Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies
Abstract
1. Introduction
2. How Compatible Are Bioplastics with AD?
2.1. Polylactic Acid (PLA)
2.2. Polyhydroxy Butyrate (PHB)
2.3. Polybutylene Adipate Terephthalate (PBAT)
2.4. Poly(Ɛ-Caprolactone) (PCL)
2.5. Polybutylene Succinate (PBS)
2.6. Starch-Based Bioplastics
2.7. Cellulose-Based Bioplastics
3. Enhancement Strategies
3.1. Pretreatment Techniques
3.1.1. Physical Treatment
3.1.2. Chemical Treatment
3.1.3. Physicochemical Treatment
3.1.4. Enzymatic Treatment
3.2. Co-Digestion
3.2.1. Selection of Co-Substrates
- (i)
- Food Waste: Numerous studies have demonstrated the synergistic effects of co-digesting bioplastics with food waste. Yu et al. (2023) observed a 28.4% increase in CMP when co-digesting PBAT/PLA/starch bioplastics with food waste under thermophilic conditions, along with improved bioplastic conversion efficiencies ranging from 9.11 to 11.2% [22]. Similarly, Hobbs et al. (2019) reported enhanced methane production and PLA degradation when co-digested with food waste, particularly when combined with alkaline pretreatment [86]. Kang et al. (2022) further corroborated these findings by demonstrating methane yield improvements of 8.5–26.6% for PLA and 12.7–25.5% for PHA during co-digestion with food waste compared to mono-digestion [108]. Additionally, pilot-scale experiments by Maragkaki et al. (2023) confirmed the feasibility of integrating bioplastics like PLA derived from food waste into existing digester systems, reporting an 8% increase in biomethane production without operational disruptions, signifying the potential for seamless integration [109]. These findings highlight the effectiveness of food waste as a co-substrate, suggesting that co-digestion not only optimizes biogas production but also enhances bioplastic degradation by supplying readily accessible nutrients, stimulating microbial proliferation, and inducing the production of hydrolytic enzymes involved in polymer breakdown.
- (ii)
- Sewage Sludge: Another common nutrient-rich co-substrate, high in nitrogen and phosphorus, has emerged as a highly effective co-substrate for enhancing bioplastic degradation in AD systems. Its favorable nutrient profile, inherent buffering capacity, and abundance make it a suitable complement to carbon-rich bioplastics that often lack essential macronutrients for microbial metabolism [23]. A study by Akimoto et al. (2024) demonstrated that co-digesting sewage sludge with PLA hydrolysate resulted in a methane yield of 414 L/kg COD added, highlighting the stable conversion potential of bioplastic components in the presence of sludge [54]. Similarly, Cazaudehore et al. (2023) explored the co-digestion of PLA or PHB with biowastes, reporting not only increased reactor stability but also an improved bioplastic degradation efficiency. Notably, they observed a remarkable 103% conversion of PHB to methane, while pretreated PLA achieved a 77.5% conversion rate, suggesting the potential for near-complete bioplastic degradation under optimized co-digestion conditions [110]. Further insights were provided by García-Depraect et al. (2024) [21], who evaluated PHBH co-digestion (20% VS basis) with various substrates, including municipal sludge, food waste, or swine manure; this showed promising results, with methane yields comparable to or slightly higher than those of organic wastes alone. In the case of municipal sludge, the addition of PHBH increased the methane production by around 16%. These findings highlight the potential for integrating PHBH bioplastics into existing waste management systems, offering the dual benefit of bioplastic disposal and enhanced biogas production. However, the study also emphasized that bioplastic degradability varied significantly with the type of co-substrate and inoculum used. Complementing these findings, Shafana Farveen et al. (2025) evaluated the co-digestion of PHBH with sewage sludge under batch and semi-batch conditions, reporting a stable volumetric methane production rate of 281.17 ± 22.48 NmL CH4/L-d during continuous PHBH feeding over 93 days [111]. Additional support for sewage sludge as an effective co-substrate comes from Pangallo et al. (2023) [23], who combined it with the organic fraction of municipal solid waste (OFMSW) and Mater-Bi bioplastics. Their results showed a near doubling of the methane yield and a significantly improved process stability compared to mono-digestion. These findings suggest that sewage sludge not only enhances degradation through nutrient supplementation but also favors the establishment of the syntrophic bacterial–archaea consortia essential for polymer breakdown, VFA conversion, and methanogenesis [105]. These studies collectively underscore the effectiveness of sewage sludge as a co-substrate, particularly in the co-digestion of PHBH, PLA, and PHB. The consistent improvements in methane yield, reactor stability, and bioplastic conversion highlight its suitability for integration into existing municipal and industrial AD infrastructure.
3.2.2. Optimization of Key Parameter
- (i)
- The inoculum-to-substrate ratio (ISR) represents the mass ratio of active microbial biomass to total substrate, directly influencing the biokinetic balance between nutrient availability and microbial activity within the digester. The theoretical basis for ISR optimization stems from Monod kinetics, where the microbial growth rate depends on both the substrate concentration and biomass concentration [114]. Yu et al. (2023) [46] investigated the influence of ISR on methane production during the co-digestion of bioplastic bags with food waste, identifying that a 30% bioplastic-to-food waste ratio (by weight) is optimal for achieving peak methane production. This finding suggests that a balanced ratio between the carbon-rich bioplastics and the nutrient-rich food waste creates a favorable environment for microbial populations to achieve robust hydrolysis and minimize acid accumulation. A suboptimal ISR may lead to process acidification, leading to reduced methanogenic efficiency.
- (ii)
- The organic loading rate (OLR) determines the amount of organic matter fed into the digester per unit of digester volume per unit of time. Maintaining an appropriate OLR is crucial to prevent the digester from being overloaded, acid accumulation, and microbial inhibition. The optimization of OLR depends on the balancing of substrate addition with the microbial capacity to degrade it, following the first-order kinetics [115]. In a co-digestion study involving sewage sludge, OFMSW, and bioplastics, Pangallo et al. (2023) successfully increased the OLR from 1 g VS/L-d to 2 g VS/L-d without compromising the methane output. This demonstrated that, with an appropriate balance, adequate buffering, and microbial acclimation, well-managed co-digestion systems can handle higher organic loads, enhancing biogas productivity [23].
- (iii)
- Temperature is a key factor influencing microbial metabolism and bioplastic degradation rates. Comparative studies have shown that thermophilic digestion (~55 °C) often outperforms mesophilic conditions (~37 °C) in terms of methane yield. Nachod et al. (2021) reported that PHBV treatments under thermophilic conditions produced 271 mL CH4/g VS over 104 days, outperforming mesophilic setups [41]. Similarly, Yu et al. (2023) found that thermophilic digestion reduced the lag phase for methane production [46]. While thermophilic conditions often lead to higher yields, the ideal temperature can be influenced by the specific polymer type (Figure 3).
- (iv)
- Maintaining pH within the optimal range of 6.5–8.0 is critical for stable AD. Deviations outside this range can inhibit methanogens, especially during bioplastic degradation, which may release acidic intermediates. Cioabla et al. (2012) emphasized the importance of continuous pH monitoring and buffering, particularly as certain bioplastics can lead to the accumulation of acidic degradation products (VFAs) that can negatively impact the process [116,117].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
ISR | Inoculum-to-substrate ratio |
PLA | Polylactic acid |
PHB | Polyhydroxy butyrate |
PBAT | Polybutylene adipate-co-terephthalate |
PBS | Polybutylene succinate |
PCL | Polycaprolactone |
CMP | Cumulative methane production |
VS | Volatile solids |
PHBV | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) |
VFAs | Volatile fatty acids |
BMP | Biochemical methane potential |
COD | Chemical oxygen demand |
ThOD | Theoretical oxygen demand |
References
- Williams, A.T.; Rangel-Buitrago, N. The Past, Present, and Future of Plastic Pollution. Mar. Pollut. Bull. 2022, 176, 113429. [Google Scholar] [CrossRef] [PubMed]
- Salhofer, S.; Jandric, A.; Soudachanh, S.; Le Xuan, T.; Tran, T.D. Plastic Recycling Practices in Vietnam and Related Hazards for Health and the Environment. Int. J. Environ. Res. Public Health 2021, 18, 4203. [Google Scholar] [CrossRef] [PubMed]
- Dokl, M.; Copot, A.; Krajnc, D.; Van Fan, Y.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Global Projections of Plastic Use, End-of-Life Fate and Potential Changes in Consumption, Reduction, Recycling and Replacement with Bioplastics to 2050. Sustain. Prod. Consum. 2024, 51, 498–518. [Google Scholar] [CrossRef]
- Ganguly, R.K.; Chakraborty, S.K. Plastic Waste Management during and Post Covid19 Pandemic: Challenges and Strategies towards Circular Economy. Heliyon 2024, 10, e25613. [Google Scholar] [CrossRef]
- Gu, J.-D. Biodegradability of Plastics: The Issues, Recent Advances, and Future Perspectives. Environ. Sci. Pollut. Res. Int. 2021, 28, 1278–1282. [Google Scholar] [CrossRef]
- Lauer, N.E.; Nowlin, M.B. A Framework for Inland Cities to Prevent Marine Debris: A Case Study from Durham, North Carolina. Front. Mar. Sci. 2022, 9, 983256. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagnani, M.; Mezzenga, R. Sustainable Bioplastics from Amyloid Fibril-Biodegradable Polymer Blends. ACS Sustain. Chem. Eng. 2021, 9, 11916–11926. [Google Scholar] [CrossRef]
- Muthusamy, M.S.; Pramasivam, S. Bioplastics--an Eco-Friendly Alternative to Petrochemical Plastics. Curr. World Environ. 2019, 14, 49. [Google Scholar] [CrossRef]
- Lomwongsopon, P.; Varrone, C. Contribution of Fermentation Technology to Building Blocks for Renewable Plastics. Fermentation 2022, 8, 47. [Google Scholar] [CrossRef]
- Escobar, N.; Haddad, S.; Börner, J.; Britz, W. Land Use Mediated GHG Emissions and Spillovers from Increased Consumption of Bioplastics. Environ. Res. Lett. 2018, 13, 125005. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Vargas-Estrada, L.; García-Depraect, O.; Zimmer, J.; Muñoz, R. Analysis of Biological Treatment Technologies, Their Present Infrastructures and Suitability for Biodegradable Food Packaging–A Review. J. Environ. Manag. 2025, 376, 124395. [Google Scholar] [CrossRef] [PubMed]
- García-Depraect, O.; Bordel, S.; Lebrero, R.; Santos-Beneit, F.; Börner, R.A.; Börner, T.; Muñoz, R. Inspired by Nature: Microbial Production, Degradation and Valorization of Biodegradable Bioplastics for Life-Cycle-Engineered Products. Biotechnol. Adv. 2021, 53, 107772. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Park, H.; Choi, O.; Sang, B.-I. Anaerobic Co-Digestion of Bioplastics as a Sustainable Mode of Waste Management with Improved Energy Production—A Review. Bioresour. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; Hernández-Berriel, M.D.C.; Mañón-Salas, M.D.C.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Vasmara, C.; Greuet, P.; Gastaldi, E.; Marchetti, R.; Leonardi, F.; Turon, R.; Monlau, F. Impact of Mechanical and Thermo-Chemical Pretreatments to Enhance Anaerobic Digestion of Poly(lactic Acid). Chemosphere 2022, 297, 133986. [Google Scholar] [CrossRef]
- Im, S.; Hwang, I.; Weonjae, K.; Kim, D.-H.; Kang, J.-H.; Kang, S. Enhancing Methane Production Potential of Biodegradable Plastics by Hydrothermal Pretreatment. Environ. Technol. Innov. 2024, 34, 103599. [Google Scholar] [CrossRef]
- Ferrentino, R.; Marchelli, F.; Bevilacqua, A.; Fiori, L.; Andreottola, G. Hydrothermal Pre-Treatments Can Make PLA and PBS Bioplastics Suitable for Anaerobic Digestion. J. Environ. Chem. Eng. 2025, 13, 116204. [Google Scholar] [CrossRef]
- Zaborowska, M.; Bernat, K.; Pszczółkowski, B.; Kulikowska, D.; Wojnowska-Baryła, I. Assessment of Biodegradability of Cellulose and Poly(butylene Succinate)-Based Bioplastics under Mesophilic and Thermophilic Anaerobic Digestion with a View towards Biorecycling. Waste Manag. 2023, 168, 413–422. [Google Scholar] [CrossRef]
- Ferdeș, M.; Dincă, M.N.; Moiceanu, G.; Zăbavă, B.Ș.; Paraschiv, G. Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review. Sustain. Sci. Pract. Policy 2020, 12, 7205. [Google Scholar] [CrossRef]
- García-Depraect, O.; Martínez-Mendoza, L.J.; Aragão Börner, R.; Zimmer, J.; Muñoz, R. Biomethanization of Rigid Packaging Made Entirely of poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate): Mono- and Co-Digestion Tests and Microbial Insights. Bioresour. Technol. 2024, 408, 131180. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Dongsu, B.; Tao, Z.; Xintong, J.; Ming, C.; Siqi, W.; Zheng, S.; Yalei, Z. Anaerobic Co-Digestion of Three Commercial Bio-Plastic Bags with Food Waste: Effects on Methane Production and Microbial Community Structure. Sci. Total Environ. 2023, 859, 159967. [Google Scholar] [CrossRef] [PubMed]
- Pangallo, D.; Gelsomino, A.; Fazzino, F.; Pedullà, A.; Calabrò, P.S. The Fate of Biodegradable Plastic during the Anaerobic Co-Digestion of Excess Sludge and Organic Fraction of Municipal Solid Waste. Waste Manag. 2023, 168, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Zhang, W.; Heaven, S.; Banks, C.J. Degradation of Some EN13432 Compliant Plastics in Simulated Mesophilic Anaerobic Digestion of Food Waste. Polym. Degrad. Stab. 2018, 147, 76–88. [Google Scholar] [CrossRef]
- Cucina, M.; Carlet, L.; De Nisi, P.; Somensi, C.A.; Giordano, A.; Adani, F. Degradation of Biodegradable Bioplastics under Thermophilic Anaerobic Digestion: A Full-Scale Approach. J. Clean. Prod. 2022, 368, 133232. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Monlau, F.; Gassie, C.; Lallement, A.; Guyoneaud, R. Active Microbial Communities during Biodegradation of Biodegradable Plastics by Mesophilic and Thermophilic Anaerobic Digestion. J. Hazard. Mater. 2023, 443, 130208. [Google Scholar] [CrossRef]
- Jin, Y.; Cai, F.; Song, C.; Liu, G.; Chen, C. Degradation of Biodegradable Plastics by Anaerobic Digestion: Morphological, Micro-Structural Changes and Microbial Community Dynamics. Sci. Total Environ. 2022, 834, 155167. [Google Scholar] [CrossRef]
- Gadaleta, G.; De Gisi, S.; Picuno, C.; Heerenklage, J.; Kuchta, K.; Sorrentino, A.; Notarnicola, M.; Oliviero, M. Assessment of Methane Production, Disintegration, and Biodegradation Potential of Bioplastic Waste in Anaerobic Digestion Systems. J. Environ. Chem. Eng. 2024, 12, 111658. [Google Scholar] [CrossRef]
- Itävaara, M.; Karjomaa, S.; Selin, J.-F. Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions. Chemosphere 2002, 46, 879–885. [Google Scholar] [CrossRef]
- Hegde, S.; Diaz, C.A.; Dell, E.M.; Trabold, T.A.; Lewis, C.L. Investigation of process parameters on the anaerobic digestion of a poly(hydroxyalkonate) film. Eur. Polym. J. 2021, 148, 110349. [Google Scholar] [CrossRef]
- Kolstad, J.J.; Vink, E.T.H.; De Wilde, B.; Debeer, L. Assessment of Anaerobic Degradation of IngeoTM Polylactides under Accelerated Landfill Conditions. Polym. Degrad. Stab. 2012, 97, 1131–1141. [Google Scholar] [CrossRef]
- Lyu, S.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.F.; Welt, B.A.; Teixeira, A.; Pullammanappallil, P.; Balaban, M.; Beatty, C. Biodegradation of Treated Polylactic Acid (PLA) under Anaerobic Conditions. Trans. ASABE 2009, 52, 1025–1030. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Thermophilic Anaerobic Biodegradation Test and Analysis of Eubacteria Involved in Anaerobic Biodegradation of Four Specified Biodegradable Polyesters. Polym. Degrad. Stab. 2013, 98, 1182–1187. [Google Scholar] [CrossRef]
- Benn, N.; Zitomer, D. Pretreatment and Anaerobic Co-Digestion of Selected PHB and PLA Bioplastics. Front. Environ. Sci. Eng. China 2018, 5, 93. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Babu Padamati, R.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Bordel, S.; Santos-Beneit, F.; Martínez-Mendoza, L.J.; Aragão Börner, R.; Börner, T.; Muñoz, R. Biodegradation of Bioplastics under Aerobic and Anaerobic Aqueous Conditions: Kinetics, Carbon Fate and Particle Size Effect. Bioresour. Technol. 2022, 344, 126265. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Lallement, A.; Gassie, C.; Monlau, F. Biochemical Methane Potential and Active Microbial Communities during Anaerobic Digestion of Biodegradable Plastics at Different Inoculum-Substrate Ratios. J. Environ. Manag. 2022, 324, 116369. [Google Scholar] [CrossRef]
- Jubinville, D.; Awad, M.; Lee, H.-S.; Mekonnen, T.H. Effect of Compatibilizers on the Physico-Mechanical Properties of a Poly(lactic Acid)/ Poly(butylene Adipate-Co-Terephthalate) Matrix with Rice Straw Micro-Particle Fillers. J. Polym. Environ. 2024, 32, 5857–5872. [Google Scholar] [CrossRef]
- Nachod, B.; Keller, E.; Hassanein, A.; Lansing, S. Assessment of Petroleum-Based Plastic and Bioplastics Degradation Using Anaerobic Digestion. Sustain. Sci. Pract. Policy 2021, 13, 13295. [Google Scholar] [CrossRef]
- Svoboda, P.; Dvorackova, M.; Svobodova, D. Influence of Biodegradation on Crystallization of Poly (butylene Adipate-Co-Terephthalate). Polym. Adv. Technol. 2019, 30, 552–562. [Google Scholar] [CrossRef]
- Lee, E.S.; Park, S.Y.; Kim, C.G. Comparison of Anaerobic Digestion of Starch- and Petro-Based Bioplastic under Hydrogen-Rich Conditions. Waste Manag. 2024, 175, 133–145. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Z.; Shu, Y.; Lü, F.; Zhang, H.; Shao, L.; He, P. Fate of a Biobased Polymer via High-Solid Anaerobic Co-Digestion with Food Waste and Following Aerobic Treatment: Insights on Changes of Polymer Physicochemical Properties and the Role of Microbial and Fungal Communities. Bioresour. Technol. 2022, 343, 126079. [Google Scholar] [CrossRef]
- Peng, W.; Nie, R.; Lü, F.; Zhang, H.; He, P. Biodegradability of PBAT/PLA Coated Paper and Bioplastic Bags under Anaerobic Digestion. Waste Manag. 2024, 174, 218–228. [Google Scholar] [CrossRef]
- Yu, C.; Dongsu, B.; Tao, Z.; Zhe, K.; Xintong, J.; Siqi, W.; Ming, C.; Zheng, S.; Yalei, Z. Anaerobic Co-Digestion of PBAT/PLA/starch Commercial Bio-Plastic Bags with Food Waste: Effects on Methane Production and Microbial Community Structure. Biochem. Eng. J. 2023, 199, 109072. [Google Scholar] [CrossRef]
- Álvarez-Méndez, S.J.; Ramos-Suárez, J.L.; Ritter, A.; Mata González, J.; Camacho Pérez, Á. Anaerobic Digestion of Commercial PLA and PBAT Biodegradable Plastic Bags: Potential Biogas Production and 1H NMR and ATR-FTIR Assessed Biodegradation. Heliyon 2023, 9, e16691. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Rechsteiner, D.; Roduner, N.; Perz, V.; Ribitsch, D.; Guebitz, G.M.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environ. Sci. Technol. 2017, 51, 7476–7485. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, K.; Zhao, J.; Lin, C.; Zhang, H.; Chen, L.; Chen, J.; Fang, Y. Degradation of Poly(butylene Adipate-Co-Terephthalate) Films by Thermobifida Fusca FXJ-1 Isolated from Compost. J. Hazard. Mater. 2023, 441, 129958. [Google Scholar] [CrossRef]
- Poulsen, J.S.; Trueba-Santiso, A.; Lema, J.M.; Echers, S.G.; Wimmer, R.; Nielsen, J.L. Assessing Labelled Carbon Assimilation from Poly Butylene Adipate-Co-Terephthalate (PBAT) Monomers during Thermophilic Anaerobic Digestion. Bioresour. Technol. 2023, 385, 129430. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef] [PubMed]
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of Poly(butylene Succinate) Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method. Int. J. Mol. Sci. 2009, 10, 4267–4283. [Google Scholar] [CrossRef] [PubMed]
- Dvorackova, M.; Svoboda, P.; Kostka, L.; Pekarova, S. Influence of Biodegradation in Thermophilic Anaerobic Aqueous Conditions on Crystallization of Poly(butylene Succinate). Polym. Test. 2015, 47, 59–70. [Google Scholar] [CrossRef]
- Akimoto, S.; Tsubota, J.; Hidaka, T.; Fujiwara, T. Continuous Co-Digestion of Sewage Sludge and Highly Concentrated Waste Bioplastic Hydrolyzate without Shortening Hydraulic Retention Time. Waste Manag. Bull. 2024, 2, 199–207. [Google Scholar] [CrossRef]
- Cucina, M.; De Nisi, P.; Trombino, L.; Tambone, F.; Adani, F. Degradation of Bioplastics in Organic Waste by Mesophilic Anaerobic Digestion, Composting and Soil Incubation. Waste Manag. 2021, 134, 67–77. [Google Scholar] [CrossRef]
- Ruggero, F.; Gori, R.; Lubello, C. Methodologies to Assess Biodegradation of Bioplastics during Aerobic Composting and Anaerobic Digestion: A Review. Waste Manag. Res. 2019, 37, 959–975. [Google Scholar] [CrossRef]
- Sorino, D.; Bartolucci, L.; Cordiner, S.; Costa, G.; Lombardi, F.; Mulone, V. Numerical Framework for Anaerobic Digestion And/or Composting of Bioplastics and Organic Waste Performance Evaluation under Real-like Large Scale Operating Conditions. Sustain. Chem. Pharm. 2024, 37, 101418. [Google Scholar] [CrossRef]
- Paola Bracciale, M.; De Gioannis, G.; Falzarano, M.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Sarasini, F.; Tirillò, J.; Zonfa, T. Disposable Mater-Bi® Bioplastic Tableware: Characterization and Assessment of Anaerobic Biodegradability. Fuel 2024, 355, 129361. [Google Scholar] [CrossRef]
- Kosheleva, A.; Gadaleta, G.; De Gisi, S.; Heerenklage, J.; Picuno, C.; Notarnicola, M.; Kuchta, K.; Sorrentino, A. Co-Digestion of Food Waste and Cellulose-Based Bioplastic: From Batch to Semi-Continuous Scale Investigation. Waste Manag. 2023, 156, 272–281. [Google Scholar] [CrossRef]
- Gadaleta, G.; Ferrara, C.; De Gisi, S.; Notarnicola, M.; De Feo, G. Life Cycle Assessment of End-of-Life Options for Cellulose-Based Bioplastics When Introduced into a Municipal Solid Waste Management System. Sci. Total Environ. 2023, 871, 161958. [Google Scholar] [CrossRef]
- Calabro’, P.S.; Folino, A.; Fazzino, F.; Komilis, D. Preliminary Evaluation of the Anaerobic Biodegradability of Three Biobased Materials Used for the Production of Disposable Plastics. J. Hazard. Mater. 2020, 390, 121653. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics: Missing Link in the Era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef] [PubMed]
- Bátori, V.; Åkesson, D.; Zamani, A.; Taherzadeh, M.J.; Sárvári Horváth, I. Anaerobic Degradation of Bioplastics: A Review. Waste Manag. 2018, 80, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustain. Sci. Pract. Policy 2020, 12, 6030. [Google Scholar] [CrossRef]
- Ciuffi, B.; Fratini, E.; Rosi, L. Plastic Pretreatment: The Key for Efficient Enzymatic and Biodegradation Processes. Polym. Degrad. Stab. 2024, 222, 110698. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, S.; Zhao, Z.; Kang, X.; Ju, F. Microbiome Dynamics during Anaerobic Digestion of Food Waste and the Genetic Potential for Poly (lactic Acid) Co-Digestion. Chem. Eng. J. 2023, 473, 145194. [Google Scholar] [CrossRef]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’Connor, K.E. Recent Advances in Bioplastics: Application and Biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef]
- Angelini, S.; Gallipoli, A.; Montecchio, D.; Angelini, F.; Gianico, A.; Sbicego, M.; Braguglia, C.M. The Strategic Role of a Mild Hydrothermal Pretreatment in Enhancing Anaerobic Degradation of Commercial Bio-Based Compostable Plastics Associated to Food Waste. J. Environ. Manag. 2025, 381, 125332. [Google Scholar] [CrossRef]
- Shao, H.; Yu, M.; Zhao, L.; Wang, P.; Meng, X.; Ren, L. Impact of Hydrothermal Pretreatment on Enhancing Anaerobic Co-Digestion of Food Waste and Biodegradable Plastics. J. Environ. Chem. Eng. 2025, 13, 115205. [Google Scholar] [CrossRef]
- Cucina, M.; De Nisi, P.; Adani, F. Thermo-Alkaline Pre-Treatment Operated by Digestate Improved Biomethane Production of Bioplastic. Bioresour. Technol. Rep. 2023, 21, 101374. [Google Scholar] [CrossRef]
- Liu, W.; Abrha, H.; Dai, Y.; Li, J.; Liu, M.; Maryam, B.; Jiao, S.; Zhang, P.; Liu, X. Microbial Electrolysis Cell Assisted Anaerobic Digestion System Boosted the Methane Production from Polylactic Acid by Optimizing the Methanogenesis Pathway. Biochem. Eng. J. 2023, 200, 109105. [Google Scholar] [CrossRef]
- Ryan, C.A.; Billington, S.L.; Criddle, C.S. Assessment of Models for Anaerobic Biodegradation of a Model Bioplastic: Poly(hydroxybutyrate-Co-Hydroxyvalerate). Bioresour. Technol. 2017, 227, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Mayer-Laigle, C.; Solhy, A.; Arancon, R.A.D.; de Vries, H.; Luque, R. Mechanical Pretreatments of Lignocellulosic Biomass: Towards Facile and Environmentally Sound Technologies for Biofuels Production. RSC Adv. 2014, 4, 48109–48127. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, L.; Ma, J.; Zhu, K.; Chen, C.; Li, A. Enhanced Biomethanization of Waste Polylactic Acid Plastic by Mild Hydrothermal Pretreatment: Taguchi Orthogonal Optimization and Kinetics Modeling. Waste Manag. 2021, 126, 585–596. [Google Scholar] [CrossRef]
- Elfehri Borchani, K.; Carrot, C.; Jaziri, M. Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical and Thermal Properties. Compos. Part A Appl. Sci. Manuf. 2015, 78, 371–379. [Google Scholar] [CrossRef]
- Papa, G.; Cucina, M.; Echchouki, K.; De Nisi, P.; Adani, F. Anaerobic Digestion of Organic Waste Allows Recovering Energy and Enhancing the Subsequent Bioplastic Degradation in Soil. Resour. Conserv. Recycl. 2023, 188, 106694. [Google Scholar] [CrossRef]
- Marchelli, F.; Mattonai, M.; Ferrentino, R.; La Nasa, J.; Pecorelli, N.; Modugno, F.; Andreottola, G.; Ribechini, E.; Fiori, L. Fostering Bioplastics Circularity through Hydrothermal Treatments: Degradation Behavior and Products. ACS Sustain. Chem. Eng. 2024, 12, 9257–9267. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Xiao, B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-Chamber Membrane-Free Microbial Electrolysis Cells. Int. J. Hydrogen Energy 2013, 38, 1342–1347. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing Syntrophic Metabolism in up-Flow Anaerobic Sludge Blanket Reactors with Conductive Carbon Materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Effect of Substrate Pretreatment on Biogas Production through Anaerobic Digestion of Food Waste. Int. J. Hydrogen Energy 2017, 42, 26522–26528. [Google Scholar] [CrossRef]
- Yue, L.; Cheng, J.; Tang, S.; An, X.; Hua, J.; Dong, H.; Zhou, J. Ultrasound and Microwave Pretreatments Promote Methane Production Potential and Energy Conversion during Anaerobic Digestion of Lipid and Food Wastes. Energy 2021, 228, 120525. [Google Scholar] [CrossRef]
- Yadav, B.; Pandey, A.; Kumar, L.R.; Tyagi, R.D. Bioconversion of Waste (water)/residues to Bioplastics- A Circular Bioeconomy Approach. Bioresour. Technol. 2020, 298, 122584. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Frison, N.; Bolzonella, D. Can Bioplastics Be Treated in Conventional Anaerobic Digesters for Food Waste Treatment? Environ. Technol. Innov. 2021, 22, 101393. [Google Scholar] [CrossRef]
- García-Depraect, O.; Lebrero, R.; Martínez-Mendoza, L.J.; Rodriguez-Vega, S.; Aragão Börner, R.; Börner, T.; Muñoz, R. Enhancement of Biogas Production Rate from Bioplastics by Alkaline Pretreatment. Waste Manag. 2023, 164, 154–161. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, X.; Song, C.; Cai, F.; Liu, G.; Chen, C. Understanding the Mechanism of Enhanced Anaerobic Biodegradation of Biodegradable Plastics after Alkaline Pretreatment. Sci. Total Environ. 2023, 873, 162324. [Google Scholar] [CrossRef]
- Hobbs, S.R.; Parameswaran, P.; Astmann, B.; Devkota, J.P.; Landis, A.E. Anaerobic Codigestion of Food Waste and Polylactic Acid: Effect of Pretreatment on Methane Yield and Solid Reduction. Adv. Mater. Sci. Eng. 2019, 2019, 4715904. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S. Effects of Sodium Hydroxide Pretreatment on Structural Components of Biomass. Trans. ASABE 2014, 57, 1187–1198. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.L.; Pirozzi, F. Enhanced Anaerobic Digestion of Food Waste by Thermal and Ozonation Pretreatment Methods. J. Environ. Manag. 2014, 146, 142–149. [Google Scholar] [CrossRef]
- Awasthi, K.; Akhtar, S.; Khan, M.K.A. Bioplastic: An Accost towards Sustainable Development. NeuroPharmac J. 2021, 4, 162–168. [Google Scholar]
- Vardar, S.; Demirel, B.; Onay, T.T. Degradability of Bioplastics in Anaerobic Digestion Systems and Their Effects on Biogas Production: A Review. Rev. Environ. Sci. Biotechnol. 2022, 21, 205–223. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Benn, N.; Seyedi, S.; Zitomer, D. Methane Yield and Lag Correlate with Bacterial Community Shift Following Bioplastic Anaerobic Co-Digestion. Bioresour. Technol. Rep. 2019, 7, 100198. [Google Scholar] [CrossRef]
- Ashraf Joolaei, A.; Makian, M.; Prakash, O.; Im, S.; Kang, S.; Kim, D.-H. Effects of Particle Size on the Pretreatment Efficiency and Subsequent Biogas Potential of Polylactic Acid. Bioresour. Technol. 2024, 394, 130306. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Peng, W.; Lü, F.; Zhang, H.; Lu, X.; He, P. Impact of the Thermo-Alkaline Pretreatment on the Anaerobic Digestion of Poly(butylene Adipate-Co-Terephthalate) (PBAT) and Poly(lactic Acid) (PLA) Blended Plastics. J. Hazard. Mater. 2024, 475, 134882. [Google Scholar] [CrossRef]
- Chang, M.; Li, D.; Wang, W.; Chen, D.; Zhang, Y.; Hu, H.; Ye, X. Comparison of Sodium Hydroxide and Calcium Hydroxide Pretreatments on the Enzymatic Hydrolysis and Lignin Recovery of Sugarcane Bagasse. Bioresour. Technol. 2017, 244, 1055–1058. [Google Scholar] [CrossRef]
- Jiang, D.; Ge, X.; Zhang, Q.; Zhou, X.; Chen, Z.; Keener, H.; Li, Y. Comparison of Sodium Hydroxide and Calcium Hydroxide Pretreatments of Giant Reed for Enhanced Enzymatic Digestibility and Methane Production. Bioresour. Technol. 2017, 244, 1150–1157. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, T.; Zhang, W.; Lin, J.; Wang, Z.; Lyu, S.; Tong, H. Biodegradation of Polylactic Acid by a Mesophilic Bacteria Bacillus Safensis. Chemosphere 2023, 318, 137991. [Google Scholar] [CrossRef]
- Myburgh, M.W.; van Zyl, W.H.; Modesti, M.; Viljoen-Bloom, M.; Favaro, L. Enzymatic Hydrolysis of Single-Use Bioplastic Items by Improved Recombinant Yeast Strains. Bioresour. Technol. 2023, 390, 129908. [Google Scholar] [CrossRef]
- Pooja, N.; Chakraborty, I.; Rahman, M.H.; Mazumder, N. An Insight on Sources and Biodegradation of Bioplastics: A Review. 3 Biotech 2023, 13, 220. [Google Scholar] [CrossRef]
- Jiang, X.; Bi, D.; Cheng, Y.; Wang, S.; Peng, B.-Y.; Shen, H.; Zhang, T.; Xia, X.; Shen, Z.; Zhang, Y. Enzyme Pretreatments for Anaerobic Co-Digestion of Food Waste Blended with Bioplastics: Effects on Methane Production and Microbial Community Structure. N. J. Chem. 2023, 47, 20846–20858. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; He, S.; Shi, Y.; Hou, C.; Jiang, X.; Song, Y.; Zhang, T.; Zhang, Y.; Shen, Z. Enzyme Modified Biodegradable Plastic Preparation and Performance in Anaerobic Co-Digestion with Food Waste. Bioresour. Technol. 2024, 401, 130739. [Google Scholar] [CrossRef]
- Santos-Beneit, F.; Chen, L.M.; Bordel, S.; Frutos de la Flor, R.; García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Muñoz, R.; Börner, R.A.; Börner, T. Screening Enzymes That Can Depolymerize Commercial Biodegradable Polymers: Heterologous Expression of Fusarium Solani Cutinase in Escherichia Coli. Microorganisms 2023, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Preethi; Gunasekaran; Banu, J.R. Indexing Energy and Cost of the Pretreatment for Economically Efficient Bioenergy Generation. Front. Energy Res. 2023, 10, 1060599. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Merlin Christy, P. A Review on Current Aspects and Diverse Prospects for Enhancing Biogas Production in Sustainable Means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Folino, A.; Pangallo, D.; Calabrò, P.S. Assessing Bioplastics Biodegradability by Standard and Research Methods: Current Trends and Open Issues. J. Environ. Chem. Eng. 2023, 11, 109424. [Google Scholar] [CrossRef]
- Chinaglia, S.; Tosin, M.; Degli-Innocenti, F. Biodegradation Rate of Biodegradable Plastics at Molecular Level. Polym. Degrad. Stab. 2018, 147, 237–244. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.C.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Kumar Khanal, S. Anaerobic Co-Digestion: Current Status and Perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Hoelzle, R.D.; Virdis, B.; Batstone, D.J. Regulation Mechanisms in Mixed and Pure Culture Microbial Fermentation. Biotechnol. Bioeng. 2014, 111, 2139–2154. [Google Scholar] [CrossRef]
- Kang, J.-H.; Kang, S.-W.; Kim, W.-J.; Kim, D.-H.; Im, S.-W. Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation. Fermentation 2022, 8, 638. [Google Scholar] [CrossRef]
- Maragkaki, A.; Tsompanidis, C.; Velonia, K.; Manios, T. Pilot-Scale Anaerobic Co-Digestion of Food Waste and Polylactic Acid. Sustain. Sci. Pract. Policy 2023, 15, 10944. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Lallement, A.; Souquet, P.; Gassie, C.; Sambusiti, C.; Grassl, B.; Jiménez-Lamana, J.; Cauzzi, P.; Monlau, F. Simulation of Biowastes and Biodegradable Plastics Co-Digestion in Semi-Continuous Reactors: Performances and Agronomic Evaluation. Bioresour. Technol. 2023, 369, 128313. [Google Scholar] [CrossRef]
- Shafana Farveen, M.; Muñoz, R.; Narayanan, R.; García-Depraect, O. Batch and Semi-Batch Anaerobic Digestion of poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) (PHBH) Bioplastic: New Kinetic, Structural, Microbiological and Digestate Phytotoxicity Insights. Sci. Total Environ. 2025, 967, 178794. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ming, S.; Liu, Q.; Zhang, Y.; Duan, N. Revealing the Synergy Mechanisms of Organic Components Anaerobic Co-Digestion from the Prevailing Tendency of Endogenous Inhibitors. Chem. Eng. J. 2024, 479, 147707. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, B.P.; Otite, S.V.; Fofie, E.A.; Lag-Brotons, A.J.; Ezemonye, L.I.; Semple, K.T.; Martin, A.D. Kinetic Investigations into the Effect of Inoculum to Substrate Ratio on Batch Anaerobic Digestion of Simulated Food Waste. Renew. Energy 2022, 195, 311–321. [Google Scholar] [CrossRef]
- Puthumana, A.B.; Kaparaju, P. Impact of Organic Load on Methane Yields and Kinetics during Anaerobic Digestion of Sugarcane Bagasse: Optimal Feed-to-Inoculum Ratio and Total Solids of Reactor Working Volume. Energies 2024, 17, 5083. [Google Scholar] [CrossRef]
- Cioabla, A.E.; Ionel, I.; Dumitrel, G.-A.; Popescu, F. Comparative Study on Factors Affecting Anaerobic Digestion of Agricultural Vegetal Residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef]
- García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Börner, R.A.; Börner, T.; Muñoz, R. Production of Volatile Fatty Acids (VFAs) from Five Commercial Bioplastics via Acidogenic Fermentation. Bioresour. Technol. 2022, 360, 127655. [Google Scholar] [CrossRef]
- Navaneethan, N.; Topczewski, P.; Royer, S.; Zitomer, D. Blending Anaerobic Co-Digestates: Synergism and Economics. Water Sci. Technol. 2011, 63, 2916–2922. [Google Scholar] [CrossRef]
Bioplastic | AD Condition | Pretreatment | Methane Yield | Effect | Reference |
---|---|---|---|---|---|
PLA | 38 °C—520 days | - | 429 ± 21 NL CH4/kg VS added | [16] | |
Mechanical Grinding—1660 μm | 427 ± 9 NL CH4/kg VS added | 0.47% ↓ | |||
Mechanical Grinding—1140 μm | 441 ± 10 NL CH4/kg VS added | 2.80% ↑ | |||
Mechanical Grinding—808 μm | 441 ± 17 NL CH4/kg VS added | 2.80% ↑ | |||
Mechanical Grinding—502 μm | 455 ± 7 NL CH4/kg VS added | 6.06% ↑ | |||
Mechanical Grinding—272 μm | 460 ± 11 NL CH4/kg VS added | 7.22% ↑ | |||
PLA | 38 °C—25 days | - | 14 ± 4 NL CH4/kg VS added | [16] | |
Thermal 150 °C—6 h | 389 ± 20 NL CH4/kg VS added | 100+ % ↑ | |||
Thermal 120 °C—24 h | 370 ± 11 NL CH4/kg VS added | 100+ % ↑ | |||
PLA | 38° C—32 days | - | 9.45 L CH4/kg VS added | [17] | |
Hydrothermal 100 °C—2% w/w BP—3 h | 45.73 L CH4/kg VS added | 100+ % ↑ | |||
Hydrothermal 125 °C—2% w/w BP—3 h | 455.98 L CH4/kg VS added | 100+ % ↑ | |||
Hydrothermal 150 °C—2% w/w BP—3 h | 454.99 L CH4/kg VS added | 100+ % ↑ | |||
PHA | 38 °C—32 days | - | 430.45 L CH4/kg VS added | [17] | |
Hydrothermal 100 °C—2% w/w BP—3 h | 511.24 NL CH4/kg VS added | 18.7% ↑ | |||
Hydrothermal 125 °C—2% w/w BP—3 h | 523.54 NL CH4/kg VS added | 21.6% ↑ | |||
Hydrothermal 150 °C—2% w/w BP—3 h | 534.20 NL CH4/kg VS added | 24.1% ↑ | |||
PBAT | 38 °C—32 days | - | NA | [17] | |
Hydrothermal 100 °C—2% w/w BP—3 h | NA | ||||
Hydrothermal 125 °C—2% w/w BP—3 h | 31.88 NL CH4/kg VS added | 100+ % ↑ | |||
Hydrothermal 150 °C—2% w/w BP—3 h | 174.27 NL CH4/kg VS added | 100+ % ↑ | |||
PBS | 38 °C—32 days | - | NA | [17] | |
Hydrothermal 100 °C—2% w/w BP—3 h | 69.43 NL CH4/kg VS added | 100+ % ↑ | |||
Hydrothermal 125 °C—2% w/w BP—3 h | 171.09 NL CH4/kg VS added | 100+ % ↑ | |||
Hydrothermal 150 °C—2% w/w BP—3 h | 492.37 NL CH4/kg VS added | 100+ % ↑ | |||
Starch-based | 55 °C—30 days | - | 320.9 NL CH4/kg VS added | [68] | |
Hydrothermal 134 °C—20 min | 439.4 NL CH4/kg VS added | 36.9% ↑ | |||
PLA | 55 °C—30 days | - | 360.3 L CH4/kg VS added | [68] | |
Hydrothermal 134 °C—20 min | 426.4 L CH4/kg VS added | 18.3% ↑ | |||
PLA/PBAT blend (30 μm) | 26 days | - | 94.65 L CH4/kg VS added | - | [69] |
Hydrothermal 80 °C—10.7% w/w BP—1 h | 116.75 L CH4/kg VS added | 23.35% ↑ | |||
Hydrothermal 100 °C—10.7% w/w BP—1 h | 110.79 mLCH4/g VS | 17.95% ↑ | |||
Hydrothermal 120 °C—10.7% w/w BP—1 h | 92.47 L CH4/kg VS added | 2.30% ↓ | |||
PLA/PBAT blend (40 μm) | 26 days | - | 98.61 L CH4/kg VS added | - | [69] |
Hydrothermal 80 °C—10.7% w/w BP—1 h | 98.69 L CH4/kg VS added | 0.08% ↑ | |||
Hydrothermal 100 °C—10.7% w/w BP—1 h | 104.42 L CH4/kg VS added | 5.89% ↑ | |||
Hydrothermal 120 °C—10.7% w/w BP—1 h | 92.47 L CH4/kg VS added | 6.23% ↓ | |||
Starch-based | 55 °C—60 days | - | 63 ± 8 NL CH4/kg TS added | [70] | |
Digestate mediated Thermal 90 °C—1.25% w/w BP—72 h | 82 ± 4 NL CH4/kg TS added | 30% ↑ | |||
PLA | 55 °C—60 days | - | 138 ± 3 NL CH4/kg TS added | [70] | |
Digestate mediated Thermal 90 °C—1.25% w/w BP—72 h | 139 ± 9 NL CH4/kg TS added | 0.7% ↑ | |||
PLA | 35 °C—30 days | - | 400 mL/g VS | [71] | |
35 °C—18 days | Microbial Electrolysis Cell Assisted AD + Hydrothermal 180 °C—2 h—0.3V | 440 mL/g VS | 10% ↑ |
Bioplastic | AD Condition | Pretreatment | Methane Yield | Effect | Reference |
---|---|---|---|---|---|
PHB | 35 °C—40 days | - | 233 NmL CH4/g ThOD a | [36] | |
Alkaline 35 °C—pH 7 NaOH—48 h | 359 NmL CH4/g ThOD a | 54% ↑ | |||
PHB | 35 °C—40 days | - | 199 NmL CH4/g ThOD a | [36] | |
Alkaline 35 °C—pH 12 NaOH- 24 h | 398 NmL CH4/g ThOD a | 100% ↑ | |||
Sugar Cane Cellulosic Fibre (SCCP) Plates | 35 °C—250 days | - | 391.14 ± 21.06 LCH4/kg VS | [83] | |
Acidic pH 2—1N HCl—48 h | 342.64 ± 23.76 L CH4/kg VS | 12% ↓ | |||
Alkaline pH 12—1N NaOH—48 h | 339.90 ± 38.15 L CH4/kg VS | 13% ↓ | |||
Starch-Based Bags—UNI EN13342 | 35 °C—250 days | - | 200.91 ± 4.60 L CH4/kg VS | [83] | |
Acidic pH 2—1N HCl—48 h | 203.87 ± 3.19 L CH4/kg VS | 1% ↑ | |||
Alkaline pH 12—1N NaOH—48 h | 158.05 ± 4.51 L CH4/kg VS | 21% ↓ | |||
Starch Based Cutleries | 35 °C—250 days | - | 312.50 ± 8.20 L CH4/kg VS | [83] | |
Acidic pH 2—1N HCl—48 h | 302.51 ± 6.64 L CH4/kg VS | 3% ↓ | |||
Alkaline pH 12—1N NaOH—48 h | 252.87 ± 7.90 L CH4/kg VS | 19% ↓ | |||
PLA | 35 °C—250 days | - | 130.00 ± 6.70 L CH4/kg VS | [83] | |
Acidic pH 2—1N HCl—48 h | 125.29 ± 5.40 L CH4/kg VS | 3% ↓ | |||
Alkaline pH 12—1N NaOH—48 h | 103.93 ± 2.51 L CH4/kg VS | 20% ↓ | |||
PHB | 37 °C—80 days | - | 432.7 ± 6.7 NmL CH4/g VS | [84] | |
Alkaline 37 °C—2M NaOH—7 days | 426.7 ± 2.1 NmL CH4/g VS | 1% ↓ | |||
PHBH | 37 °C—80 days | - | 462.3 ± 5.5 NmL CH4/g VS | [84] | |
Alkaline 37 °C—2M NaOH—7 days | 397.0 ± 15.6 NmL CH4/g VS | 14% ↓ | |||
PHBV | 37 °C—80 days | - | 435.1 ± 15 NmL CH4/g VS | [84] | |
Alkaline 37 °C—2M NaOH—7 days | 437.2 ± 8.3 NmL CH4/g VS | 0.4% ↓ | |||
PLA | 37 °C—80 days | - | 3.1 ± 2.9 NmL CH4/g VS | [84] | |
Alkaline 37 °C—1M NaOH—7 days | 361.0 ± 1.8 NmL CH4/g VS | 100+ % ↑ | |||
PLA/PCL Blend | 37 °C—80 days | - | 7.4 ± 1.2 NmL CH4/g VS | [84] | |
Alkaline 37 °C—1M NaOH—7 days | 386 ± 6.4 NmL CH4/g VS | 100+ % ↑ | |||
CDA | 55 °C—60 days | - | 21.1 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 187.4 L CH4/kg VS | 100+ % ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 363.6 L CH4/kg VS | 100+ % ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 392.0 L CH4/kg VS | 100+ % ↑ | |||
P34HB | 55 °C—60 days | - | 500.3 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 561.8 L CH4/kg VS | 12% ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 566.7 L CH4/kg VS | 13% ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 532.4 L CH4/kg VS | 6.4% ↑ | |||
PBAT | 55 °C—60 days | - | 3.3 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 4.5 L CH4/kg VS | 36% ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 5.4 L CH4/kg VS | 63% ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 5.4 L CH4/kg VS | 63% ↑ | |||
PBS | 55 °C—60 days | - | 4.8 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 12.2 L CH4/kg VS | 100+ % ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 25.3 L CH4/kg VS | 100+ % ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 34.1 L CH4/kg VS | 100+ % ↑ | |||
PCL | 55 °C—60 days | - | 684.4 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 704.4 L CH4/kg VS | 2.9% ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 732.5 L CH4/kg VS | 7% ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 415.9 L CH4/kg VS | 39% ↓ | |||
PLA | 55 °C—120 days | - | 434.4 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 446.9 L CH4/kg VS | 2.6% ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 446.3 L CH4/kg VS | 2.7% ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 462.6 L CH4/kg VS | 6.5% ↑ | |||
PPC | 55 °C—60 days | - | 570.8 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 547.0 L CH4/kg VS | 4.2% ↓ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 551.1 L CH4/kg VS | 3.5% ↓ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 546.9 L CH4/kg VS | 4.1% ↓ | |||
PVA | 55 °C—60 days | - | 68.9 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 75.5 L CH4/kg VS | 9.5% ↑ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 79.1 L CH4/kg VS | 14.7% ↑ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 74.3 L CH4/kg VS | 7.8% ↑ | |||
TPS | 55 °C—40 days | - | 310.2 L CH4/kg VS | [85] | |
Alkaline 25 °C—1% w/w NaOH—24 h | 279.4 L CH4/kg VS | 9.9% ↓ | |||
Alkaline 25 °C—3% w/w NaOH—24 h | 290.5 L CH4/kg VS | 6.3% ↓ | |||
Alkaline 25 °C—5% w/w NaOH—24 h | 281.0 L CH4/kg VS | 9.4% ↓ | |||
PLA | 37 °C—70 days | - | 686.36 mL CH4/g VS b | [86] | |
Alkaline 21 °C—10M NaOH pH 11—15 days | 928.18 mL CH4/g VS b | 35% ↑ | |||
Cellulose-based | 35 °C—100 days | - | 311.4 L CH4/kg VS | [19] | |
Alkaline 0.1M KOH—2 h | 315 L CH4/kg VS | 1.2% ↑ | |||
PBS-based | 35 °C—100 days | - | 25.5 L CH4/kg VS | [19] | |
Alkaline 0.1M KOH—2 h | 29.3 L CH4/kg VS | 14% ↑ |
Bioplastic | AD Condition | Pretreatment | Methane Yield | Effect | Reference |
---|---|---|---|---|---|
PHB | 35 °C—40 days | - | 316 NmL CH4/g ThOD a | [36] | |
Thermal Alkaline 55 °C—pH 10 NaOH—24 h | 322 NmL CH4/g ThOD a | 2% ↑ | |||
PHB | 35 °C—40 days | - | 316 NmL CH4/g ThOD a | [36] | |
Thermal Alkaline 55 °C—pH 12 NaOH—24 h | 357 NmL CH4/g ThOD a | 13% ↑ | |||
PLA | 35 °C—40 days | - | NA | [36] | |
Thermal Alkaline 90 °C—pH 10 NaOH—48 h | 86 NmL CH4/g ThOD a | 100+ %↑ | |||
PHB | 35 °C—175 days | - | 88 ± 0.4 L CH4 | [91] | |
Thermal Alkaline 55 °C—pH 12—24 h | 94 ± 0.7 L CH4 | 6.8% ↑ | |||
PLA | 38 °C—30 days | Thermal 90 °C—48 h | 136 ± 8 NL CH4/kg VS | [16] | |
Thermal Chemical 90 °C—0.5% Ca(OH)2—48 h | 178 ± 11 NL CH4/kg VS | 30% ↑ | |||
Thermal Chemical 90 °C—1.25% Ca(OH)2—48 h | 260 ± 3 NL CH4/kg VS | 91% ↑ | |||
Thermal Chemical 90 °C—2.5% Ca(OH)2—48 h | 352 ± 14 NL CH4/kg VS | 100+ % ↑ | |||
Thermal Chemical 90 °C—5% Ca(OH)2—48 h | 354 ± 1 NL CH4/kg VS | 100+ % ↑ | |||
PLA | 38 °C—30 days | Thermal 70 °C—48 h | 48 ± 4 NL CH4/kg VS | [16] | |
Thermal Chemical 70 °C—0.5% Ca(OH)2—48 h | 167 ± 11 NL CH4/kg VS | 100+ % ↑ | |||
Thermal Chemical 70 °C—1.25% Ca(OH)2—48 h | 286 ± 14 NL CH4/kg VS | 100+ % ↑ | |||
Thermal Chemical 70 °C—2.5% Ca(OH)2—48 h | 381 ± 11 NL CH4/kg VS | 100+ % ↑ | |||
Thermal Chemical 70 °C—5% Ca(OH)2—48 h | 338 ± 41 NL CH4/kg VS | 100+ % ↑ | |||
PLA | 55 °C—32 days | Particle Size—1–2 mm Thermal Alkaline—Weak 87.5 g OH−/kgBP, 70 °C—3.25 h | 184.1 ± 12.3 mL CH4/g COD | [92] | |
Particle Size—1–2 mm Thermal Alkaline—Medium 125.0 g OH−/kgBP, 80 °C—5.5 h | 220.5 ± 7.6 mL CH4/g COD | 20% ↑ | |||
Particle Size—1–2 mm Thermal Alkaline—Strong 162.5 g OH−/kgBP, 90 °C—7.7 h | 258.2 ± 12.9 mL CH4/g COD | 40% ↑ | |||
PLA | 55 °C—100 days | - | 366 ± 17 NmL CH4/g VS added | [93] | |
Thermal Alkaline 70 °C—1% NaOH (w/v)—48 h | 334 ± 22 NmL CH4/g VS added | 9% ↓ | |||
PBAT | 55 °C—100 days | - | 91 ± 7 NmL CH4/g VS added | ||
Thermal Alkaline 70 °C—1% NaOH (w/v)—48 h | 91 ± 14 NmL CH4/g VS added | 0% | |||
PLA/PBAT | 55 °C—100 days | - | 148 ± 18 NmL CH4/g VS added | ||
Thermal Alkaline 70 °C—1% NaOH (w/v)—48 h | 90 ± 2 NmL CH4/g VS added | 48% ↓ | |||
PLA/PBAT/Starch | 55 °C—100 days | - | 117 ± 13 NmL CH4/g VS added | ||
Thermal Alkaline 70 °C—1% NaOH (w/v)—48 h | 115 ± 5 NmL CH4/g VS added | 1% ↓ |
Bioplastic | AD Condition | Pretreatment | CMP | Effect | Reference |
---|---|---|---|---|---|
PLA/PBAT/Starch Blend | 35 °C—35 days | - | 61.42 mL | [99] | |
Enzymatic—Amylase 35 °C—0.1g/L VS—72 h | 85.73 mL | 39.6% ↑ | |||
Enzymatic—Lipase 35 °C—0.1g/L VS—72 h | 107.09 mL | 74.4% ↑ | |||
Enzymatic—Proteinase K 35 °C—0.1g/L VS—72 h | 158.90 mL | 100+ % ↑ | |||
PLA/PBAT/Starch Blend | 55 °C—35 days | - | 170.19 mL | [99] | |
Thermal Enzymatic—Amylase 55 °C—0.1g/L VS—72 h | 208.82 mL | 22.6% ↑ | |||
Thermal Enzymatic—Lipase 55 °C—0.1g/L VS—72 h | 225.52 mL | 32.5% ↑ | |||
Thermal Enzymatic—Proteinase K 55 °C—0.1g/L VS—72 h | 273.94 mL | 60.9% ↑ | |||
PLA/ PBAT Blend | 37 °C—30 days | - | 237.7 mL/g VS | [100] | |
Enzymatic Modification With 1% Amylase Remolded at 40 °C | 246.5 mL/g VS | 3.7% ↑ | |||
Enzymatic Modification With 1% Lipase (PPL) Remolded at 40 °C | 241.4 mL/g VS | 1.5% ↑ | |||
Enzymatic Modification With 1% Proteinase K Remolded at 40 °C | 234.7 mL/g VS | 1.2% ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafana Farveen, M.; Muñoz, R.; Narayanan, R.; García-Depraect, O. Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies. Polymers 2025, 17, 1756. https://doi.org/10.3390/polym17131756
Shafana Farveen M, Muñoz R, Narayanan R, García-Depraect O. Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies. Polymers. 2025; 17(13):1756. https://doi.org/10.3390/polym17131756
Chicago/Turabian StyleShafana Farveen, Mohamed, Raúl Muñoz, Rajnish Narayanan, and Octavio García-Depraect. 2025. "Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies" Polymers 17, no. 13: 1756. https://doi.org/10.3390/polym17131756
APA StyleShafana Farveen, M., Muñoz, R., Narayanan, R., & García-Depraect, O. (2025). Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies. Polymers, 17(13), 1756. https://doi.org/10.3390/polym17131756