Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,827)

Search Parameters:
Keywords = metric indexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 (registering DOI) - 3 Aug 2025
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

20 pages, 12851 KiB  
Article
Evaluation of a Vision-Guided Shared-Control Robotic Arm System with Power Wheelchair Users
by Breelyn Kane Styler, Wei Deng, Cheng-Shiu Chung and Dan Ding
Sensors 2025, 25(15), 4768; https://doi.org/10.3390/s25154768 (registering DOI) - 2 Aug 2025
Abstract
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed [...] Read more.
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed methods approach participants compared VGS and manual joystick control, providing performance metrics, qualitative insights, and lessons learned. Data collection included demographic questionnaires, the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and exit interviews. No significant SUS differences were found between control modes, but NASA-TLX scores revealed VGS control significantly reduced workload during the drinking task and the popcorn task. VGS control reduced operation time and improved task success but was not universally preferred. Six participants preferred VGS, five preferred manual, and one had no preference. In addition, participants expressed interest in robotic arms for daily tasks and described two main operation challenges: distinguishing wrist orientation from rotation modes and managing depth perception. They also shared perspectives on how a personal robotic arm could complement caregiver support in their home. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

26 pages, 1514 KiB  
Article
Measuring the Digital Economy in Kazakhstan: From Global Indices to a Contextual Composite Index (IDED)
by Oxana Denissova, Zhadyra Konurbayeva, Monika Kulisz, Madina Yussubaliyeva and Saltanat Suieubayeva
Economies 2025, 13(8), 225; https://doi.org/10.3390/economies13080225 (registering DOI) - 2 Aug 2025
Abstract
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural [...] Read more.
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural and institutional dimensions of digital transformation in emerging economies. To address this gap, the study introduces a novel composite metric, the Index of Digital Economy Development (IDED), which integrates five sub-indices: infrastructure, usage, human capital, economic digitization, and transformation effectiveness. The methodology involves comparative index analysis, the construction of the IDED, and statistical validation through a public opinion survey and regression modeling. Key findings indicate that cybersecurity is a critical yet under-represented component of digital development, showing strong empirical correlations with DESI scores in benchmark countries. The results also highlight Kazakhstan’s strengths in digital public services and internet access, contrasted with weaknesses in business digitization and innovation. The proposed IDED offers a more comprehensive and policy-relevant tool for assessing digital progress in transitional economies. This study contributes to the literature by proposing a replicable index structure and providing empirical evidence for the inclusion of cybersecurity in national digital economy assessments. The aim of the study is to assess Kazakhstan’s digital economy development by addressing limitations in global measurement frameworks. Methodologically, it combines comparative index analysis, the construction of a national composite index (IDED), and statistical validation using a regional survey and regression analysis. The findings reveal both strengths and gaps in Kazakhstan’s digital landscape, particularly in cybersecurity and SME digitalization. The IDED introduces an innovative, context-sensitive framework that enhances the measurement of digital transformation in transitional economies. Full article
Show Figures

Figure 1

17 pages, 1488 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 (registering DOI) - 1 Aug 2025
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
14 pages, 3219 KiB  
Article
Research on the Branch Road Traffic Flow Estimation and Main Road Traffic Flow Monitoring Optimization Problem
by Bingxian Wang and Sunxiang Zhu
Computation 2025, 13(8), 183; https://doi.org/10.3390/computation13080183 (registering DOI) - 1 Aug 2025
Viewed by 27
Abstract
Main roads are usually equipped with traffic flow monitoring devices in the road network to record the traffic flow data of the main roads in real time. Three complex scenarios, i.e., Y-junctions, multi-lane merging, and signalized intersections, are considered in this paper by [...] Read more.
Main roads are usually equipped with traffic flow monitoring devices in the road network to record the traffic flow data of the main roads in real time. Three complex scenarios, i.e., Y-junctions, multi-lane merging, and signalized intersections, are considered in this paper by developing a novel modeling system that leverages only historical main-road data to reconstruct branch-road volumes and identify pivotal time points where instantaneous observations enable robust inference of period-aggregate traffic volumes. Four mathematical models (I–IV) are built using the data given in appendix, with performance quantified via error metrics (RMSE, MAE, MAPE) and stability indices (perturbation sensitivity index, structure similarity score). Finally, the significant traffic flow change points are further identified by the PELT algorithm. Full article
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
12 pages, 955 KiB  
Article
Single-Center Preliminary Experience Treating Endometrial Cancer Patients with Fiducial Markers
by Francesca Titone, Eugenia Moretti, Alice Poli, Marika Guernieri, Sarah Bassi, Claudio Foti, Martina Arcieri, Gianluca Vullo, Giuseppe Facondo, Marco Trovò, Pantaleo Greco, Gabriella Macchia, Giuseppe Vizzielli and Stefano Restaino
Life 2025, 15(8), 1218; https://doi.org/10.3390/life15081218 - 1 Aug 2025
Viewed by 49
Abstract
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer [...] Read more.
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer requiring adjuvant radiation with external beams were enrolled. Five patients underwent radiation therapy targeting the pelvic disease and positive lymph nodes, with doses of 50.4 Gy in twenty-eight fractions and a subsequent stereotactic boost on the vaginal vault at a dose of 5 Gy in a single fraction. One patient was administered 30 Gy in five fractions to the vaginal vault. These patients underwent external beam RT following the implantation of three 0.40 × 10 mm gold fiducial markers (FMs). Our IGRT strategy involved real-time 2D kV image-based monitoring of the fiducial markers during the treatment delivery as a surrogate of the vaginal cuff. To explore the potential role of FMs throughout the treatment process, we analyzed cine movies of the 2D kV-triggered images during delivery, as well as the image registration between pre- and post-treatment CBCT scans and the planning CT (pCT). Each CBCT used to trigger fraction delivery was segmented to define the rectum, bladder, and vaginal cuff. We calculated a standard metric to assess the similarity among the images (Dice index). Results: All the patients completed radiotherapy and experienced good tolerance without any reported acute or long-term toxicity. We did not observe any loss of FMs during or before treatment. A total of twenty CBCTs were analyzed across ten fractions. The observed trend showed a relatively emptier bladder compared to the simulation phase, with the bladder filling during the delivery. This resulted in a final median Dice similarity coefficient (DSC) of 0.90, indicating strong performance. The rectum reproducibility revealed greater variability, negatively affecting the quality of the delivery. Only in two patients, FMs showed intrafractional shift > 5 mm, probably associated with considerable rectal volume changes. Target coverage was preserved due to a safe CTV-to-PTV margin (10 mm). Conclusions: In our preliminary study, CBCT in combination with the use of fiducial markers to guide the delivery proved to be a feasible method for IGRT both before and during the treatment of post-operative gynecological cancer. In particular, this approach seems to be promising in selected patients to facilitate the use of SBRT instead of BRT (brachytherapy), thanks to margin reduction and adaptive strategies to optimize dose delivery while minimizing toxicity. A larger sample of patients is needed to confirm our results. Full article
Show Figures

Figure 1

21 pages, 97817 KiB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

19 pages, 2733 KiB  
Article
Quantifying Threespine Stickleback Gasterosteus aculeatus L. (Perciformes: Gasterosteidae) Coloration for Population Analysis: Method Development and Validation
by Ekaterina V. Nadtochii, Anna S. Genelt-Yanovskaya, Evgeny A. Genelt-Yanovskiy, Mikhail V. Ivanov and Dmitry L. Lajus
Hydrobiology 2025, 4(3), 20; https://doi.org/10.3390/hydrobiology4030020 - 31 Jul 2025
Viewed by 63
Abstract
Fish coloration plays an important role in reproduction and camouflage, yet capturing color variation under field conditions remains challenging. We present a standardized, semi-automated protocol for measuring body coloration in the popular model fish threespine stickleback (Gasterosteus aculeatus). Individuals are photographed [...] Read more.
Fish coloration plays an important role in reproduction and camouflage, yet capturing color variation under field conditions remains challenging. We present a standardized, semi-automated protocol for measuring body coloration in the popular model fish threespine stickleback (Gasterosteus aculeatus). Individuals are photographed in a controlled light box within minutes of capture, and color is sampled from eight anatomically defined standard sites in human-perception-based CIELAB space. Analyses combine univariate color metrics, multivariate statistics, and the ΔE* perceptual difference index to detect subtle shifts in hue and brightness. Validation on pre-spawning fish shows the method reliably distinguishes males and females well before full breeding colors develop. Although it currently omits ultraviolet signals and fine-scale patterning, the approach scales efficiently to large sample sizes and varying lighting conditions, making it well suited for population-level surveys of camouflage dynamics, sexual dimorphism, and environmental influences on coloration in sticklebacks. Full article
Show Figures

Figure 1

25 pages, 573 KiB  
Review
Challenges and Opportunities in Using Fish Metrics for Reservoir Water Quality Evaluation
by Alexandre Moreira, Sara Rodrigues, Lucas Ferreira, Nuno E. Formigo and Sara C. Antunes
Water 2025, 17(15), 2274; https://doi.org/10.3390/w17152274 - 30 Jul 2025
Viewed by 255
Abstract
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine [...] Read more.
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine water quality in reservoirs. A literature review was conducted to gather information on how fish community data were integrated into reservoir water quality assessment under the WFD. This work includes an exploratory case study of the Aguieira Reservoir (Portugal), evaluating the ichthyofauna community, along with physical, chemical, and biological assessment of the water. The results of the review show that fish abundance and composition (sensitive metrics) should be used to develop ecological indices for assessing water quality in reservoirs. However, the effects of anthropogenic pressures and invasive species are not included in the calculation of most proposed indices. The case study serves as an illustrative example and demonstrates low abundance and composition of the fish community with a high percentage of invasive species, revealing a poor water quality, regarding ichthyofauna biotic index results (F-IBIP). Nevertheless, including these metrics in the classification of ecological potential can help guide restoration strategies to mitigate the effects of anthropogenic pressures. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Viewed by 272
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

16 pages, 1449 KiB  
Article
Cross-Lagged Relationship Between Adiposity and HOMA and Mediating Role of Adiposity Between Lifestyle Factors and HOMA Among in Mexican Health Workers
by Joacim Meneses-León, Amado D. Quezada-Sánchez, Mario Rojas-Russel, Diana I. Aparicio-Bautista, Rafael Velázquez-Cruz, Carlos A. Aguilar-Salinas, Jorge Salmerón and Berenice Rivera-Paredez
Nutrients 2025, 17(15), 2497; https://doi.org/10.3390/nu17152497 - 30 Jul 2025
Viewed by 184
Abstract
Background/Objectives: Unhealthy lifestyles are closely linked to insulin resistance (IR) and adiposity. However, the mediating role of adiposity in the relationship between lifestyle factors and IR is not yet fully understood. Mediation analysis may help clarify the role of adiposity in the [...] Read more.
Background/Objectives: Unhealthy lifestyles are closely linked to insulin resistance (IR) and adiposity. However, the mediating role of adiposity in the relationship between lifestyle factors and IR is not yet fully understood. Mediation analysis may help clarify the role of adiposity in the relationship between lifestyle factors and IR. Therefore, we aimed to explore the bidirectional relationship between adiposity and IR, and to evaluate the relationship between lifestyle factors and adiposity-mediated IR in Mexican adults. Methods: A longitudinal analysis was conducted using data from the Health Workers Cohort Study, with measurements taken every six years from 2004 to 2018. This study included 1134 participants aged from 18 to 70 years. Lifestyle factors were assessed using a self-administered questionnaire. IR was assessed using the Homeostasis Model Assessment (HOMA). Adiposity was measured through body mass index (BMI), waist circumference (WC), and body fat proportion (BFP), and BMI was used as the marker indicator to set the metric of adiposity. We fitted structural equation models with a cross-lagged specification to examine the relationships between adiposity and ln(HOMA). In our analysis, we considered baseline adiposity and ln(HOMA) as mediators of the relation between lifestyle factors and future adiposity and ln(HOMA). Models were stratified by sex and adjusted by baseline age. Results: Results from the cross-lagged panel model showed that, for both men and women, adiposity predicted subsequent increases in HOMA (+5.3% IC95%: 1.8%, 9.0% in men; +6.0% IC95%: 4.2%, 7.8% in women). In men, baseline adiposity acted as a mediator between lifestyle variables (physical activity, tobacco consumption, and sleep duration) and HOMA. Conclusions: Our results suggest that understanding both the relationship between adiposity and HOMA and the mediating effects of adiposity is crucial for developing effective interventions to reduce IR in the Mexican population. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 242
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 228
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

23 pages, 2787 KiB  
Article
The Impact of Confinement Configurations on the Compressive Behavior of CFRP—Wrapped Concrete Cylinders
by Riad Babba, Abdellah Douadi, Eyad Alsuhaibani, Laura Moretti, Abdelghani Merdas, Saci Dahmani and Mourad Boutlikht
Materials 2025, 18(15), 3559; https://doi.org/10.3390/ma18153559 - 29 Jul 2025
Viewed by 187
Abstract
Experimental tests on confined concrete specimens are essential to characterize the mechanisms activated under varying degrees of confinement. Such characterization is critical for understanding how full, partial, and non-uniform wrapping configurations influence strength and ductility enhancements. This study investigates the compressive behavior of [...] Read more.
Experimental tests on confined concrete specimens are essential to characterize the mechanisms activated under varying degrees of confinement. Such characterization is critical for understanding how full, partial, and non-uniform wrapping configurations influence strength and ductility enhancements. This study investigates the compressive behavior of concrete cylinders (160 mm × 320 mm) confined using full, partial, and non-uniform carbon fiber-reinforced polymers (CFRP) configurations. In the first phase, all wrapping schemes were applied with equivalent quantities of CFRP, enabling a direct performance comparison under material parity. The results indicate that non-uniform confinement (NUC) achieved approximately 15% higher axial strength than full confinement (FC2) using the same amount of CFRP. In the second phase, the NUC configuration was tested with 25% less CFRP material, yet the reduction in strength was limited to about 3%, demonstrating its superior efficiency. A new predictive model was developed to estimate peak axial stress and strain in CFRP-confined concrete cylinders. Compared to existing models, the proposed model demonstrated greater predictive accuracy (R2 = 0.98 for stress and 0.91 for strain) and reduced error metrics (RMSE and scatter index). ANOVA confirmed the statistical significance of the model’s predictions (p < 0.00001 for stress, p = 0.002 for strain). These findings highlight the performance advantages and material efficiency of non-uniform CFRP confinement and support the utility of the proposed model as a practical design tool for developing advanced confinement strategies in structural engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop