Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = microbial community network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2128 KiB  
Article
Correlation Measures in Metagenomic Data: The Blessing of Dimensionality
by Alessandro Fuschi, Alessandra Merlotti, Thi Dong Binh Tran, Hoan Nguyen, George M. Weinstock and Daniel Remondini
Appl. Sci. 2025, 15(15), 8602; https://doi.org/10.3390/app15158602 (registering DOI) - 2 Aug 2025
Abstract
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the [...] Read more.
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the quantification of microbial taxa and their dynamics. In the study of bacterial abundances, it is becoming more relevant to consider their relationship, to embed these data in the framework of network theory, allowing characterization of features like node relevance, pathways, and community structure. In this study, we address the primary biases encountered in reconstructing networks through correlation measures, particularly in light of the compositional nature of the data, within-sample diversity, and the presence of a high number of unobserved species. These factors can lead to inaccurate correlation estimates. To tackle these challenges, we employ simulated data to demonstrate how many of these issues can be mitigated by applying typical transformations designed for compositional data. These transformations enable the use of straightforward measures like Pearson’s correlation to correctly identify positive and negative relationships among relative abundances, especially in high-dimensional data, without having any need for further corrections. However, some challenges persist, such as addressing data sparsity, as neglecting this aspect can result in an underestimation of negative correlations. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 385
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 245
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 200
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

20 pages, 6464 KiB  
Article
Bacterial Communities Respond to Spatiotemporal Fluctuation in Water Quality and Microcystins at Lake Taihu
by Aimin Hao, Dong Xia, Xingping Mou, Sohei Kobayashi, Tomokazu Haraguchi, Yasushi Iseri and Min Zhao
Water 2025, 17(15), 2222; https://doi.org/10.3390/w17152222 - 25 Jul 2025
Viewed by 262
Abstract
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake [...] Read more.
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake Taihu. We observed poor water quality in autumn (low dissolved oxygen concentration and water transparency) with severe eutrophication (high in nitrogen, phosphorus, and microcystins). Microcystins were a major indicator of water quality that affected total phosphorus and dissolved oxygen concentrations. Redundancy analysis revealed that total nitrogen, total phosphorus, nitrate, ammonium, and microcystins, temperature, and dissolved oxygen all significantly influenced the microbial community. Microbial co-occurrence networks revealed significant seasonal variations, with autumn and winter exhibiting a more complex structure than other seasons. Additionally, we identified microcystin-sensitive microbial species as eutrophication indicators; they are involved in bacterial community components and metabolic function and fluctuate under seasonal changes to water quality. In conclusion, our findings provide insight into the relationship between water quality and microbial communities, offering an empirical basis for improving the sustainable management of Lake Taihu. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Responses of Rhizospheric Microbial Communities to Brevibacillus laterosporus-Enhanced Reductive Soil Disinfestation in Continuous Cropping Systems
by Risheng Xu, Haijiao Liu, Yafei Chen, Zhen Guo, Juan Liu, Yue Li, Jingyi Mei, Tengfei Ma and Yanlong Chen
Agronomy 2025, 15(8), 1775; https://doi.org/10.3390/agronomy15081775 - 24 Jul 2025
Viewed by 217
Abstract
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, [...] Read more.
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, network, and predicted function of peanut rhizospheric bacteria and fungi. Our results demonstrated that RSD and B. laterosporus inoculation substantially increased rhizospheric bacterial diversity while reducing fungal diversity. Specifically, B. laterosporus-enhanced RSD significantly reshaped the bacterial community, resulting in increased relative abundances of Chloroflexi, Desulfobacterota, and Myxococcota while decreasing those of Firmicutes, Gemmatimonadota, and Acidobacteriota. The fungal community exhibited a more consistent response to RSD and B. laterosporus amendment, with reduced proportions of Ascomycota and Gemmatimonadota but an increase in Chytridiomycota. Network analysis revealed that B. laterosporus inoculation and RSD enhanced the bacterial species complexity and keystone taxa. Furthermore, canonical correspondence analysis indicated strong associations between the soil bacterial community and soil properties, including Eh, EC, NO3-N, and SOC. Our findings highlight that the shifts in bacterial taxa induced by B. laterosporus inoculation and RSD, particularly the keystone taxa identified in the network, may contribute to the suppression of soil-borne pathogens. Overall, this study provides a novel insight into the shifts in rhizospheric bacterial and fungal communities and their ecological functions after bacteria inoculation and RSD treatment. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 253
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

13 pages, 2088 KiB  
Article
Assessment of Effects of Storage Time on Fermentation Profile, Chemical Composition, Bacterial Community Structure, Co-Occurrence Network, and Pathogenic Risk in Corn Stover Silage
by Zhumei Du, Ying Meng, Yifan Chen, Shaojuan Cui, Siran Wang and Xuebing Yan
Fermentation 2025, 11(8), 425; https://doi.org/10.3390/fermentation11080425 - 23 Jul 2025
Viewed by 399
Abstract
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, [...] Read more.
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, bacterial community structure, and pathogenic risk of silage under different fermentation times (0, 3, 7, 15, and 30 days). CS has high nutritive value, including crude protein and sugar, and can serve as a carbon source and a nitrogen source for silage fermentation. After ensiling, CS silage (CSTS) exhibited excellent fermentation quality, characterized by relatively high lactic acid content, low pH, and ammonia nitrogen content within an acceptable range. In addition, neither propionic acid nor butyric acid was detected in any of the silages. CS exhibited high α-diversity, with Serratia marcescens being the dominant bacterial species. After ensiling, the α-diversity significantly (p < 0.05) decreased, and Lactiplantibacillus plantarum was the dominant species during the fermentation process. With the extension of fermentation days, the relative abundance of Lactiplantibacillus plantarum significantly (p < 0.05) increased, reaching a peak and stabilizing between 15 and 30 days. Ultimately, lactic acid bacteria dominated and constructed a microbial symbiotic network system. In the bacterial community of CSTS, the abundance of “potential pathogens” was significantly (p < 0.01) lower than that of CS. These results provide data support for establishing a microbial regulation theory for silage fermentation, thereby improving the basic research system for the biological conversion of agricultural by-products and alleviating feed shortages in dry seasons. Full article
Show Figures

Figure 1

15 pages, 2209 KiB  
Article
Exploration of Phosphorus Release Characteristics in Sediments from the Plains River Network: Vertical Distribution and the Response of Phosphorus and Microorganisms
by Xiaoshuang Dong, Haojie Chen, Yongsheng Chang, Xixi Yang, Haoran Yang and Wei Huang
Water 2025, 17(15), 2196; https://doi.org/10.3390/w17152196 - 23 Jul 2025
Viewed by 231
Abstract
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were [...] Read more.
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were collected using a sampler and divided into five layers according to the collection depth, namely the surface layer (5 cm), the second layer (15 cm), the third layer (25 cm), the fourth layer (35 cm), and the bottom layer (45 cm). This study analyzed the vertical distribution of each form of phosphorus, the vertical distribution of the microbial community, and the response between the two in the sediments of this plain river network. The results showed high sediment TP concentrations (633.9–2534.7 mg/kg) in this plain river network. The vertical distribution trend of Fe-P was almost the same as that of TP and had the highest concentration (134.9–1860.1 mg/kg). Ca-P is the second highest phosphorus content, which is also an inert phosphorus component, as well as Al-P, and both exhibit a relatively low percentage of surface layers. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria showed heterogeneity in the vertical distribution of sediments. The river network sediments in the Plains River have a high potential for phosphorus release, with most sites acting as phosphorus “sources”. The sediments in the second of these layers show a strong tendency to release phosphorus. Bottom sediments have a low capacity to both adsorb and release phosphorus. The findings of this study will provide a theoretical foundation for the prevention and management of river networks in this plain. Full article
Show Figures

Figure 1

23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 287
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

25 pages, 1611 KiB  
Review
Microbial Interactions in Food Fermentation: Interactions, Analysis Strategies, and Quality Enhancement
by Wenjing Liu, Yunxuan Tang, Jiayan Zhang, Juan Bai, Ying Zhu, Lin Zhu, Yansheng Zhao, Maria Daglia, Xiang Xiao and Yufeng He
Foods 2025, 14(14), 2515; https://doi.org/10.3390/foods14142515 - 17 Jul 2025
Viewed by 386
Abstract
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these [...] Read more.
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these interaction patterns, the safety, nutritional composition, and flavor quality of food can be effectively improved. Achieving precise control of fermented foods’ qualities via microbial interaction remains a critical challenge. Emerging technologies such as high-throughput sequencing, cell sorting, and metabolomics enable the systematic analysis of core microbial interaction mechanisms in complex systems. Using synthetic microbial communities and genome-scale metabolic network models, complicated microbial communities can be effectively simplified. In addition, regulatory targets of food quality can be precisely identified. These strategies lay a solid foundation for the precise improvement of fermented food quality and functionality. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
The Association Between Supragingival Plaque Microbial Profiles and the Clinical Severity of Oral Lichen Planus Subtypes: A Cross-Sectional Case–Control Study
by Soo-Min Ok, Hye-Min Ju, Sung-Hee Jeong, Yong-Woo Ahn, Ji-Young Joo, Jung Hwa Park, Si Yeong Kim, Jin Chung and Hee Sam Na
J. Clin. Med. 2025, 14(14), 5078; https://doi.org/10.3390/jcm14145078 - 17 Jul 2025
Viewed by 228
Abstract
Background/Objective: Oral lichen planus (OLP) is a chronic inflammatory disorder of the oral mucosa with unclear etiology. Increasing evidence implicates oral microbial dysbiosis in its pathogenesis, but little is known about supragingival plaque communities in relation to clinical subtypes. This cross-sectional case–control [...] Read more.
Background/Objective: Oral lichen planus (OLP) is a chronic inflammatory disorder of the oral mucosa with unclear etiology. Increasing evidence implicates oral microbial dysbiosis in its pathogenesis, but little is known about supragingival plaque communities in relation to clinical subtypes. This cross-sectional case–control study aimed to characterize the supragingival plaque microbiota and microbial interaction networks in erosive OLP (E-OLP), non-erosive OLP (NE-OLP), and healthy controls (HCs), to elucidate microbial patterns associated with disease severity. Methods: Supragingival plaque samples were collected from 90 participants (30 per group) and analyzed using 16S rRNA gene sequencing. Alpha and beta diversity metrics, differential abundance, and co-occurrence network analyses were performed. Results: E-OLP exhibited pronounced dysbiosis, including the enrichment of pro-inflammatory taxa (e.g., Prevotella, Parvimonas) and depletion of health-associated commensals (e.g., Rothia, Capnocytophaga). Network analysis revealed the stepwise disintegration of microbial community structure from HC to NE-OLP to E-OLP, with reduced connectivity and increased dominance of pathogenic clusters in E-OLP. These microbial alterations aligned with clinical findings, as E-OLP patients showed significantly higher Reticulation/keratosis, Erythema, and Ulceration (REU) scores for erythema and ulceration compared to NE-OLP. Conclusions: Supragingival plaque dysbiosis and ecological disruption are strongly associated with OLP severity and subtype. This study highlights the utility of plaque-based microbial profiling in capturing lesion-proximal dysbiotic signals, which may complement mucosal and salivary analyses in future diagnostic frameworks. Multi-omics approaches incorporating fungal, viral, and metabolic profiling are warranted to fully elucidate host–microbe interactions in OLP. Full article
Show Figures

Figure 1

19 pages, 23863 KiB  
Article
Topographic Habitat Drive the Change of Soil Fungal Community and Vegetation Soil Characteristics in the Rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan Region
by Liangyu Lyu, Pei Gao, Zongcheng Cai, Fayi Li and Jianjun Shi
J. Fungi 2025, 11(7), 531; https://doi.org/10.3390/jof11070531 - 17 Jul 2025
Viewed by 342
Abstract
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to [...] Read more.
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to elucidate the association patterns between these communities and soil physicochemical factors. The species composition, diversity, molecular co-occurrence network, and FUNGuild function of microbial communities were investigated based on high-throughput sequencing technology. By combining the Mantel test and RDA analysis, the key habitat factors affecting the structure of the soil fungal community in the rhizosphere zone of Kengyilia thoroldiana were explored. The results showed that: ① The composition of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed significant differentiation characteristics: the number of OTUs in H2 (depression) and H5 (transitional zone) habitats was the highest (336 and 326, respectively). Habitats H2 showed a significant increase in the abundance of Ascomycota and Mortierellomycota and a significant decrease in the abundance of Basidiomycota compared to the other topographical habitats. ② The diversity and aggregation degree of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed differences. ③ Cluster analysis showed that the rhizosphere soil fungi in five topographical habitats of Kengyilia thoroldiana could be divided into two groups, with H2, H4 (mountain pass), and H5 habitats as one group (group 1) and H1 and H3 (shady slope) as one group (group 2). ④ The characteristics of the Kengyilia thoroldiana community and the physical and chemical properties of rhizosphere soil in five topographical habitats were significantly different, and the height, coverage, biomass, and soil nutrient content were the highest in H2 and H5 habitats, while lower in H1 and H3 habitats, with significant differences (p < 0.05). ⑤ Redundancy analysis showed that soil water content was the main driving factor to change the structure and function of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographic habitats in the Sanjiangyuan region. This study demonstrated that topographic habitats affected the species composition, functional pattern, and ecosystem service efficiency of the Kengyilia thoroldiana rhizosphere fungal community by mediating soil environmental heterogeneity, which provides microbial mechanistic insights for alpine meadow ecosystem protection. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments, 2nd Edition)
Show Figures

Figure 1

23 pages, 5171 KiB  
Article
Investigation into the Enhancement Effects of Combined Bioremediation of Petroleum-Contaminated Soil Utilizing Immobilized Microbial Consortium and Sudan Grass
by Tie-Jun Wang, Zi-Yue Ding, Zi-Wei Hua, Zi-Wang Yuan, Qiu-Hong Niu and Hao Zhang
Toxics 2025, 13(7), 599; https://doi.org/10.3390/toxics13070599 - 16 Jul 2025
Viewed by 308
Abstract
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of [...] Read more.
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of distinct petroleum components were combined with the rhamnolipid-producing strain Pseudomonas aeruginosa SL-1. The immobilization of this petroleum-degrading microbial consortium was performed by biochar adsorption and sodium alginate embedding, subsequently optimized using response surface methodology (0.75 g·L−1 of biochar, 40 g·L−1 of sodium alginate, and 40 g·L−1 of calcium chloride). The results showed that the highest petroleum degradation rate (97.1%) of immobilized bacterial consortium was achieved at 72 h at a petroleum concentration of 5.0 g·L−1. When combined with Sudan grass for soil bioremediation, the degradation rate reached 72.8% after 120 d for soil containing 5.0 g·kg−1 of petroleum, higher than the results for the treatments with only immobilized bacterial consortium (53.0%) or Sudan grass (49.2%). Furthermore, significant improvements were observed for soil pH; nitrogen, phosphorus, and potassium contents; and urease, dehydrogenase, and catalase activities. Composite treatment also significantly increased the diversity and richness of the soil bacterial community and regulated its structure, function, and network composition. This study offers theoretical insights and potential practical applications for the enhanced bioremediation of petroleum-contaminated soils. Full article
Show Figures

Graphical abstract

Back to TopTop