Evaluating Image Quality Metrics as Loss Functions for Image Dehazing †
Abstract
1. Introduction
1.1. Image Dehazing
1.2. Image Quality Assessment Metrics
1.3. IQA Metrics as Objectives
1.4. Contributions
- Training two dehazing architectures (one older and one near State-of-the-Art) using 17 different loss functions, 7 standard and 10 novel, based on recent image quality assessment metrics.
- Proving the efficacy of IQA metric-derived objectives for dehazing tasks relative to classic loss functions and demonstrating the viability of this approach for future high-level image processing tasks.
2. Related Work
3. Methods
3.1. Networks
3.1.1. AOD-Net
3.1.2. UVM-Net
3.2. Metrics
3.2.1. Classic Loss Functions
Mean Squared Error (MSE)/Quadratic Loss/L2 Loss
Mean Absolute Error (MAE)/L1 Loss
Smooth L1 Loss
Huber Loss
PSNR
SSIM
MS-SSIM
3.2.2. IQA Loss Functions
HaarPSI
PSNR-HVS
CW-SSIM
LPIPS
DISTS
MSSWD
NLPD
PIEAPP
WADIQAM-FR
TOPIQ-FR
4. Results
4.1. Metric Details
4.2. Architecture Details
4.3. Training Details
4.4. Results
4.5. Results Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CV | Computer Vision |
CNN | Convolutional Neural Network |
DCP | Dark Channel Prior |
DL | Deep Learning |
HVS | Human Visual System |
IQA | Image Quality Assessment |
PSNR | Peak Signal-to-Noise Ratio |
SOTA | State-of-the-art |
SSIM | Structural Similarity Index Measure |
References
- Hassan, H.; Mishra, P.; Ahmad, M.; Bashir, A.K.; Huang, B.; Luo, B. Effects of haze and dehazing on deep learning-based vision models. Appl. Intell. 2022, 52, 16334–16352. [Google Scholar] [CrossRef]
- Panayi, S.; Artusi, A. Hazing or Dehazing: The big dilemma for object detection. In Proceedings of the 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 6–8 October 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Qiu, Y.; Lu, Y.; Wang, Y.; Jiang, H. IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments. Sensors 2023, 23, 1347. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C. Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 2013, 22, 3271–3282. [Google Scholar] [CrossRef] [PubMed]
- Ancuti, C.O.; Ancuti, C.; Vleeschouwer, C.D. Effective local airlight estimation for image dehazing. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bovick, A.C. Day and Night-Time Dehazing by Local Airlight Estimation. IEEE Trans. Image Process. 2020, 29, 6264–6275. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision Transformers for Single Image Dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Yu, H.; Huang, J.; Zheng, K.; Zhao, F. High-quality Image Dehazing with Diffusion Model. arXiv 2024, arXiv:2308.11949. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, C. U-shaped Vision Mamba for Single Image Dehazing. arXiv 2024, arXiv:2402.04139. [Google Scholar] [CrossRef]
- Gu, J.; Cai, H.; Dong, C.; Ren, J.S.; Qiao, Y.; Gu, S.; Timofte, R.; Cheon, M.; Yoon, S.; Kang, B.; et al. NTIRE 2021 Challenge on Perceptual Image Quality Assessment, 2021. arXiv 2021, arXiv:2105.03072. [Google Scholar] [CrossRef]
- Gu, J.; Cai, H.; Dong, C.; Ren, J.S.; Timofte, R. NTIRE 2022 Challenge on Perceptual Image Quality Assessment, 2022. arXiv 2022, arXiv:2206.11695. [Google Scholar] [CrossRef]
- Wandell, B. Foundations of Vision, 1st ed.; Sinauer Associates: Sunderland, MA, USA, 1995. [Google Scholar]
- Cha, S.H. Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions. Int. J. Math. Model. Meth. Appl. Sci. 2007, 1, 1. [Google Scholar]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.; Bovik, A. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar] [CrossRef]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Comparison of Image Quality Models for Optimization of Image Processing Systems. Int. J. Comput. Vis. 2021, 129, 1258–1281. [Google Scholar] [CrossRef] [PubMed]
- Manheim, D.; Garrabrant, S. Categorizing Variants of Goodhart’s Law, 2019. arXiv 2019, arXiv:1803.04585. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef]
- Ren, W.; Pan, J.; Zhang, H.; Cao, X.; Yang, M.H. Single Image Dehazing via Multi-scale Convolutional Neural Networks with Holistic Edges. Int. J. Comput. Vis. 2020, 128, 240–259. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, V.M. Densely Connected Pyramid Dehazing Network. arXiv 2018, arXiv:1803.08396. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, X.; Kan, J. An end-to-end single image dehazing network based on U-net. Signal Image Video Process. 2022, 16, 1739–1746. [Google Scholar] [CrossRef]
- Sutton, R. The Bitter Lesson. Int. J. Math. Model. Methods Appl. Sci. 2019. Available online: www.incompleteideas.net/IncIdeas/BitterLesson.html (accessed on 1 May 2025).
- Zhu, H.; Peng, X.; Chandrasekhar, V.; Li, L.; Lim, J.H. DehazeGAN: When Image Dehazing Meets Differential Programming. In Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 1234–1240. [Google Scholar] [CrossRef]
- Fu, M.; Liu, H.; Yu, Y.; Chen, J.; Wang, K. DW-GAN: A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing. arXiv 2021, arXiv:2104.08911. [Google Scholar]
- Gui, J.; Cong, X.; Cao, Y.; Ren, W.; Zhang, J.; Zhang, J.; Cao, J.; Tao, D. A Comprehensive Survey and Taxonomy on Single Image Dehazing Based on Deep Learning 2022. arXiv 2022, arXiv:2106.03323. [Google Scholar]
- Egiazarian, K.; Astola, J.; Lukin, V.; Battisti, F.; Carli, M. A New Full-Reference Quality Metrics Based on HVS. In Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, AZ, USA, 22–24 January 2006. [Google Scholar]
- Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv. [Google Scholar] [CrossRef]
- Laparra, V.; Berardino, A.; Ballé, J.; Simoncelli, E.P. Perceptually Optimized Image Rendering. J. Opt. Soc. Am. A 2017, 34, 1511. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition, 2015. arXiv 2015, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image Quality Assessment: Unifying Structure and Texture Similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2567–2581. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, 2018. arXiv 2018, arXiv:1801.03924. [Google Scholar] [CrossRef]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4780–4788. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A Comprehensive Survey of Loss Functions in Machine Learning. Ann. Data Sci. 2022, 9, 187–212. [Google Scholar] [CrossRef]
- Ciampiconi, L.; Elwood, A.; Leonardi, M.; Mohamed, A.; Rozza, A. A survey and taxonomy of loss functions in machine learning. arXiv 2023, arXiv:2301.05579. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Palubinskas, G. Mystery behind similarity measures mse and SSIM. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 575–579. [Google Scholar] [CrossRef]
- Reisenhofer, R.; Bosse, S.; Kutyniok, G.; Wiegand, T. A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment. Signal Process. Image Commun. 2018, 61, 33–43. [Google Scholar] [CrossRef]
- Sampat, M.P.; Wang, Z.; Gupta, S.; Bovik, A.C.; Markey, M.K. Complex Wavelet Structural Similarity: A New Image Similarity Index. IEEE Trans. Image Process. 2009, 18, 2385–2401. [Google Scholar] [CrossRef]
- He, J.; Wang, Z.; Wang, L.; Liu, T.I.; Fang, Y.; Sun, Q.; Ma, K. Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures, 2024. arXiv 2024, arXiv:2407.10181. [Google Scholar] [CrossRef]
- Prashnani, E.; Cai, H.; Mostofi, Y.; Sen, P. PieAPP: Perceptual Image-Error Assessment through Pairwise Preference, 2018. arXiv 2018, arXiv:1806.02067. [Google Scholar] [CrossRef]
- Bosse, S.; Maniry, D.; Müller, K.R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mo, J.; Hou, J.; Wu, H.; Liao, L.; Sun, W.; Yan, Q.; Lin, W. TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment, 2023. arXiv 2023, arXiv:2308.03060. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Silvestri, F.; Egiazarian, K.; Carli, M.; Astola, J.; Lukin, V. On between-coefficient contrast masking of DCT basis functions. In Proceedings of the 3rd Int Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, AZ, USA, 25–26 January 2007. [Google Scholar]
- Ponomarenko, N.; Ieremeiev, O.; Lukin, V.; Egiazarian, K.; Carli, M. Modified image visual quality metrics for contrast change and mean shift accounting. In Proceedings of the 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Polyana-Svalyava, Ukraine, 23–25 February 2011; pp. 305–311. [Google Scholar]
- Rozet, F. PIQA: PyTorch Image Quality Assessement. 2020. Available online: https://zenodo.org/records/7821605 (accessed on 1 May 2025).
- Trojanowski, K. lyckantropen/psnr=hvsm. Type: Python. 2024. Available online: https://github.com/lyckantropen/psnr_hvsm (accessed on 1 May 2025).
- Chen, C. chaofengc/IQA-PyTorch. original-date: 2021-11-28T13:30:54Z. 2025. Available online: https://github.com/chaofengc/IQA-PyTorch (accessed on 1 May 2025).
- Ancuti, C.; Ancuti, C.O.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, France, 24–27 September 2018. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Timofte, R. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images. In Proceedings of the IEEE CVPR, NTIRE Workshop, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with NonHomogeneous Hazy and Haze-Free Images. In Proceedings of the IEEE CVPR, NTIRE Workshop, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Vasluianu, F.A.; Timofte, R. NTIRE 2021 NonHomogeneous Dehazing Challenge Report. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June 2021. [Google Scholar]
Methods | AOD-Net | UVM-NET | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I-Haze | O-Haze | NH-Haze | I-Haze | O-Haze | NH-Haze | |||||||
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
L2 | 9.55 | 0.244 | 9.95 | 0.153 | 8.53 | 0.041 | 16.04 | 0.401 | 14.16 | 0.158 | 11.44 | 0.105 |
L1 | 9.67 | 0.123 | 10.16 | 0.156 | 8.82 | 0.051 | 16.09 | 0.404 | 14.15 | 0.161 | 11.42 | 0.106 |
Smooth L1 | 9.28 | 0.245 | 9.65 | 0.162 | 8.29 | 0.038 | 16.01 | 0.399 | 14.10 | 0.157 | 11.42 | 0.104 |
Huber | 10.09 | 0.229 | 10.27 | 0.178 | 8.89 | 0.076 | 15.94 | 0.395 | 14.12 | 0.154 | 11.46 | 0.102 |
PSNR | 9.60 | 0.258 | 9.79 | 0.169 | 8.46 | 0.043 | 16.16 | 0.410 | 13.95 | 0.160 | 11.28 | 0.103 |
SSIM | 9.83 | 0.230 | 9.54 | 0.185 | 8.02 | 0.082 | 16.19 | 0.413 | 14.03 | 0.162 | 11.29 | 0.105 |
MS-SSIM | 9.27 | 0.257 | 9.54 | 0.168 | 8.02 | 0.044 | 16.20 | 0.413 | 14.01 | 0.161 | 11.28 | 0.106 |
HaarPSI [40] | 8.79 | 0.250 | 9.09 | 0.160 | 7.33 | 0.048 | 16.22 | 0.414 | 14.07 | 0.164 | 11.31 | 0.106 |
PSNR-HVS [27] | 10.22 | 0.240 | 10.53 | 0.215 | 9.00 | 0.103 | 16.09 | 0.407 | 13.89 | 0.158 | 11.28 | 0.101 |
CW-SSIM [41] | 9.02 | 0.258 | 9.20 | 0.166 | 8.00 | 0.047 | 16.22 | 0.414 | 14.06 | 0.163 | 11.30 | 0.106 |
LPIPS [33] | 9.42 | 0.241 | 10.40 | 0.181 | 8.95 | 0.054 | 16.23 | 0.413 | 14.09 | 0.164 | 11.33 | 0.107 |
DISTS [32] | 9.76 | 0.180 | 9.95 | 0.131 | 8.74 | 0.055 | 16.22 | 0.413 | 14.07 | 0.163 | 11.31 | 0.105 |
MSSWD [42] | 9.42 | 0.240 | 10.62 | 0.161 | 9.19 | 0.059 | 16.23 | 0.413 | 14.10 | 0.165 | 11.34 | 0.106 |
NLPD [29] | 9.23 | 0.257 | 9.28 | 0.162 | 8.12 | 0.041 | 16.21 | 0.413 | 14.04 | 0.162 | 11.30 | 0.105 |
PIEAPP [43] | 6.22 | <0 | 7.18 | <0 | 6.61 | <0 | 16.10 | 0.376 | 16.03 | 0.206 | 12.72 | 0.096 |
WADIQAM-FR [44] | 9.14 | 0.231 | 10.35 | 0.174 | 9.06 | 0.045 | 16.21 | 0.414 | 14.06 | 0.162 | 11.30 | 0.106 |
TOPIQ-FR [45] | 9.31 | 0.250 | 9.78 | 0.168 | 8.51 | 0.044 | 16.22 | 0.411 | 14.15 | 0.165 | 11.38 | 0.107 |
Hazy Image | L2 | L1 | Smooth L1 |
Huber | PSNR | SSIM | MS-SSIM |
HaarPSI | PSNR-HVS | CW-SSIM | LPIPS |
DISTS | MSSWD | NLPD | PIEAPP |
WADIQAM-FR | TOPIQ-FR | GT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobre-Baron, R.; Savu-Jivanov, A.; Ancuți, C. Evaluating Image Quality Metrics as Loss Functions for Image Dehazing. Sensors 2025, 25, 4755. https://doi.org/10.3390/s25154755
Dobre-Baron R, Savu-Jivanov A, Ancuți C. Evaluating Image Quality Metrics as Loss Functions for Image Dehazing. Sensors. 2025; 25(15):4755. https://doi.org/10.3390/s25154755
Chicago/Turabian StyleDobre-Baron, Rareș, Adrian Savu-Jivanov, and Cosmin Ancuți. 2025. "Evaluating Image Quality Metrics as Loss Functions for Image Dehazing" Sensors 25, no. 15: 4755. https://doi.org/10.3390/s25154755
APA StyleDobre-Baron, R., Savu-Jivanov, A., & Ancuți, C. (2025). Evaluating Image Quality Metrics as Loss Functions for Image Dehazing. Sensors, 25(15), 4755. https://doi.org/10.3390/s25154755