Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Zinc Samples
2.2. Microorganisms
2.3. Tissue Culture Plate Method
2.4. Biofilm Formation Assaya
2.5. Antibiotic Susceptibility Testing
3. Results and Discussion
3.1. Minimum Inhibitory Concentration
3.2. The Effect on the Planktonic Growth
3.3. The Effect on the Biofilm Formation
3.4. Antibiotic Susceptibility Testing Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, C.; Rajasekharan, S.K.; Reifen, R.; Shemesh, M. Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods 2020, 9, 1094. [Google Scholar] [CrossRef] [PubMed]
- Anthonia, D.N.; Ifeoma, C.E.; Onuora, C.C. Evaluation of Different Salts and Heavy Metal Concentrations on Bacterial Biofilm from Selected Surface and Borehole Water Samples. Front. Environ. Microbiol. 2020, 6, 11. [Google Scholar] [CrossRef]
- Demjanenko, P.; Zheng, S.; Crane, J.K. SOS-Inducing Drugs Trigger Nucleic Acid Release and Biofilm Formation in Gram-Negative Bacteria. Biomolecules 2024, 14, 321. [Google Scholar] [CrossRef] [PubMed]
- Pourmehdiabadi, A.; Nobakht, M.S.; Balajorshari, B.H.; Yazdi, M.R.; Amini, K. Investigating the Effects of Zinc Oxide and Titanium Dioxide Nanoparticles on the Formation of Biofilm and Persister Cells in Klebsiella pneumoniae. J. Basic Microbiol. 2024, 64, e2300454. [Google Scholar] [CrossRef]
- Buzza, K.M.; Pluen, A.; Doherty, C.; Cheesapcharoen, T.; Singh, G.; Ledder, R.; Sreenivasan, P.; McBain, A. Modulation of Biofilm Formation and Permeability in Streptococcus mutans during Exposure to Zinc Acetate. Microbiol. Spectr. 2023, 11, e0252722. [Google Scholar] [CrossRef]
- Quan, G.; Xia, P.; Lian, S.; Wu, Y.; Zhu, G. Zinc Uptake System ZnuACB Is Essential for Maintaining the Pathogenic Phenotype of F4ac+ Enterotoxigenic Escherichia coli (ETEC) under a Zinc-Restricted Environment. Vet. Res. 2020, 51, 127. [Google Scholar] [CrossRef]
- Rihacek, M.; Kosaristanova, L.; Fialová, T.; Kuthanova, M.; Eichmeier, A.; Hakalova, E.; Cerny, M.; Berka, M.; Palkovičová, J.; Dolejska, M.; et al. Zinc Effects on Bacteria: Insights from Escherichia coli by Multi-Omics Approach. mSystems 2023, 8, e00733-23. [Google Scholar] [CrossRef]
- Alipour-Khezri, E.; Moqadami, A.; Barzegar, A.; Mahdavi, M.; Skurnik, M.; Zarrini, G. Bacteriophages and Green Synthesized Zinc Oxide Nanoparticles in Combination Are Efficient against Biofilm Formation of Pseudomonas aeruginosa. Viruses 2024, 16, 897. [Google Scholar] [CrossRef]
- Mardani, S.; Fozouni, L.; Najafpour, G. Zinc Oxide Nanoparticles: A Promising Solution for Controlling the Growth of Gentamicin-Resistant Uropathogenic Escherichia coli. Infect. Epidemiol. Microbiol. 2022, 8, 99–106. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Partoazar, A. Targeting Bacterial Biofilm-Related Genes with Nanoparticle-Based Strategies. Front. Microbiol. 2024, 15, 1387114. [Google Scholar] [CrossRef]
- Panda, P.S.; Chaudhary, U.; Dube, S.K. Comparison of four different methods for detection of biofilm formation by uropathogens. Indian J. Pathol. Microbiol. 2016, 59, 177–179. [Google Scholar] [CrossRef] [PubMed]
- CLSI M02; Performance Standards for Antimicrobial Disk Susceptibility Tests. CLSI: Malvern, PA, USA, 2024. Available online: https://clsi.org/standards/products/microbiology/documents/m02/ (accessed on 10 January 2025).
- Abdalkader, D.; Al-Saedi, F. Antibacterial Effect of Different Concentrations of Zinc Sulfate on Multidrug Resistant Pathogenic Bacteria. Syst. Rev. Pharm. 2020, 11, 282–288. [Google Scholar]
- Danilova, T.; Danilina, G.; Adzhieva, A.A.; Vostrova, E.I.; Zhukhovitskii, V.G.; Cheknev, S.B. Inhibitory Effect of Copper and Zinc Ions on the Growth of Streptococcus pyogenes and Escherichia coli Biofilms. Bull. Exp. Biol. Med. 2020, 169, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Ramdas, I.; Devi, C.S. Inhibitory Effect of Zinc Sulfate on Clinical Isolates of Pseudomonas aeruginosa and Acinetobacter baumannii. J. Glob. Infect. Dis. 2020, 12, 217–218. [Google Scholar] [CrossRef]
- Jie, L.J.; Chi, L.Z.; Wong, L.; Rajamani, R.; Djearamane, S. Antibacterial Efficacy of Zinc Oxide Nanoparticles Against Serratia marcescens (ATCC 43862) and Enterococcus faecalis (ATCC 29121). J. Exp. Biol. Agric. Sci. 2022, 10, 1069–1075. [Google Scholar] [CrossRef]
- Artyukh, T.; Sidorovich, E.; Ostrovskaya, O. The Effect of Amino Acids and Zinc Salts on the Growth Kinetics of Bacteria of the Genus Escherichia and Staphylococcus. Sci. Innov. 2023, 12, 73–80. [Google Scholar] [CrossRef]
- Molnár-Nagy, V.; Tso, K.H.; Hall, J.W.; Téllez-Isaías, G.; Hernández-Velasco, X.; Layton, S.; Bata, Z. Effects of Different Nutritional Zinc Forms on the Proliferation of Beneficial Commensal Microorganisms. Microbiol. Res. 2022, 13, 500–513. [Google Scholar] [CrossRef]
- Matyszczuk, K.; Krzepiłko, A. Model Study for Interaction of Sublethal Doses of Zinc Oxide Nanoparticles with Environmentally Beneficial Bacteria Bacillus thuringiensis and Bacillus megaterium. Int. J. Mol. Sci. 2022, 23, 11820. [Google Scholar] [CrossRef]
- Karaman, D.; Karakaplan, M. Effect of Zinc Oxide Nanoparticles on the Growth of Gram-Positive and Gram-Negative Bacteria. In Proceedings of the 2021 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 4–6 November 2021; pp. 1–3. [Google Scholar]
- Chausov, D.; Burmistrov, D.; Kurilov, A.; Bunkin, N.; Astashev, M.; Simakin, A.; Vedunova, M.; Gudkov, S. New Organosilicon Composite Based on Borosiloxane and Zinc Oxide Nanoparticles Inhibits Bacterial Growth, but Does Not Have a Toxic Effect on the Development of Animal Eukaryotic Cells. Materials 2021, 14, 6281. [Google Scholar] [CrossRef]
- Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.; Patel, P.R.; Thorat-Gadgil, B.S.; Pandit, A.; Bohara, R. Biofilm Formation to Inhibition: Role of Zinc Oxide-Based Nanoparticles. Mater. Sci. Eng. C 2020, 108, 110319. [Google Scholar] [CrossRef]
- Fan, S.; Qin, P.; Lu, J.; Wang, S.; Zhang, J.; Wang, Y.; Cheng, A.; Cao, Y.; Ding, W.; Zhang, W. Bioprospecting of Culturable Marine Biofilm Bacteria for Novel Antimicrobial Peptides. iMeta 2024, 3, e244. [Google Scholar] [CrossRef] [PubMed]
- Bianchini Fulindi, R.; Rodrigues, J.D.; Barbosa, T.W.L.; Garcia, A.D.G.; La Porta, F.A.; Pratavieira, S.; Chiavacci, L.A.; Araújo Junior, J.P.; da Costa, P.I.; Martinez, L.R. Zinc-Based Nanoparticles Reduce Bacterial Biofilm Formation. Microbiol. Spectr. 2023, 11, e0483122. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Wang, C.; Yu, X.; Su, W.; Yuan, Z. Chitosan/Zinc Nitrate Microneedles for Bacterial Biofilm Eradication. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Faiq, N.H.; Ahmed, M.E. Effect of Biosynthesized Zinc Oxide Nanoparticles on Phenotypic and Genotypic Biofilm Formation of Proteus mirabilis. Baghdad Sci. J. 2024, 21, 0894–0908. [Google Scholar] [CrossRef]
- Adekanmbi, A.; Adeleke, O.; Aremu, O.; Olaposi, A.V. Molecular Characterization, Antibiogram and Distribution of zntA Gene in Zinc-Resistant Escherichia coli Population Recovered from Anthropogenically-Influenced Surface Water Sources in Nigeria. Meta Gene 2020, 26, 100789. [Google Scholar] [CrossRef]
- Nechifor, M.; Luca, C.; Galeș, C. Interactions of Antibacterial Antibiotics with Magnesium and Zinc. Int. J. Innov. Res. Med. Sci. 2024, 9, 50–58. [Google Scholar] [CrossRef]
- Andrews, R.; Bollar, G.; Giattina, A.S.; Dalecki, A.G.; Wallace, J.R.; Frantz, L.; Eschliman, K.; Covarrubias-Zambrano, O.; Keith, J.; Duverger, A.; et al. Repurposing Sunscreen as an Antibiotic: Zinc-Activated Avobenzone Inhibits Methicillin-Resistant Staphylococcus aureus. Metallomics 2023, 15, mfad049. [Google Scholar] [CrossRef]
- Bhat, S.; Jeffs, M. Effects of ZinT-Mediated Zinc Sequestration on Metallo-β-Lactamase Function in Escherichia coli. In Proceedings of the Inquiry@Queen’s Undergraduate Research Conference Proceedings, Kingston, ON, Canada, 7–8 March 2024. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, W.; Huang, H.; Tang, Y.Q.; Wang, W.; Meng, F.; Wang, H.; Zheng, Y. Iron and Zinc Ions, Potent Weapons Against Multidrug-Resistant Bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 5213–5227. [Google Scholar] [CrossRef]
- Deumić, S.; El Sayed, A.; Hsino, M.; Glamočak, A.; Crnčević, N.; Avdić, M. Investigating the Effect of Iron Salts on E. coli and E. faecalis Biofilm Formation in Water Distribution Pipelines. Water 2025, 17, 886. [Google Scholar] [CrossRef]
Formula | Biofilm Formation |
---|---|
OD ≤ ODc | Non-adherent |
ODc < OD ≤ 2ODc | Weakly adherent |
2ODc < OD ≤ 4ODc | Moderately adherent |
4ODc < OD | Strongly adherent |
Bacterial Strain | MIC (mg/mL) | |
---|---|---|
ZnSO4 × 7H2O | ZnCl2 | |
Escherichia coli ATCC 14169 | 5 | 10 |
Escherichia coli ATCC 25922 | 0.625 | 0.312 |
Enterococcus faecalis ATCC 19433 | 1.25 | 0.625 |
Enterococcus faecalis ATCC 29212 | 2.5 | 2.5 |
ABG | E. coli ATCC 14169 | E. coli ATCC 25922 | ||||
---|---|---|---|---|---|---|
PC | ZnSO4 × 7H2O | ZnCl2 | PC | ZnSO4 × 7H2O | ZnCl2 | |
DXT 30 | 15.00 ± 0.00 | 16.50 ± 0.71 | 15.50 ± 0.71 | 21.00 ± 0.00 | 20.50 ± 0.71 | 21.00 ± 0.00 |
AML 30 | 20.00 ± 0.00 | 22.00 ± 0.00 | 21.00 ± 0.00 | 21.00 ± 0.00 | 20.00 ± 1.41 | 18.50 ± 0.71 |
MEZ 75 | 21.00 ± 0.00 | 19.00 ± 0.00 | 21.50 ± 0.71 | 26.00 ± 1.41 | 30.00 ± 3.54 | 25.50 ± 0.71 |
CXM 30 | 19.00 ± 0.00 | 20.50 ± 0.71 | 18.00 ± 0.00 | 24.00 ± 0.00 | 24.00 ± 0.00 | 24.00 ± 0.00 |
CAZ 30 | 22.50 ± 0.71 | 22.00 ± 0.00 | 22.50 ± 0.71 | 28.00 ± 0.00 | 28.00 ± 0.00 | 29.00 ± 0.00 |
CRO 30 | 28.00 ± 0.00 | 30.00 ± 0.00 | 27.00 ± 0.00 | 32.00 ± 0.00 | 32.00 ± 0.00 | 32.50 ± 0.71 |
AMP 2 | R | R | R | R | R | R |
AUG 30 | 20.00 ± 0.00 | 21.00 ± 0.00 | 19.00 ± 1.41 | 19.00 ± 1.41 | 21.00 ± 0.00 | 17.50 ± 0.71 |
CAL 40 | 25.00 ± 0.00 | 24.50 ± 0.71 | 25.00 ± 0.00 | 28.50 ± 0.71 | 29.50 ± 0.71 | 28.50 ± 0.71 |
CIP 5 | 31.00 ± 1.41 | 33.00 ± 0.00 | 31.00 ± 1.41 | 35.50 ± 0.71 | 34.00 ± 0.00 | 34.00 ± 0.00 |
CN 30 | 21.50 ± 0.71 | 22.00 ± 0.00 | 22.00 ± 0.00 | 25.50 ± 0.71 | 25.50 ± 0.71 | 25.50 ± 0.71 |
CN 10 | 19.50 ± 0.71 | 20.50 ± 0.71 | 20.00 ± 0.00 | 22.00 ± 0.00 | 22.00 ± 0.00 | 22.00 ± 0.00 |
K 30 | 18.00 ± 0.00 | 19.00 ± 0.00 | 17.00 ± 0.00 | 21.00 ± 0.00 | 21.50 ± 0.71 | 22.00 ± 0.00 |
TOB 10 | 18.50 ± 0.71 | 20.00 ± 0.00 | 18.50 ± 0.71 | 21.00 ± 0.00 | 19.50 ± 0.71 | 21.00 ± 0.00 |
TE 30 | 15.00 ± 0.00 | 13.00 ± 0.00 | 15.50 ± 0.71 | 19.50 ± 0.71 | 20.00 ± 0.00 | 18.50 ± 0.71 |
ABG | E. faecalis ATCC 19433 | E. faecalis ATCC 29212 | ||||
---|---|---|---|---|---|---|
PC | ZnSO4 × 7H2O | ZnCl2 | PC | ZnSO4 × 7H2O | ZnCl2 | |
DXT 30 | 15.50 ± 0.71 | 17.50 ± 0.71 | 12.50 ± 0.71 | 11.00 ± 0.00 | 13.50 ± 0.71 | 15.00 ± 0.00 |
AML 30 | 20.00 ± 0.00 | 21.50 ± 0.71 | 19.00 ± 1.41 | 20.00 ± 0.00 | 27.00 ± 0.00 | 27.00 ± 0.00 |
MEZ 75 | 20.50 ± 0.71 | 23.50 ± 0.71 | 21.50 ± 0.71 | 26.00 ± 1.41 | 25.00 ± 0.00 | 28.50 ± 0.71 |
CXM 30 | 17.50 ± 0.71 | 19.50 ± 0.71 | 17.00 ± 0.00 | 16.00 ± 1.41 | R | R |
CAZ 30 | 22.00 ± 0.00 | 24.00 ± 0.00 | 22.00 ± 0.00 | 10.50 ± 0.71 | R | R |
CRO 30 | 27.50 ± 0.71 | 29.00 ± 0.00 | 26.00 ± 1.41 | 20.00 ± 0.00 | R | R |
AMP 2 | R | R | R | 10.00 ± 0.00 | 14.50 ± 0.71 | 15.50 ± 0.71 |
AUG 30 | 19.00 ± 0.00 | 18.50 ± 0.71 | 18.00 ± 0.00 | 24.00 ± 0.00 | 26.00 ± 0.00 | 25.00 ± 0.00 |
CAL 40 | 23.50 ± 0.71 | 25.00 ± 0.00 | 16.00 ± 1.41 | 12.00 ± 0.00 | R | 13.50 ± 0.71 |
CIP 5 | 31.50 ± 0.71 | 30.00 ± 0.00 | 27.50 ± 0.71 | 20.00 ± 0.00 | 20.00 ± 0.00 | 21.00 ± 1.41 |
CN 30 | 21.50 ± 0.71 | 21.50 ± 0.71 | 20.00 ± 0.00 | 17.50 ± 0.71 | 15.00 ± 0.00 | 20.00 ± 0.00 |
CN 10 | 19.50 ± 0.71 | 19.50 ± 0.71 | 17.00 ± 0.00 | 11.50 ± 0.71 | 10.50 ± 0.71 | 17.00 ± 0.00 |
K 30 | 18.50 ± 0.71 | 17.50 ± 0.71 | 16.50 ± 0.71 | 25.50 ± 0.71 | 10.00 ± 0.00 | 12.00 ± 0.00 |
TOB 10 | 18.00 ± 0.00 | 19.00 ± 0.00 | 19.50 ± 0.71 | 26.00 ± 1.41 | 10.00 ± 0.00 | 14.00 ± 0.00 |
TE 30 | 12.00 ± 0.00 | 13.00 ± 0.00 | 16.00 ± 1.41 | 11.50 ± 0.71 | 12.00 ± 0.00 | 14.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deumić, S.; El Sayed, A.; Hsino, M.; Kulesa, A.; Crnčević, N.; Vladavić, N.; Borić, A.; Avdić, M. Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation. Appl. Sci. 2025, 15, 8383. https://doi.org/10.3390/app15158383
Deumić S, El Sayed A, Hsino M, Kulesa A, Crnčević N, Vladavić N, Borić A, Avdić M. Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation. Applied Sciences. 2025; 15(15):8383. https://doi.org/10.3390/app15158383
Chicago/Turabian StyleDeumić, Sara, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić, and Monia Avdić. 2025. "Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation" Applied Sciences 15, no. 15: 8383. https://doi.org/10.3390/app15158383
APA StyleDeumić, S., El Sayed, A., Hsino, M., Kulesa, A., Crnčević, N., Vladavić, N., Borić, A., & Avdić, M. (2025). Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation. Applied Sciences, 15(15), 8383. https://doi.org/10.3390/app15158383