CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterization of Cathode Substrate Materials
2.2. Structural Characterization of Cobalt–Molybdenum Alloy Catalyst Supported on Stainless Steel Substrate
2.3. Effects of Current Density, Electroplating Time, and Cobalt-to-Molybdenum Ratio on the Electrochemical Properties of the Co-Mo Alloy
2.4. Hydrogen Production Performance of CoMo/SS Hydrogen Evolution Catalyst in MEC
3. Materials and Methods
3.1. Pre-Treatment of Cathode Substrate Materials
3.2. Preparation of CoMo/SS Catalyst
3.3. Preparation of Microbial Anode and Construction of MEC
3.4. Characterizations of the Cathode Materials for HER
3.5. Evaluation of Hydrogen Production Performance in MEC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poudyal, L.; Adhikari, K. Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production. Resour. Environ. Sustain. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q.S.; Zhou, Q.; Jiang, G. Environmental Pollution, a Hidden Culprit for Health Issues. EEH 2022, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, Y.; Qiao, S.Z. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Adv. Mater. 2015, 27, 5372–5378. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C.J.; Sun, X.; Peterson, A.A.; Sun, S. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, P.; Mahendran, R.; Huang, W.; Gao, Y.; Yang, Z.; Ye, T.; Wen, B.; Wu, Y.; Li, S.; et al. Global Climate Change and Human Health: Pathways and Possible Solutions. Eco-Environ. Health 2022, 1, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, W.; Yue, Y.; Wang, W.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Two-Step Assembly Induced Fe0-Anchored Graphitic N-Rich Graphene with Biactive Centers for Enhanced Heterogeneous Peroxymonosulfate Activation. J. Mater. Chem. A 2021, 9, 17366–17379. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, P.; Gao, W.; Wang, W.; Tan, F.; Wang, X.; Qiao, X.; Wong, P.K. Melamine-Cyanurate Supramolecule Induced Graphitic N-Rich Graphene for Singlet Oxygen-Dominated Peroxymonosulfate Activation to Efficiently Degrade Organic Pollutants. Sep. Purif. Technol. 2021, 265, 118474. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2023. 2023. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 1 June 2024).
- IEA. World Energy Outlook 2023. 2024. Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 1 June 2024).
- Kim, Y.K.; Seo, H.-J.; Kim, S.; Hwang, S.-H.; Park, H.; Lim, S.K. Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production. J. Mater. Sci. Technol. 2016, 32, 1059–1065. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Liu, P.; Zhong, Y.L.; Wang, Y.; Yang, H.G.; Zhao, H. Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-Oxidation Temperature. Acta Metall. Sin. (Engl. Lett.) 2018, 31, 431–439. [Google Scholar] [CrossRef]
- Li, J.; Fu, G.; Sheng, X.; Li, G.; Chen, H.; Shu, K.; Dong, Y.; Wang, T.; Deng, Y. A Comprehensive Review on Catalysts for Seawater Electrolysis. Adv. Powder Mater. 2024, 3, 100227. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Das, D.; Khanna, N.; Veziroğlu, N. Recent Developments in Biological Hydrogen Production Processes. Chem. Ind. Chem. Eng. Q. 2008, 14, 57–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J. Enhancement Effect of Gold Nanoparticles on Biohydrogen Production from Artificial Wastewater. Int. J. Hydrogen Energy 2007, 32, 17–23. [Google Scholar] [CrossRef]
- Ramsurn, H.; Gupta, R.B. Nanotechnology in Solar and Biofuels. ACS Sustain. Chem. Eng. 2013, 1, 779–797. [Google Scholar] [CrossRef]
- Zhu, H.; Seto, P.; Parker, W.J. Enhanced Dark Fermentative Hydrogen Production under the Effect of Zero-Valent Iron Shavings. Int. J. Hydrogen Energy 2014, 39, 19331–19336. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Quan, X.; Li, Y.; Zhao, Z.; Meng, X.; Chen, S. Optimization of Anaerobic Acidogenesis by Adding Fe0 Powder to Enhance Anaerobic Wastewater Treatment. J. Chem. Eng. 2012, 192, 179–185. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhao, Z.; Li, Y.; Quan, X.; Chen, S. Enhanced Azo Dye Wastewater Treatment in a Two-Stage Anaerobic System with Fe0 Dosing. Bioresour. Technol. 2012, 121, 148–153. [Google Scholar] [CrossRef]
- Dai, H.-Y.; Yang, H.-M.; Liu, X.; Song, X.-L.; Liang, Z.-H. Hydrogen Production Using “Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 297–304. [Google Scholar] [CrossRef]
- Fu, Q.; Kobayashi, H.; Kuramochi, Y.; Xu, J.; Wakayama, T.; Maeda, H.; Sato, K. Bioelectrochemical Analyses of a Thermophilic Biocathode Catalyzing Sustainable Hydrogen Production. Int. J. Hydrogen Energy 2013, 38, 15638–15645. [Google Scholar] [CrossRef]
- Noori, M.T.; Rossi, R.; Logan, B.E.; Min, B. Hydrogen Production in Microbial Electrolysis Cells with Biocathodes. Trends Biotechnol. 2024, 42, 815–828. [Google Scholar] [CrossRef]
- Chai, Y.; Lyu, Z.; Du, H.; Li, P.; Ding, S.; Jiang, Y.; Wang, H.; Min, Q.; Du, D.; Lin, Y.; et al. Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production. SusMat 2022, 2, 392–410. [Google Scholar] [CrossRef]
- Jafary, T.; Wan Daud, W.R.; Ghasemi, M.; Abu Bakar, M.H.; Sedighi, M.; Kim, B.H.; Carmona-Martínez, A.A.; Jahim, J.M.; Ismail, M. Clean Hydrogen Production in a Full Biological Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2019, 44, 30524–30531. [Google Scholar] [CrossRef]
- Rathinam, N.K.; Bibra, M.; Salem, D.R.; Sani, R.K. Thermophiles for Biohydrogen Production in Microbial Electrolytic Cells. Bioresour. Technol. 2019, 277, 171–178. [Google Scholar] [CrossRef]
- Swaminathan, P.; Ghosh, A.; Sunantha, G.; Sivagami, K.; Mohanakrishna, G.; Aishwarya, S.; Shah, S.; Sethumadhavan, A.; Ranjan, P.; Prajapat, R. A Comprehensive Review of Microbial Electrolysis Cells: Integrated for Wastewater Treatment and Hydrogen Generation. Process Saf. Environ. Prot. 2024, 190, 458–474. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Li, T.; Bo, X.; Wang, J.; Chang, Y.; Li, P.; Zhao, Y. The influence of different layers of carbon paper on the electricity generation in MFC. New Chem. Mater. 2015, 03, 132–135. [Google Scholar]
- Liu, C.; Liu, L.; Duan, X. Electricity generation of MFCs with graphite fiber brush and carbon cloth anode. J. Power Sources 2015, 39, 1661–1663. [Google Scholar]
- Bo, X.; Li, P.; Zhao, X.; Wang, J.; Li, J.; Pei, X.; Zhao, Y. Research on producing electricity characteristics of wastewater microbial fuel cell anode carbon felt. New Chem. Mater. 2014, 042, 126–129. [Google Scholar]
- Selembo, P.A.; Merrill, M.D.; Logan, B.E. Hydrogen Production with Nickel Powder Cathode Catalysts in Microbial Electrolysis Cells. Int. J. Hydrogen Energy 2010, 35, 428–437. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, Z.; Wang, Y.; Li, J.; An, X.; Yang, D. Process Kinetics for the Electrocatalytic Hydrogen Evolution Reaction on Carbon-Based Ni/NiO Nanocomposite in a Single-Chamber Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2019, 44, 28841–28847. [Google Scholar] [CrossRef]
- Selembo, P.A.; Merrill, M.D.; Logan, B.E. The Use of Stainless Steel and Nickel Alloys as Low-Cost Cathodes in Microbial Electrolysis Cells. J. Power Sources 2009, 190, 271–278. [Google Scholar] [CrossRef]
- Munoz, L.D.; Erable, B.; Etcheverry, L.; Riess, J.; Basséguy, R.; Bergel, A. Combining Phosphate Species and Stainless Steel Cathode to Enhance Hydrogen Evolution in Microbial Electrolysis Cell (MEC). Electrochem. Commun. 2010, 12, 183–186. [Google Scholar] [CrossRef]
- Su, M.; Wei, L.; Qiu, Z.; Wang, G.; Shen, J. Hydrogen Production in Single Chamber Microbial Electrolysis Cells with Stainless Steel Fiber Felt Cathodes. J. Power Sources 2016, 301, 29–34. [Google Scholar] [CrossRef]
- Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ. Sci. Technol. 2008, 42, 8630–8640. [Google Scholar] [CrossRef]
- Perona-Vico, E.; Feliu-Paradeda, L.; Puig, S.; Bañeras, L. Bacteria Coated Cathodes as an In-Situ Hydrogen Evolving Platform for Microbial Electrosynthesis. Sci. Rep. 2020, 10, 19852. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Sahu, J.N.; Redzwan, G.; Hashim, M.A. An Overview of Cathode Material and Catalysts Suitable for Generating Hydrogen in Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2013, 38, 1745–1757. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Ni, J.; Pan, Z.; Huang, G. Progress of electrocatalytic hydrogen evolution reaction catalysts. Chem. Eng. Prog. 2021, 40, 5523–5534. [Google Scholar] [CrossRef]
- Conway, B.E.; Jerkiewicz, G. Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and Other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics. Electrochim. Acta 2000, 45, 4075–4083. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Xie, Y.; Yu, D.; Tian, H.; Lou, Y. MnOxHy-Modified CoMoP/NF Nanosheet Arrays as Hydrogen Evolution Reaction and Oxygen Evolution Reaction Bifunctional Catalysts under Alkaline Conditions. Dalton Trans. 2023, 52, 15091–15100. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F.J.; Abruña, H.D. Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, W.; Zhang, X.; Meng, J.; Zhong, M.; Qiang, L.; Liu, M.-J.; Gu, B.-N.; Chung, C.-C.; Liu, M.; et al. High-Performance and Long-Cycle Life of Triboelectric Nanogenerator Using PVC/MoS2 Composite Membranes for Wind Energy Scavenging Application. Nano Energy 2022, 91, 106649. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, F.; Pan, W.; Liang, Y.; Wang, R. General Construction of Molybdenum-Based Nanowire Arrays for pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Funct. Mater. 2018, 28, 1804600. [Google Scholar] [CrossRef]
- Yang, G.; Yang, T.; Wang, Z.; Wang, K.; Zhang, M.; Lund, P.D.; Yun, S. Targeted Doping Induces Interfacial Orientation for Constructing Surface-Functionalized Schottky Junctions to Coordinate Redox Reactions in Water Electrolysis. Adv. Powder Mater. 2024, 3, 100224. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z.; Wan, L.; Hu, J. Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution. Adv. Mat. 2017, 29, 1703311. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2021, 31, 2006484. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, B.; Wen, Z.; Cui, S.; Guo, X.; He, Z.; Chen, J. A 3D Hybrid of Layered MoS2/Nitrogen-Doped Graphene Nanosheet Aerogels: An Effective Catalyst for Hydrogen Evolution in Microbial Electrolysis Cells. J. Mater. Chem. A 2014, 2, 13795–13800. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen Production in Single-Chamber Tubular Microbial Electrolysis Cells Using Non-Precious-Metal Catalysts. Int. J. Hydrogen Energy 2009, 34, 8535–8542. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Liu, X.-W.; Sun, X.-F.; Sheng, G.-P.; Zhang, Y.-Y.; Yan, G.-M.; Wang, S.-G.; Xu, A.-W.; Yu, H.-Q. A New Cathodic Electrode Deposit with Palladium Nanoparticles for Cost-Effective Hydrogen Production in a Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2011, 36, 2773–2776. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, L.; He, W.; Li, C.; Liu, J.; Liu, S.; Lee, H.-S.; Feng, Y. Efficient Hydrogen Recovery with CoP-NF as Cathode in Microbial Electrolysis Cells. Appl. Energy 2020, 264, 114700. [Google Scholar] [CrossRef]
- Jeremiasse, A.W.; Hamelers, H.V.M.; Buisman, C.J.N. Microbial Electrolysis Cell with a Microbial Biocathode. Bioelectrochemistry 2010, 78, 39–43. [Google Scholar] [CrossRef]
- Qi, Y.; Arnaud, B.; Elie, D.L.Q.; Lv, F.; He, P.; Théodore, B. Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems. CIESC J. 2016, 5, 2033–2040. [Google Scholar] [CrossRef]
Cathode | Eep (V) | Q (m3·m−3·d−1) | CE (%) | Ref. |
---|---|---|---|---|
Pt/C | 0.8 | 0.31 ± 0.02 | 21.34 ± 0.87 | [48] |
Pd/CC | 0.6 | 2.6 ± 0.5 L·m−2·d−1 | 56.0 ± 10.2 | [50] |
Ni 210 | 0.6 | 1.3 ± 0.3 | 92.7 ± 15.8 | [30] |
NiW/CC | 0.6 | 1.5 | 73 | [49] |
NiMo/CC | 0.6 | 2.0 | 75 | [49] |
CoP-NF | 0.7 | 0.22 ± 0.02 | 87 ± 10.2 | [51] |
3D MoS2/N-GAs | 0.8 | 0.19 | 24.28 ± 0.49 | [48] |
Biocathode | 0.8 | 0.03~0.04 | - | [52] |
SS 304 mesh | 0.9 | 0.59 ± 0.01 | - | [32] |
SS 316L mesh | 0.9 | 0.84 | 34.26 | This study |
CoMo/SS | 0.9 | 1.12 | 42.68 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, G.; Wang, Y.; Xiao, G.; Su, H. CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells. Catalysts 2025, 15, 439. https://doi.org/10.3390/catal15050439
Lei G, Wang Y, Xiao G, Su H. CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells. Catalysts. 2025; 15(5):439. https://doi.org/10.3390/catal15050439
Chicago/Turabian StyleLei, Gao, Yaoqiang Wang, Gang Xiao, and Haijia Su. 2025. "CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells" Catalysts 15, no. 5: 439. https://doi.org/10.3390/catal15050439
APA StyleLei, G., Wang, Y., Xiao, G., & Su, H. (2025). CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells. Catalysts, 15(5), 439. https://doi.org/10.3390/catal15050439