Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,659)

Search Parameters:
Keywords = miR528

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11006 KiB  
Article
Supervised Machine-Based Learning and Computational Analysis to Reveal Unique Molecular Signatures Associated with Wound Healing and Fibrotic Outcomes to Lens Injury
by Catherine Lalman, Kylie R. Stabler, Yimin Yang and Janice L. Walker
Int. J. Mol. Sci. 2025, 26(15), 7422; https://doi.org/10.3390/ijms26157422 (registering DOI) - 1 Aug 2025
Abstract
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and [...] Read more.
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and fibrotic outcomes in the lens remains unclear. Here, we used an ex vivo chick lens injury model to simulate post-surgical conditions, collecting RNA from lenses undergoing either regenerative wound healing or fibrosis between days 1–3 post-injury. Bulk RNA sequencing data were normalized, log-transformed, and subjected to univariate filtering prior to training LASSO, SVM, and RF ML models to identify discriminatory gene signatures. Each model was independently validated using a held-out test set. Distinct gene sets were identified, including fibrosis-associated genes (VGLL3, CEBPD, MXRA7, LMNA, gga-miR-143, RF00072) and wound-healing-associated genes (HS3ST2, ID1), with several achieving perfect classification. Gene Set Enrichment Analysis revealed divergent pathway activation, including extracellular matrix remodeling, DNA replication, and spliceosome associated with fibrosis. RT-PCR in independent explants confirmed key differential expression levels. These findings demonstrate the utility of supervised ML for discovering lens-specific fibrotic and regenerative gene features and nominate biomarkers for targeted intervention to mitigate PCO. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

34 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 5607 KiB  
Article
Tunable Dual-Mode Resonant Excitation of Dumbbell-Shaped Structures in the Mid-Infrared Band
by Tao Jiang, Yafei Li, Zhuangzhuang Xu, Xike Qian, Rui Shi, Xiufei Li, Meng Wang and Ze Li
Nanomaterials 2025, 15(15), 1181; https://doi.org/10.3390/nano15151181 - 31 Jul 2025
Abstract
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we [...] Read more.
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we designed and investigated novel dimeric dumbbell-shaped metasurfaces incorporating two independently tunable asymmetric parameters. This structural innovation enables the simultaneous excitation of both electric anapole and QBIC modes under normally incident MIR illumination. More importantly, by adjusting these two asymmetric parameters, one can independently tune the resonance peaks of the two modes, thereby overcoming the performance limits of conventional single-peak modulation. This metasurface design demonstrates outstanding performance for dielectric environment-sensing applications. We conducted a comprehensive investigation of the sensing sensitivity for dumbbell-shaped metasurfaces of various geometries. Our simulation results show that the circular-shaped configuration achieved high sensitivity, reaching 20,930 GHz/RIU. This work offers a novel design paradigm for multi-mode control and functionalization of metasurface structures. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

14 pages, 1316 KiB  
Article
Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle
by Xiaoli Ren, Chu Chu, Xiangnan Bao, Lei Yan, Xueli Bai, Haibo Lu, Changlei Liu, Zhen Zhang and Shujun Zhang
Animals 2025, 15(15), 2242; https://doi.org/10.3390/ani15152242 - 30 Jul 2025
Abstract
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow [...] Read more.
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow cytometry, which is expensive and time-consuming, particularly for DSCC analysis. Mid-infrared spectroscopy (MIR) enables qualitative and quantitative analysis of milk constituents with great advantages, being cheap, non-destructive, fast, and high-throughput. The objective of this study is to develop a dairy cattle udder health status diagnostic model of MIR. Data on milk composition, SCC, DSCC, and MIR from 2288 milk samples collected in dairy farms were analyzed using the CombiFoss 7 DC instrument (FOSS, Hilleroed, Denmark). Three MIR spectral preprocessing methods, six modeling algorithms, and three different sets of MIR spectral data were employed in various combinations to develop several diagnostic models for mastitis of dairy cattle. The MIR diagnostic model of effectively identifying the healthy and mastitis cattle was developed using a spectral preprocessing method of difference (DIFF), a modeling algorithm of Random Forest (RF), and 1060 wavenumbers, abbreviated as “DIFF-RF-1060 wavenumbers”, and the AUC reached 1.00 in the training set and 0.80 in the test set. The other MIR diagnostic model of effectively distinguishing mastitis and chronic/persistent mastitis cows was “DIFF-SVM-274 wavenumbers”, with an AUC of 0.87 in the training set and 0.85 in the test set. For more effective use of the model on dairy farms, it is necessary and worthwhile to gather more representative and diverse samples to improve the diagnostic precision and versatility of these models. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

34 pages, 1971 KiB  
Review
Research Progress in the Detection of Mycotoxins in Cereals and Their Products by Vibrational Spectroscopy
by Jihong Deng, Mingxing Zhao and Hui Jiang
Foods 2025, 14(15), 2688; https://doi.org/10.3390/foods14152688 - 30 Jul 2025
Abstract
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain [...] Read more.
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain consumption becomes increasingly time-sensitive and dynamic, traditional approaches face growing limitations. In recent years, emerging techniques—particularly molecular-based vibrational spectroscopy methods such as visible–near-infrared (Vis–NIR), near-infrared (NIR), Raman, mid-infrared (MIR) spectroscopy, and hyperspectral imaging (HSI)—have been applied to assess fungal contamination in grains and their products. This review summarizes research advances and applications of vibrational spectroscopy in detecting mycotoxins in grains from 2019 to 2025. The fundamentals of their work, information acquisition characteristics and their applicability in food matrices were outlined. The findings indicate that vibrational spectroscopy techniques can serve as valuable tools for identifying fungal contamination risks during the production, transportation, and storage of grains and related products, with each technique suited to specific applications. Given the close link between grain-based foods and humans, future efforts should further enhance the practicality of vibrational spectroscopy by simultaneously optimizing spectral analysis strategies across multiple aspects, including chemometrics, model transfer, and data-driven artificial intelligence. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 1330 KiB  
Article
A Comprehensive Approach to Rustc Optimization Vulnerability Detection in Industrial Control Systems
by Kaifeng Xie, Jinjing Wan, Lifeng Chen and Yi Wang
Mathematics 2025, 13(15), 2459; https://doi.org/10.3390/math13152459 - 30 Jul 2025
Abstract
Compiler optimization is a critical component for improving program performance. However, the Rustc optimization process may introduce vulnerabilities due to algorithmic flaws or issues arising from component interactions. Existing testing methods face several challenges, including high randomness in test cases, inadequate targeting of [...] Read more.
Compiler optimization is a critical component for improving program performance. However, the Rustc optimization process may introduce vulnerabilities due to algorithmic flaws or issues arising from component interactions. Existing testing methods face several challenges, including high randomness in test cases, inadequate targeting of vulnerability-prone regions, and low-quality initial fuzzing seeds. This paper proposes a test case generation method based on large language models (LLMs), which utilizes prompt templates and optimization algorithms to generate a code relevant to specific optimization passes, especially for real-time control logic and safety-critical modules unique to the industrial control field. A vulnerability screening approach based on static analysis and rule matching is designed to locate potential risk points in the optimization regions of both the MIR and LLVM IR layers, as well as in unsafe code sections. Furthermore, the targeted fuzzing strategy is enhanced by designing seed queues and selection algorithms that consider the correlation between optimization areas. The implemented system, RustOptFuzz, has been evaluated on both custom datasets and real-world programs. Compared with state-of-the-art tools, RustOptFuzz improves vulnerability discovery capabilities by 16%–50% and significantly reduces vulnerability reproduction time, thereby enhancing the overall efficiency of detecting optimization-related vulnerabilities in Rustc, providing key technical support for the reliability of industrial control systems. Full article
(This article belongs to the Special Issue Research and Application of Network and System Security)
Show Figures

Figure 1

25 pages, 5412 KiB  
Article
Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny
by Álvaro Solbes-García, Mirco Ramacciotti, Ester Alba Pagán, Gianni Gallello, María Luisa Vázquez de Ágredos Pascual and Ángel Morales Rubio
Heritage 2025, 8(8), 304; https://doi.org/10.3390/heritage8080304 - 30 Jul 2025
Viewed by 43
Abstract
Imaging techniques have revolutionized cultural heritage analysis, particularly for objects that cannot be sampled. This study investigated the utilization of spectral imaging for the identification of pigments in artifacts from the Arxiu Valencià del Disseny, in conjunction with other portable spectroscopy techniques [...] Read more.
Imaging techniques have revolutionized cultural heritage analysis, particularly for objects that cannot be sampled. This study investigated the utilization of spectral imaging for the identification of pigments in artifacts from the Arxiu Valencià del Disseny, in conjunction with other portable spectroscopy techniques such as XRF, Raman, FT-NIR, and FT-MIR. Four early 1930s watercolors were examined using point-wise elemental and molecular spectroscopic data for pigment classification. Initially, the data cubes obtained with the spectral camera were processed using various methods. The spectral behavior was analyzed pixel-point, and the reflectance curves were qualitatively compared with a set of standards. Subsequently, a computational approach was applied to the data cube to produce RGB, false-color infrared (IRFC), and principal component (PC) images. Algorithms, such as the Vector Angle (VA) mapper, were also employed to map the pigment spectra. Consequently, 19th-century pigments such as Prussian blue, chrome yellow, and alizarin red were distinguished according to their composition, combining the spatial and spectral dimensions of the data. Elemental analysis and infrared spectroscopy supported these findings. In this context, the use of reflectance imaging spectroscopy (RIS), despite its technical limitations, emerged as an essential tool for the documentation and conservation of design heritage. Full article
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 (registering DOI) - 29 Jul 2025
Viewed by 93
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

16 pages, 1974 KiB  
Review
MicroRNA528 and Its Regulatory Roles in Monocotyledonous Plants
by Hailin Fu, Liwei Zhang, Yulin Hu, Ziyi Liu, Zhenyu Wang, Fafu Shen and Wei Wang
Int. J. Mol. Sci. 2025, 26(15), 7334; https://doi.org/10.3390/ijms26157334 - 29 Jul 2025
Viewed by 94
Abstract
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial [...] Read more.
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial role in response to various biotic and abiotic stresses, such as plant pathogens, salt stress, heat/cold stress, water stress, arsenic stress, oxidative stress, heavy-metal stress, and nutrient stress. Given that it is specific to monocot plants, to which the major staple food crops such as rice and wheat belong, a review of studies investigating its diverse functional roles and underlying mechanisms is presented. This review focuses on the processes in which miR528 and its targets are involved and examines their regulatory relationships with significant participation in plant development and stress responses. It is anticipated that more biological functions and evolutionary effects of miRNA targets will be elucidated with the increase in knowledge of miRNA evolution and examination of target mRNAs. Full article
(This article belongs to the Special Issue Latest Reviews in Molecular Plant Science 2025)
Show Figures

Figure 1

14 pages, 950 KiB  
Article
Circulating miRNA Profile in Inflammatory Bowel Disease Patients with Stress, Anxiety, and Depression
by Maria Dobre, Teodora Ecaterina Manuc, Mircea Manuc, Ioan-Costin Matei, Anastasia-Maria Dobre, Andrei-Daniel Dragne, Elisabetta Maffioletti, Iulia Andreea Pelisenco and Elena Milanesi
Int. J. Mol. Sci. 2025, 26(15), 7321; https://doi.org/10.3390/ijms26157321 - 29 Jul 2025
Viewed by 175
Abstract
High rates of depression and anxiety have been reported among patients with inflammatory bowel disease (IBD). The bidirectional relationship between these two conditions, with each affecting the progression of the other, leads to a reduced quality of life. The aim of this study [...] Read more.
High rates of depression and anxiety have been reported among patients with inflammatory bowel disease (IBD). The bidirectional relationship between these two conditions, with each affecting the progression of the other, leads to a reduced quality of life. The aim of this study was to identify a miRNA-based pattern that may either be unique to IBD or associated with this complex phenotype. The levels of 179 miRNAs were assessed using qRT-PCR in the plasma of individuals primarily diagnosed with recurrent depressive disorder (SAD), IBD patients (IBD), IBD patients showing symptoms of stress, anxiety, and depression (IBD + SAD), and a control group. Four miRNAs were found to be specifically associated with IBD and more than 20 miRNAs with SAD. Notably, the levels of five miRNAs (miR-223-3p, miR-1260a, miR-320d, miR-423-5p, and miR-486-5p) differed in all the comparisons. miR-342-3p and miR-125a-5p were identified as possible biomarkers able to discriminate between IBD and IBD + SAD. The identification of this pattern of miRNA specific to IBD + SAD could be useful for monitoring disease activity and progression in IBD patients struggling with psychiatric symptoms, which can negatively impact adherence to follow-up care. Full article
(This article belongs to the Special Issue Inflammatory Bowel Diseases: Molecular Mechanism and Therapeutics)
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Viewed by 335
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 193
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

13 pages, 3424 KiB  
Article
Identification of miRNA/FGFR2 Axis in Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors
by Elisabetta Cavalcanti, Viviana Scalavino, Leonardo Vincenti, Emanuele Piccinno, Lucia De Marinis, Raffaele Armentano and Grazia Serino
Int. J. Mol. Sci. 2025, 26(15), 7232; https://doi.org/10.3390/ijms26157232 - 26 Jul 2025
Viewed by 230
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors with different clinical and biological characteristics. Ki-67 staining and mitotic counts are the most commonly used prognostic markers, but these methods are time-consuming and lack reproducibility, highlighting the need for innovative approaches that improve histological evaluation [...] Read more.
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors with different clinical and biological characteristics. Ki-67 staining and mitotic counts are the most commonly used prognostic markers, but these methods are time-consuming and lack reproducibility, highlighting the need for innovative approaches that improve histological evaluation and prognosis. In our previous study, we observed that the microRNA (miRNA) expression profile of GEP-NENs correlates with the three grades of GEP-NENs. This study aimed to characterize a group of miRNAs that discriminate well-differentiated GEP-NENs grading 1 (G1) and grading (G2). Fifty formalin-fixed and paraffin-embedded tissue specimens from well-differentiated GEP-NENs G1 and G2 tissues were used for this study. The expression levels of 21 miRNAs were examined using qRT-PCR, while FGFR2 and FGF1 protein expression were evaluated through immunohistochemistry (IHC). We identified four miRNAs (hsa-miR-133, hsa-miR-150-5p, hsa-miR-143-3p and hsa-miR-378a-3p) that are downregulated in G2 GEP-NENs compared to G1. Bioinformatic analysis revealed that these miRNAs play a key role in modulating the FGF/FGFR signaling pathway. Consistent with this observation, we found that fibroblast growth factor receptor 2 (FGFR2) expression is markedly higher in G2 NENs patients, whereas its expression remains low in G1 NENs. Our findings highlight the potential use of miRNAs to confirm the histological evaluation of GEP-NENs by employing them as biomarkers for improving histological evaluation and tumor classification. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancers: Advances and Challenges, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop