki, Maria Gaspari, Panagiotis Kougias, Laura Treu, Stefano Campanaro, Dolores Hidalgo, Rudolphus Antonius Timmers, Maja Berden Zrimec, Robert Reinhardt, Antonio Grimalt-Alemany, Estelle Maria Goonesekera, Irini Angelidaki, Vasileia Vasilaki, Dimitris Malamis, Elli Maria Barampouti and Sofia Mai
Sustainability 2025, 17(22), 10385; https://doi.org/10.3390/su172210385 - 20 Nov 2025
Cited by 1 | Viewed by 1003
Abstract
Anaerobic digestion (AD) produces renewable energy but releases biogenic CO2 and generates digestate requiring management. This paper evaluates four emerging pathways for CO2 capture and reuse in AD systems: (1) in situ CO2 conversion to CH4 via microbial electrolysis [...] Read more.
Anaerobic digestion (AD) produces renewable energy but releases biogenic CO2 and generates digestate requiring management. This paper evaluates four emerging pathways for CO2 capture and reuse in AD systems: (1) in situ CO2 conversion to CH4 via microbial electrolysis cells (MECs), (2) hydrogenotrophic CO2 methanation using green hydrogen, (3) enzymatic CO2 capture coupled with autotrophic algae cultivation, and (4) digestate pyrolysis with syngas biomethanation. Each pathway is assessed in terms of technical feasibility, biocatalyst performance, system configuration, and key implementation challenges. Integrated scenarios demonstrate up to 98% CO2 emission reduction, substantial bioenergy yield improvements, and enhanced nutrient and biomass recovery compared to conventional AD. MEC-based and hydrogenotrophic pathways show the highest energy efficiency, while algae-based systems provide added bioproduct valorization. The remaining limitations include cost, process integration, and scale-up. The study defines development priorities to advance zero-emission AD technologies for the agri-food and waste management sectors. Full article
Show Figures

Figure 1

23 pages, 2194 KB  
Article
Long-Term Evaluation of CNT-Clad Stainless-Steel Cathodes in Multi-Channel Microbial Electrolysis Cells Under Variable Conditions
by Kevin Linowski, Md Zahidul Islam, Luguang Wang, Fei Long, Choongho Yu and Hong Liu
Energies 2025, 18(19), 5241; https://doi.org/10.3390/en18195241 - 2 Oct 2025
Viewed by 736
Abstract
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and [...] Read more.
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and thick layer non-acid-washed CNT (TK-NAW-CNT)—each composed of stainless-steel-supported CNTs coated with molybdenum phosphide (MoP). These were benchmarked against woven carbon cloth (WCC) under varied operational conditions. A custom multi-channel reactor operated for 341 days, testing cathode performance across applied voltages (0.7–1.2 V), buffer types (phosphate vs. bicarbonate), pH (7.0 and 8.5), buffer concentrations (10–200 mM), and substrates including acetate, lactate, and treated acid whey. CNT-based cathodes consistently showed higher current densities than WCC across most conditions with significant difference found at higher applied voltages. TK-NAW-CNT achieved peak current densities of 259 A m−2 at 1.2 V and maintained >41 A m−2 in real-waste conditions with no added buffer. Long-term performance losses were minimal: 4.5% (TN-NAW-CNT), 0.1% (TK-NAW-CNT), 10.8% (AW-CNT), and 6.8% (WCC). CNT cathodes showed improved performance from reduced resistance and greater electrochemical stability, while proton transfer improvements benefited all materials due to buffer type and pH conditions. These results highlight CNT-based cathodes as promising, scalable alternatives to WCC for energy-positive wastewater treatment. Full article
Show Figures

Figure 1

28 pages, 4768 KB  
Article
Biogas and Hydrogen Production from Waste Biomass via Dark Fermentation Evaluating VFAs, COD, and HRT for Process Optimization
by Hoe-Gil Lee and Zachary Dulany
Biomass 2025, 5(3), 57; https://doi.org/10.3390/biomass5030057 - 18 Sep 2025
Cited by 2 | Viewed by 1549
Abstract
Biomass energy transforms waste into biofuels and supports water purification. This study examines enhanced hydrogen production via dark fermentation, tracking volatile fatty acids (VFAs), chemical oxygen demand (COD), carbohydrates, and hydraulic retention time (HRT) to optimize biogas yield and quality. Investigations into acidogenesis [...] Read more.
Biomass energy transforms waste into biofuels and supports water purification. This study examines enhanced hydrogen production via dark fermentation, tracking volatile fatty acids (VFAs), chemical oxygen demand (COD), carbohydrates, and hydraulic retention time (HRT) to optimize biogas yield and quality. Investigations into acidogenesis and acetogenesis explore methods for breaking down long-chain VFAs into short-chain VFAs, which are critical for efficient hydrogen generation. Testing and analysis of VFAs, carbonates, COD, and HRT provide insights into bacterial activity that drives hydrogen production. The main VFAs produced were acetic, propionic, and butyric acids. DF1 and DF2 primarily generated acetic acid, consistent with cheese whey (CW)-based fermentations. DF1.1, using 5× diluted CW and a 30:70 inoculum-to-substrate ratio (I2SR), exhibited elevated butyric acid levels, similar to those observed with food waste. The first dark fermentation process (DF1) initially showed effective carbohydrate metabolism but later experienced spikes in succinic and lactic acids, which reduced hydrogen production. In contrast, the second dark fermentation process (DF2) maintained low lactic acid levels and increased acetate concentrations, indicating improved system performance. DF1.1 also demonstrated stable VFA production and lactic acid reduction. Greater CW dilution, higher initial pH, and increased HRT were key factors in minimizing acidification and enhancing hydrogen-producing pathways. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

36 pages, 2410 KB  
Review
Catalytic Innovations for High-Yield Biohydrogen Production in Integrated Dark Fermentation and Microbial Electrolysis Systems
by Chetan Pandit, Siddhant Srivastava and Chang-Tang Chang
Catalysts 2025, 15(9), 848; https://doi.org/10.3390/catal15090848 - 3 Sep 2025
Cited by 2 | Viewed by 1889
Abstract
Biohydrogen, a low-carbon footprint technology, can play a significant role in decarbonizing the energy system. It uses existing infrastructure, is easily transportable, and produces no greenhouse gas emissions. Four technologies can be used to produce biohydrogen: photosynthetic biohydrogen, dark fermentation (DF), photo-fermentation, and [...] Read more.
Biohydrogen, a low-carbon footprint technology, can play a significant role in decarbonizing the energy system. It uses existing infrastructure, is easily transportable, and produces no greenhouse gas emissions. Four technologies can be used to produce biohydrogen: photosynthetic biohydrogen, dark fermentation (DF), photo-fermentation, and microbial electrolysis cells (MECs). DF produces more biohydrogen and is flexible with organic substrates, making it a sustainable method of waste repurposing. However, low achievable biohydrogen yields are a common issue. To overcome this, catalytic mechanisms, including enzymatic systems such as [Fe-Fe]- and [Ni-Fe]-hydrogenases in DF and electroactive microbial consortia in MECs, alongside advanced electrode catalysts which collectively surmount thermodynamic and kinetic constraints, and the two stage system, such as DF connection to photo-fermentation and anaerobic digestion (AD) to microbial electrolysis cells (MECs), have been investigated. MECs can generate biohydrogen at better yields by using sugars or organic acids, and combining DF and MEC technologies could improve biohydrogen production. As such, this review highlights the challenges and possible solutions for coupling DF–MEC while also offering knowledge regarding the technical and microbiological aspects. Full article
Show Figures

Figure 1

25 pages, 1629 KB  
Review
Biochemical Processes of Lignocellulosic Biomass Conversion
by Stanisław Ledakowicz
Energies 2025, 18(13), 3353; https://doi.org/10.3390/en18133353 - 26 Jun 2025
Cited by 6 | Viewed by 2064
Abstract
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to [...] Read more.
After a brief characterisation of lignocellulosic biomass (LCB) in terms of its biochemical structure and the pretreatment techniques used to disrupt lignin structure and decrystallise and depolymerise cellulose, this review considers five main pathways for biochemical biomass conversion: starting with anaerobic digestion to convert various LCB feedstocks into bioproducts; considering the integration of biochemical and thermochemical processes, syngas fermentation, which has been recently developed for biofuel and chemical production, is reviewed; the production of 2G bioethanol and biobutanol from LCB waste is discussed; the literature on biohydrogen production by dark fermentation, photofermentation, and bioelectrochemical processes using microbial electrolysis cells as well as hybrid biological processes is reviewed. The conclusions and future prospects of integrating biochemical and thermochemical conversion processes of biomass are discussed and emphasised. Full article
Show Figures

Figure 1

36 pages, 1698 KB  
Review
Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies
by Mohamed Shafana Farveen, Raúl Muñoz, Rajnish Narayanan and Octavio García-Depraect
Polymers 2025, 17(13), 1756; https://doi.org/10.3390/polym17131756 - 25 Jun 2025
Cited by 5 | Viewed by 4053
Abstract
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic [...] Read more.
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic conditions requires specific strategies for improvement. Thus, in this review, the anaerobic biodegradability of commonly used bioplastics such as polylactic acid (PLA), polyhydroxybutyrate (PHB), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate (PBS), polycaprolactone (PCL), and starch- and cellulose-based bioplastics are critically evaluated for various operational parameters, including the temperature, particle size, inoculum-to-substrate ratio (ISR) and polymer type. Special attention is given to process optimization strategies, including pretreatment techniques (mechanical, thermal, hydrothermal, chemical and enzymatic) and co-digestion with nutrient-rich organic substrates, such as food waste and sewage sludge. The combinations of these strategies used for improving hydrolysis kinetics, increasing the methane yield and stabilizing reactor performance are described. In addition, new technologies, such as hydrothermal pretreatment and microbial electrolysis cell-assisted AD, are also considered as prospective strategies for reducing the recalcitrant nature of some bioplastics. While various strategies have enhanced anaerobic degradability, a consistent performance across bioplastic types and operational settings remains a challenge. By integrating key recent findings and limitations alongside pretreatment and co-digestion strategies, this review offers new insights to facilitate the circular use of bioplastics in solid waste management systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

23 pages, 697 KB  
Review
Bioaugmentation with Electroactive Microbes—A Promising Strategy for Improving Process Performances of Microbial Electrochemical Technologies
by Riku Fujikawa, Manami Hagiwara, Keisuke Tomita and Kazuya Watanabe
Energies 2025, 18(12), 3164; https://doi.org/10.3390/en18123164 - 16 Jun 2025
Cited by 2 | Viewed by 1359
Abstract
Microbial electrochemical technologies (METs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), show promise for sustainable energy generation from biomass waste and wastewater. However, further work is necessary for their practical use. In particular, it has been argued that process [...] Read more.
Microbial electrochemical technologies (METs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), show promise for sustainable energy generation from biomass waste and wastewater. However, further work is necessary for their practical use. In particular, it has been argued that process performances, such as those for organics removal and energy generation, should be substantially improved to catch up with those of existing processes, such as anaerobic digesters. Recent work has reported that bioaugmentation (BA) with electroactive microbes (EAMs) can significantly improve the performance of MFCs and MECs, while previous reports have also documented BA cases with limited impacts. In this article, after summarizing EAMs that have been isolated and characterized as possible BA agents, we comparatively analyze past BA trials for MET processes. Based on the information thus obtained, key factors that should be considered for successful BA are suggested. Full article
(This article belongs to the Special Issue Microbial Fuel Cells, 3rd Edition)
Show Figures

Figure 1

20 pages, 1982 KB  
Article
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
by Ana Baía, Alonso I. Arroyo-Escoto, Nuno Ramos, Bilel Abdelkarim, Marta Pereira, Maria C. Fernandes, Yifeng Zhang and Annabel Fernandes
Energies 2025, 18(12), 3043; https://doi.org/10.3390/en18123043 - 9 Jun 2025
Cited by 1 | Viewed by 1613
Abstract
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development, [...] Read more.
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development, the MEC system was progressively adapted to winery wastewater, enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v), the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L−1 d−1, with an average current density of (60 ± 4) A m−3, and COD removal efficiency exceeding 55%, highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)%, respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development, correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen, supporting circular resource management strategies. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Hydrogen Evolution)
Show Figures

Figure 1

13 pages, 3220 KB  
Article
CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells
by Gao Lei, Yaoqiang Wang, Gang Xiao and Haijia Su
Catalysts 2025, 15(5), 439; https://doi.org/10.3390/catal15050439 - 30 Apr 2025
Cited by 4 | Viewed by 1487
Abstract
Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To [...] Read more.
Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

18 pages, 3824 KB  
Article
Effect of Applied Voltages on Corn Stover Biomethanation and Microbial Community Characteristics in a Microbial Electrolytic Cell-Assisted Anaerobic Digestion System
by Qing Zhao, Hairong Yuan and Xiujin Li
Processes 2025, 13(5), 1271; https://doi.org/10.3390/pr13051271 - 22 Apr 2025
Cited by 1 | Viewed by 802
Abstract
This study aims to investigate the effect of different applied voltages on the biomethanation performance and microbial community characteristics of corn stover (CS) in a microbial electrolysis cell (MEC)-assisted anaerobic digestion (AD) system (MEC-AD). The results showed that the MEC-AD system operating at [...] Read more.
This study aims to investigate the effect of different applied voltages on the biomethanation performance and microbial community characteristics of corn stover (CS) in a microbial electrolysis cell (MEC)-assisted anaerobic digestion (AD) system (MEC-AD). The results showed that the MEC-AD system operating at 0.8 V achieved the highest methane yield of 192.40 mL CH4/g VS (volatile solids), an increase of 14.98% compared to the conventional AD. The system obtained methane yields of 187.74 to 191.18 mL CH4/g VS at lower voltages (0.4 V and 0.6 V), and 156.11–182.75 mL CH4/g VS at higher voltages (1.0 V and 1.2 V), respectively, suggesting that lower or higher voltages would have adversely impacted the methane yield. Correspondingly, the MEC-AD system operating at 0.4–0.8 V achieved over 71.47% conversion rates of total solids (TS), VS, and cellulose. The microbial community analysis revealed that 0.8 V optimally enriched fermentative acidogenic bacteria (FABs, 24.55%) and electroactive bacteria (13.50%), enhancing both hydrolysis acidification efficiency and direct interspecies electron transfer (DIET). Both Methanosarcina and Methanoculleus demonstrated significant positive correlations with FABs, SOBs, and electroactive bacteria. This study reveals that 0.8 V represents the optimal operating voltage for biomethane production in MEC-AD systems, providing critical insights for agricultural waste valorization. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

67 pages, 14319 KB  
Review
Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review
by Ajitanshu Vedrtnam, Kishor Kalauni and Rahul Pahwa
Eng 2025, 6(4), 81; https://doi.org/10.3390/eng6040081 - 21 Apr 2025
Cited by 18 | Viewed by 14961
Abstract
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive [...] Read more.
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive evaluation of water electrolysis technologies, including alkaline (AWE), proton exchange membrane (PEMWE), solid oxide (SOEC), anion exchange membrane (AEMWE), and microbial electrolysis cells (MEC). It critically examines their material systems, catalytic strategies, operational characteristics, and recent performance advances. In addition to reviewing experimental progress, the study presents a finite element modeling (FEM) case study that evaluates thermal and mechanical responses in PEM and AWE configurations—illustrating how FEM supports design optimization and performance prediction. To broaden methodological insight, other simulation frameworks such as computational fluid dynamics (CFD), response surface methodology (RSM), and system-level modeling (e.g., Aspen Plus®) are also discussed based on their use in recent literature. These are reviewed to guide future integration of multi-scale and multi-physics approaches in electrolyzer research. By bridging practical design, numerical simulation, and material science perspectives, this work provides a resource for researchers and engineers advancing next-generation hydrogen production systems. Full article
Show Figures

Graphical abstract

Back to TopTop