Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny
Abstract
1. Introduction
2. Materials and Methods
2.1. Reflectance Imaging Spectroscopy
2.2. X-Ray Fluorescence
2.3. Raman and Infrared Spectroscopies
3. Results and Discussion
3.1. Yellow Pigments
3.2. Red Pigments
3.3. Blue Pigments
3.4. Secondary Colors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, C.; Kakoulli, I. Multispectral and Hyperspectral Imaging Technologies in Conservation: Current Research and Potential Applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Cosentino, A. Multispectral Imaging and the Art Expert. Spectrosc. Eur. 2015, 27, 6–9. [Google Scholar]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding Multispectral Imaging of Cultural Heritage: Determining Best Practice in MSI Analysis of Historical Artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Zahra, A.; Qureshi, R.; Sajjad, M.; Sadak, F.; Nawaz, M.; Khan, H.A.; Uzair, M. Current Advances in Imaging Spectroscopy and Its State-of-the-Art Applications. Expert Syst. Appl. 2024, 238, 122172. [Google Scholar] [CrossRef]
- Qureshi, R.; Uzair, M.; Khurshid, K.; Yan, H. Hyperspectral Document Image Processing: Applications, Challenges and Future Prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Polder, G.; Gowen, A. The Hype in Spectral Imaging. J. Spectr. Imaging 2020, 9, 1–4. [Google Scholar] [CrossRef]
- Al-Gaoudi, H.A.; Iannaccone, R. Multiband imaging techniques incorporated into the study of dyed ancient egyptian textile Fragments. Int. J. Conserv. Sci. 2021, 12, 893–906. [Google Scholar]
- Klisińska-Kopacz, A.; Obarzanowski, M.; Frączek, P.; Moskal-del Hoyo, M.; Gargano, M.; Goslar, T.; Chmielewski, F.; Dudała, J.; del Hoyo-Meléndez, J.M. An Analytical Investigation of a Wooden Panel Painting Attributed to the Workshop of Lucas Cranach the Elder. J. Cult. Herit. 2022, 55, 185–194. [Google Scholar] [CrossRef]
- Cucci, C.; Casini, A. Hyperspectral Imaging for Artworks Investigation. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 583–604. [Google Scholar]
- Malegori, C.; Alladio, E.; Oliveri, P.; Manis, C.; Vincenti, M.; Garofano, P.; Barni, F.; Berti, A. Identification of Invisible Biological Traces in Forensic Evidences by Hyperspectral NIR Imaging Combined with Chemometrics. Talanta 2020, 215, 120911. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Chen, C.; Zhao, G.; Ni, J. Deterioration Identification of Stone Cultural Heritage Based on Hyperspectral Image Texture Features. J. Cult. Herit. 2024, 69, 57–66. [Google Scholar] [CrossRef]
- Nassau, K. The Fifteen Causes of Color: The Physics and Chemistry of Color. Color Res. Appl. 1987, 12, 4–26. [Google Scholar] [CrossRef]
- Bacci, M. Fibre Optics Applications to Works of Art. Sens. Actuators B Chem. 1995, 29, 190–196. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and Mixtures Identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef]
- Gabrieli, F.; Delaney, J.K.; Erdmann, R.G.; Gonzalez, V.; van Loon, A.; Smulders, P.; Berkeveld, R.; van Langh, R.; Keune, K. Reflectance Imaging Spectroscopy (RIS) for Operation Night Watch: Challenges and Achievements of Imaging Rembrandt’s Masterpiece in the Glass Chamber at the Rijksmuseum. Sensors 2021, 21, 6855. [Google Scholar] [CrossRef] [PubMed]
- Vasco, G.; Aureli, H.; Fernández-Lizaranzu, I.; Moreno-Soto, J.; Križnar, A.; Parrilla-Giraldez, R.; Gómez-González, E.; Respaldiza Galisteo, M.A. Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville. Heritage 2024, 7, 5986–6007. [Google Scholar] [CrossRef]
- D’Elia, E.; Buscaglia, P.; Piccirillo, A.; Picollo, M.; Casini, A.; Cucci, C.; Stefani, L.; Romano, F.P.; Caliri, C.; Gulmini, M. Macro X-Ray Fluorescence and VNIR Hyperspectral Imaging in the Investigation of Two Panels by Marco d’Oggiono. Microchem. J. 2020, 154, 104541. [Google Scholar] [CrossRef]
- Angelin, E.M.; Ghirardello, M.; Babo, S.; Picollo, M.; Chelazzi, L.; Melo, M.J.; Nevin, A.; Valentini, G.; Comelli, D. The Multi-Analytical in Situ Analysis of Cadmium-Based Pigments in Plastics. Microchem. J. 2020, 157, 105004. [Google Scholar] [CrossRef]
- Asscher, Y.; Angelini, I.; Secco, M.; Parisatto, M.; Chaban, A.; Deiana, R.; Artioli, G. Combining Multispectral Images with X-Ray Fluorescence to Quantify the Distribution of Pigments in the Frigidarium of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 317–323. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ratoiu, L.; Rădvan, R. Characterization of Spray Paints Used in Street Art Graffiti by a Non-Destructive Multi-Analytical Approach. Color Res. Appl. 2021, 46, 183–194. [Google Scholar] [CrossRef]
- Grabowski, B.; Masarczyk, W.; Głomb, P.; Mendys, A. Automatic Pigment Identification from Hyperspectral Data. J. Cult. Herit. 2018, 31, 1–12. [Google Scholar] [CrossRef]
- Mounier, A.; Denoël, C.; Daniel, F. Material Identification of Three French Medieval Illuminations of the XVIth Century by Hyperspectral Imaging (Treasury of Bordeaux Cathedral, France). Color Res. Appl. 2016, 41, 302–307. [Google Scholar] [CrossRef]
- de Viguerie, L.; Pladevall, N.O.; Lotz, H.; Freni, V.; Fauquet, N.; Mestre, M.; Walter, P.; Verdaguer, M. Mapping Pigments and Binders in 15th Century Gothic Works of Art Using a Combination of Visible and near Infrared Hyperspectral Imaging. Microchem. J. 2020, 155, 104674. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Mattana, S.; Ramat, A.; Riitano, P.; Cicchi, R.; Fontana, R. Insights into the Stratigraphy and Palette of a Painting by Pietro Lorenzetti through Non-Invasive Methods. J. Cult. Herit. 2023, 61, 91–99. [Google Scholar] [CrossRef]
- Goltz, D.; Attas, M.; Young, G.; Cloutis, E.; Bedynski, M. Assessing Stains on Historical Documents Using Hyperspectral Imaging. J. Cult. Herit. 2010, 11, 19–26. [Google Scholar] [CrossRef]
- Vettori, S.; Verrucchi, M.; Di Benedetto, F.; Gioventù, E.; Benvenuti, M.; Pecchioni, E.; Costagliola, P.; Cagnini, A.; Porcinai, S.; Rimondi, V.; et al. Hyperspectral Sensor: A Handy Tool to Evaluate the Efficacy of Cleaning Procedures. J. Cult. Herit. 2021, 49, 79–84. [Google Scholar] [CrossRef]
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral Imaging Combined with Data Classification Techniques as an Aid for Artwork Authentication. J. Cult. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef]
- Li, G.H.; Chen, Y.; Sun, X.J.; Duan, P.Q.; Lei, Y.; Zhang, L.F. An Automatic Hyperspectral Scanning System for the Technical Investigations of Chinese Scroll Paintings. Microchem. J. 2020, 155, 104699. [Google Scholar] [CrossRef]
- Daniel, F.; Mounier, A.; Pérez-Arantegui, J.; Pardos, C.; Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; Castro, K. Hyperspectral Imaging Applied to the Analysis of Goya Paintings in the Museum of Zaragoza (Spain). Microchem. J. 2016, 126, 113–120. [Google Scholar] [CrossRef]
- Pérez-Arantegui, J.; Rupérez, D.; Almazán, D.; Díez-de-Pinos, N. Colours and Pigments in Late Ukiyo-e Art Works: A Preliminary Non-Invasive Study of Japanese Woodblock Prints to Interpret Hyperspectral Images Using in-Situ Point-by-Point Diffuse Reflectance Spectroscopy. Microchem. J. 2018, 139, 94–109. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Zhang, X.; Hu, X. Color Measurement of Single Yarn Based on Hyperspectral Imaging System. Color Res. Appl. 2020, 45, 485–494. [Google Scholar] [CrossRef]
- Zaffino, C.; Passaretti, A.; Poldi, G.; Fratelli, M.; Tibiletti, A.; Bestetti, R.; Saccani, I.; Guglielmi, V.; Bruni, S. A Multi-Technique Approach to the Chemical Characterization of Colored Inks in Contemporary Art: The Materials of Lucio Fontana. J. Cult. Herit. 2017, 23, 87–97. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Le Bourdon, G.; Servant, L.; Chapoulie, R.; Daniel, F. A Blue Can Conceal Another! Noninvasive Multispectroscopic Analyses of Mixtures of Indigo and Prussian Blue. Color Res. Appl. 2020, 45, 262–274. [Google Scholar] [CrossRef]
- Montagner, C.; Bacci, M.; Bracci, S.; Freeman, R.; Picollo, M. Library of UV-Vis-NIR Reflectance Spectra of Modern Organic Dyes from Historic Pattern-Card Coloured Papers. Spectrochim. Acta A Mol Biomol. Spectrosc. 2011, 79, 1669–1680. [Google Scholar] [CrossRef]
- Neugebauer, W.; Sessa, C.; Steuer, C.; Allscher, T.; Stege, H. Naphthol Green – a Forgotten Artists’ Pigment of the Early 20th Century. History, Chemistry and Analytical Identification. J. Cult. Herit. 2019, 36, 153–165. [Google Scholar] [CrossRef]
- Aceto, M.; Fenoglio, G.; Labate, M.; Picollo, M.; Bacci, M.; Agostino, A. A Fast Non-Invasive Method for Preliminary Authentication of Mediaeval Glass Enamels Using UV–Visible–NIR Diffuse Reflectance Spectrophotometry. J. Cult. Herit. 2020, 45, 33–40. [Google Scholar] [CrossRef]
- Hayem-Ghez, A.; Ravaud, E.; Boust, C.; Bastian, G.; Menu, M.; Brodie-Linder, N. Characterizing Pigments with Hyperspectral Imaging Variable False-Color Composites. Appl. Phys. A Mater. Sci. Process. 2015, 121, 939–947. [Google Scholar] [CrossRef]
- La Codre, H.; Marembert, C.; Claisse, P.; Daniel, F.; Chapoulie, R.; Servant, L.; Mounier, A. Non-invasive Characterization of Yellow Dyes in Tapestries of the 18th Century: Influence of Composition on Degradation. Color Res. Appl. 2021, 46, 613–622. [Google Scholar] [CrossRef]
- Oliveri, P.; Malegori, C.; Casale, M.; Tartacca, E.; Salvatori, G. An Innovative Multivariate Strategy for HSI-NIR Images to Automatically Detect Defects in Green Coffee. Talanta 2019, 199, 270–276. [Google Scholar] [CrossRef]
- Aviara, N.A.; Liberty, J.T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential Application of Hyperspectral Imaging in Food Grain Quality Inspection, Evaluation and Control during Bulk Storage. J. Agric. Food Res. 2022, 8, 100288. [Google Scholar] [CrossRef]
- Thien Pham, Q.; Liou, N.S. The Development of On-Line Surface Defect Detection System for Jujubes Based on Hyperspectral Images. Comput. Electron. Agric. 2022, 194, 106743. [Google Scholar] [CrossRef]
- Pronti, L.; Romani, M.; Verona-Rinati, G.; Tarquini, O.; Colao, F.; Colapietro, M.; Pifferi, A.; Cestelli-Guidi, M.; Marinelli, M. Post-Processing of VIS, NIR, and SWIR Multispectral Images of Paintings. New Discovery on the The Drunkenness of Noah, Painted by Andrea Sacchi, Stored at Palazzo Chigi (Ariccia, Rome). Heritage 2019, 2, 2275–2286. [Google Scholar] [CrossRef]
- Vázquez de Ágredos Pascual, M.L.; Solbes García, Á.; Ramacciotti, M.; Gallello, G.; Sala, S.H.; Iranzo, L.R.; Nuno, M.A.; Garay, J.C.I.; Nieto Villena, A. In-situ Technical Study of Contemporary Painting from the Heritage Collection of the Universitat de València, Spain. Canvases and Colorful Landscapes by Manuel Moreno Gimeno. Color Res. Appl. 2023, 48, 339–354. [Google Scholar] [CrossRef]
- Grillini, F.; de Ferri, L.; Pantos, G.A.; George, S.; Veseth, M. Reflectance Imaging Spectroscopy for the Study of Archaeological Pre-Columbian Textiles. Microchem. J. 2024, 200, 110168. [Google Scholar] [CrossRef]
- Ricciardi, P.; Delaney, J.K.; Facini, M.; Glinsman, L. Use of Imaging Spectroscopy and in Situ Analytical Methods for the Characterization of the Materials and Techniques of 15th Century Illuminated Manuscripts. J. Am. Inst. Conserv. 2013, 52, 13–29. [Google Scholar] [CrossRef]
- Mulholland, R.; Howell, D.; Beeby, A.; Nicholson, C.E.; Domoney, K. Identifying Eighteenth Century Pigments at the Bodleian Library Using in Situ Raman Spectroscopy, XRF and Hyperspectral Imaging. Herit. Sci. 2017, 5, 43. [Google Scholar] [CrossRef]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; Rie, E.R. de la Use of Imaging Spectroscopy, Fiber Optic Reflectance Spectroscopy, and X-Ray Fluorescence to Map and Identify Pigments in Illuminated Manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef]
- Mounier, A.; Daniel, F. Pigments & Dyes in a Collection of Medieval Illuminations (14th–16th Century). Color Res. Appl. 2017, 42, 807–822. [Google Scholar] [CrossRef]
- Dorado-Munoz, L.; Messinger, D.W.; Bove, D. Integrating Spatial and Spectral Information for Enhancing Spatial Features in the Gough Map of Great Britain. J. Cult. Herit. 2018, 34, 159–165. [Google Scholar] [CrossRef]
- Campanella, B.; Grifoni, E.; Hidalgo, M.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Palleschi, V. Multi-Technique Characterization of Madder Lakes: A Comparison between Non- and Micro-Destructive Methods. J. Cult. Herit. 2018, 33, 208–212. [Google Scholar] [CrossRef]
- Spectral Imaging Ltd. Techincal Note TN2021_9—Stray Light; Spectral Imaging Ltd.: Oulu, Finland, 2022. [Google Scholar]
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments Checker Version 3.0, a Handy Set for Conservation Scientists: A Free Online Raman Spectra Database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- Spectral Library | U.S. Geological Survey. Available online: https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library (accessed on 15 January 2023).
- Museum of Fine Arts Materials Database—CAMEO. Available online: https://cameo.mfa.org/wiki/Category:Materials_database (accessed on 14 September 2023).
- Picollo, M.; Basilissi, G.; Cucci, C.; Stefani, L.; Tsukada, M. SpectraDB Home Page. Available online: https://spectradb.ifac.cnr.it/ (accessed on 14 September 2023).
- Aguilar-Téllez, D.M.; Ruvalcaba-Sil, J.L.; Claes, P.; González-González, D. False Color and Infrared Imaging for the Identification of Pigments in Paintings. MRS Proc. 2014, 1618, 3–15. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of Colourants on Illuminated Manuscripts by Portable Fibre Optic UV-Visible-NIR Reflectance Spectrophotometry. Anal. Methods 2014, 6, 1488. [Google Scholar] [CrossRef]
- Dzinavatonga, K.; Bharuth-Ram, K.; Medupe, T.R. Mössbauer Spectroscopy Analysis of Valence State of Iron in Historical Documents Obtained from the National Library of South Africa. J. Cult. Herit. 2015, 16, 377–380. [Google Scholar] [CrossRef]
- Bicchieri, M.; Biocca, P.; Caliri, C.; Vostal, F.; Vostal, L.; Romano, F.P. Determining Old Chinese Non-Circulating Paper Money’s Authenticity Using μ-Raman and MA-XRF Spectroscopies. J. Cult. Herit. 2020, 46, 140–147. [Google Scholar] [CrossRef]
- Zhao, D.; Dai, Y.; Chen, K.; Sun, Y.; Yang, F.; Chen, K. Effect of Potassium Inorganic and Organic Salts on the Pyrolysis Kinetics of Cigarette Paper. J. Anal. Appl. Pyrolysis 2013, 102, 114–123. [Google Scholar] [CrossRef]
- Inagaki, T.; Siesler, H.W.; Mitsui, K.; Tsuchikawa, S. Difference of the Crystal Structure of Cellulose in Wood after Hydrothermal and Aging Degradation: A NIR Spectroscopy and XRD Study. Biomacromolecules 2010, 11, 2300–2305. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 107–149. [Google Scholar]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res. 1990, 95, 12653. [Google Scholar] [CrossRef]
- Doncea, S.M.; Ion, R.M.; Fierascui, R.C.; Bacalum, E.; Bunaciu, A.A.; Aboul-Enein, H.Y. Spectral methods for historical paper analysis: Composition and age approximation. Instrum. Sci. Technol. 2009, 38, 96–106. [Google Scholar] [CrossRef]
- Huang, J.; Yu, C. Determination of Cellulose, Hemicellulose and Lignin Content Using near-Infrared Spectroscopy in Flax Fiber. Text. Res. J. 2019, 89, 4875–4883. [Google Scholar] [CrossRef]
- Longoni, M.; Genova, B.; Marzanni, A.; Melfi, D.; Beccaria, C.; Bruni, S. FT-NIR Spectroscopy for the Non-Invasive Study of Binders and Multi-Layered Structures in Ancient Paintings: Artworks of the Lombard Renaissance as Case Studies. Sensors 2022, 22, 2052. [Google Scholar] [CrossRef]
- Zidan, Y.; El-Shafei, A.; Noshy, W.; Salim, E. A comparative study to evaluate conventional and nonconventional cleaning treatments of cellulosic paper supports. Mediterr. Archaeol. Archaeom. 2017, 17, 337–353. [Google Scholar] [CrossRef]
- Pandey, K.K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.-A.; Spiridon, I. Influence of Natural Fillers on the Properties of Starch-Based Biocomposite Films. Compos. B Eng. 2013, 44, 575–583. [Google Scholar] [CrossRef]
- Librando, V.; Minniti, Z.; Lorusso, S. Ancient and Modern Paper Characterization by FTIR and Micro-Raman Spectroscopy. Conserv. Sci. Cult. Herit. 2011, 11, 249–268. [Google Scholar] [CrossRef]
- Suryanto, H.; Aminnudin; Mahsuli; Wijaya, H.W.; Yanuhar, U. FTIR Analysis of Alkali Treatment on Bacterial Cellulose Films Obtained from Pineapple Peel Juice. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012145. [Google Scholar] [CrossRef]
- Rosi, F.; Burnstock, A.; Van den Berg, K.J.; Miliani, C.; Brunetti, B.G.; Sgamellotti, A. A Non-Invasive XRF Study Supported by Multivariate Statistical Analysis and Reflectance FTIR to Assess the Composition of Modern Painting Materials. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 1655–1662. [Google Scholar] [CrossRef]
- Grandjean, F.; Samain, L.; Long, G.J. Characterization and Utilization of Prussian Blue and Its Pigments. Dalton Trans. 2016, 45, 18018–18044. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J.; Cartwright, C. First Evidence and Characterisation of Rare Chrome-Based Colourants Used on 19th-Century Textiles from Myanmar. Dye. Pigment. 2023, 218, 111472. [Google Scholar] [CrossRef]
- Johnston-Feller, R. Color Science in the Examination of Museum Objects: Nondestructive Procedures; Getty Conservation Institute: Los Angeles, CA, USA, 2001; ISBN 0-89236-586-2. [Google Scholar]
- Cloutis, E.; Norman, L.; Cuddy, M.; Mann, P. Spectral Reflectance (350–2500 Nm) Properties of Historic Artists’ Pigments. II. Red–Orange–Yellow Chromates, Jarosites, Organics, Lead(–Tin) Oxides, Sulphides, Nitrites and Antimonates. J. Near Infrared Spectrosc. 2016, 24, 119–140. [Google Scholar] [CrossRef]
- Thoury, M.; Delaney, J.K.; De La Rie, E.R.; Palmer, M.; Morales, K.; Krueger, J. Near-Infrared Luminescence of Cadmium Pigments: In Situ Identification and Mapping in Paintings. Appl. Spectrosc. 2011, 65, 939–951. [Google Scholar] [CrossRef]
- Fonseca, B.; Schmidt Patterson, C.; Ganio, M.; MacLennan, D.; Trentelman, K. Seeing Red: Towards an Improved Protocol for the Identification of Madder- and Cochineal-Based Pigments by Fiber Optics Reflectance Spectroscopy (FORS). Herit. Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Langdon-Jones, E.E.; Pope, S.J.A. The Coordination Chemistry of Substituted Anthraquinones: Developments and Applications. Coord. Chem. Rev. 2014, 269, 32–53. [Google Scholar] [CrossRef]
- Steger, S.; Stege, H.; Bretz, S.; Hahn, O. A Complementary Spectroscopic Approach for the Non-Invasive in-Situ Identification of Synthetic Organic Pigments in Modern Reverse Paintings on Glass (1913–1946). J. Cult. Herit. 2019, 38, 20–28. [Google Scholar] [CrossRef]
- Cesaratto, A.; Centeno, S.A.; Lombardi, J.R.; Shibayama, N.; Leona, M. A Complete Raman Study of Common Acid Red Dyes: Application to the Identification of Artistic Materials in Polychrome Prints. J. Raman Spectrosc. 2017, 48, 601–609. [Google Scholar] [CrossRef]
- Singer, B.W.; Gardiner, D.J.; Derow, J.P. Analysis of white and blue pigments from watercolours by raman microscopy. Pap. Conserv. 1993, 17, 13–19. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection Infrared Spectroscopy for the Non-Invasive in Situ Study of Artists’ Pigments. Appl. Phys. A 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Roldán, C.; Juanes, D.; Ferrazza, L.; Carballo, J. Characterization of Sorolla’s Gouache Pigments by Means of Spectroscopic Techniques. Radiat. Phys. Chem. 2016, 119, 253–263. [Google Scholar] [CrossRef]
- Chakraborty, J.N. Colouration with Pigments. In Fundamentals and Practices in Colouration of Textiles; Elsevier: Amsterdam, The Netherlands, 2010; pp. 202–213. [Google Scholar]
- Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy Differentiation of flax and hemp by polarized ATR FTIR. Stud. Conserv. 2006, 51, 205–211. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Avramescu, S.M.; Vasilievici, G.; Fierascu, I.; Paunescu, A. Thermal and Spectroscopic Investigation of Romanian Historical Documents from the Nineteenth and Twentieth Century. J. Therm. Anal. Calorim. 2016, 123, 1309–1318. [Google Scholar] [CrossRef]
- Manfredi, M.; Barberis, E.; Rava, A.; Robotti, E.; Gosetti, F.; Marengo, E. Portable Diffuse Reflectance Infrared Fourier Transform (DRIFT) Technique for the Non-Invasive Identification of Canvas Ground: IR Spectra Reference Collection. Anal. Methods 2015, 7, 2313–2322. [Google Scholar] [CrossRef]
- Cañamares, M.V.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Surface-enhanced Raman Scattering Study of the Adsorption of the Anthraquinone Pigment Alizarin on Ag Nanoparticles. J. Raman Spectrosc. 2004, 35, 921–927. [Google Scholar] [CrossRef]
- Puglieri, T.S.; Madden, O.; Andrade, G.F.S. SHINERS in Cultural Heritage: Can SHINERS Spectra Always Be Compared with Normal Raman Spectra? A Study of Alizarin and Its Adsorption in the Silicon Dioxide Shell. J. Raman Spectrosc. 2021, 52, 1406–1417. [Google Scholar] [CrossRef]
- Bisulca, C.; Picollo, M.; Bacci, M.; Kunzelman, D.; Carrara, N.; Dure, P. UV-vis-NIR reflectance spectroscopy of red lakes in paintings. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Moon, T.; Schilling, M.R.; Thirkettle, S. A Note on the Use of False-Color Infrared Photography in Conservation. Stud. Conserv. 1992, 37, 42. [Google Scholar] [CrossRef]
- Valero, E.M.; Martínez-Domingo, M.A.; López-Baldomero, A.B.; López-Montes, A.; Abad-Muñoz, D.; Vílchez-Quero, J.L. Unmixing and Pigment Identification Using Visible and Short-Wavelength Infrared: Reflectance vs Logarithm Reflectance Hyperspaces. J. Cult. Herit. 2023, 64, 290–300. [Google Scholar] [CrossRef]
- Corbeil, M.-C.; Charland, J.-P.; Moffatt, E.A. The Characterization of Cobalt Violet Pigments. Stud. Conserv. 2002, 47, 237. [Google Scholar] [CrossRef]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Dyes and Pigments; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-33890-3. [Google Scholar]
Sample (ID) | Size (mm) | Color Palette (RGB) | Condition |
---|---|---|---|
Numero 132 (MG_132) | 266 × 440 | Blue (12, 38, 74); lavender (141, 129, 139); ochre (223, 172, 69); orange (190, 74, 26); brown (128, 52, 27); green (22, 71, 37); carmine red (195, 14, 21). | ‘Ref. 128’ in pencil. Paper acidification, color fading, stains, fingerprints. |
N° 145 (MG_145) | 281 × 455 | Brown (200, 68, 35); bronze (187, 30, 21) blue shades (39, 76, 106); violet (152, 47, 50); green (46, 74, 60); carmine red (186, 1, 11). | ‘Ref. 228’ in pencil. Paper acidification, foxing, fingerprints, material loss. |
Numero 147 (MG_147) | 270 × 465 | Brown (130, 60, 24); blue shades (11, 53, 100); purple (140, 44, 78); ochres (230, 183, 107); carmine red (194, 4, 10). | ‘Ref. 230’ in pencil. Paper acidification, foxing, material loss, color fading. |
Número 148 (MG_148) | 275 × 455 | Brown (117, 60, 35); blue shades (14, 61, 109); ochres (176, 126, 63); yellow (224, 168, 25); green shades (23, 70, 64); purple (125, 82, 112); carmine red (176, 35, 45). | ‘Ref: 122’ in pencil. MARIANO GARCIA MUEBLES-VALENCIA sealed. Paper acidification, adhesive stains, foxing. |
Color (Primary) | Elements (pXRF) | Raman | RIS | Color Shift (IRFC) | Pigment Classification |
---|---|---|---|---|---|
Red (R) | Fe (Kα = 6.40 keV, Kβ = 7.06 keV), Ba (Lα = 4.45 keV, Lβ1 = 4.83 keV, Lβ2 = 5.16 keV) | 2130 cm−1, 2070 cm−1 | Ref. 435 nm, Abs. 470~550 nm, Ip. 595 nm | Yellow, orange | Alizarin red |
Yellow (Y) | S (Kα = 2.30 keV, Kβ = 2.46 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) | Abs. 420~450 nm, Ip. 470~490 nm | White | Yellow (A): organic yellow | |
Cr (Kα = 5.41 keV), Pb (Lα = 10.55 keV, Lβ = 12.61 keV) | Abs. 430~480 nm, Ip. 530 nm | White, yellow | Yellow (B): chrome yellow | ||
Blue (B) | S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) | 2130 cm−1, 2070 cm−1 | Ref. 480 nm | Violet, dark | Prussian blue |
S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) | 2130 cm−1, 2070 cm−1 | Abs. 590 nm, Ip. 680 nm | Red, dark | Ultramarine (artificial) | |
Color (secondary) | Elements (pXRF) | Raman | RIS | Color shift (IRFC) | Possible classification |
Violet (V) | S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) | Ref. 480 nm, Ip. 600~620 nm | Orange | Red and blue mixtures | |
Orange (O) | S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) | 2130 cm−1, 2070 cm−1 | Ip. 560 nm | Green, light | Organic orange |
Green (G) | S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) and Cr (Kα = 5.41 keV) | 2130 cm−1, 2070 cm−1 | Ref. 450~550 nm | Violet, light | Green (A): yellow and Prussian blue |
S (Kα = 2.30 keV, Kβ = 7.06 keV), K (Kα = 3.31 keV), Ca (Kα = 3.69 keV, Kβ = 4.01 keV), Ti (Kα = 4.50 keV, Kβ = 4.93 keV), Fe (Kα = 6.40 keV, Kβ = 7.06 keV) (paper) and Cr (Kα = 5.41 keV) | 2130 cm−1, 2070 cm−1 | Ref. 450~550 nm, <640 nm | Violet, red | Green (B): yellow and Ultramarine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solbes-García, Á.; Ramacciotti, M.; Alba Pagán, E.; Gallello, G.; Vázquez de Ágredos Pascual, M.L.; Morales Rubio, Á. Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny. Heritage 2025, 8, 304. https://doi.org/10.3390/heritage8080304
Solbes-García Á, Ramacciotti M, Alba Pagán E, Gallello G, Vázquez de Ágredos Pascual ML, Morales Rubio Á. Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny. Heritage. 2025; 8(8):304. https://doi.org/10.3390/heritage8080304
Chicago/Turabian StyleSolbes-García, Álvaro, Mirco Ramacciotti, Ester Alba Pagán, Gianni Gallello, María Luisa Vázquez de Ágredos Pascual, and Ángel Morales Rubio. 2025. "Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny" Heritage 8, no. 8: 304. https://doi.org/10.3390/heritage8080304
APA StyleSolbes-García, Á., Ramacciotti, M., Alba Pagán, E., Gallello, G., Vázquez de Ágredos Pascual, M. L., & Morales Rubio, Á. (2025). Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny. Heritage, 8(8), 304. https://doi.org/10.3390/heritage8080304