Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Spectrum Aided Vision Enhancer
2.3. Model Architecture
2.3.1. ResNet-101 and ResNet-50
2.3.2. EfficientNet-B2, EfficientNet-B5, and EfficientNetV2-B0
3. Results
3.1. ResNet-101
Dataset | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Dyed-Lifted Polyps | 85% | 73% | 78% | 83% |
Dyed-Resection Margins | 89% | 77% | 82% | ||
Esophagitis | 75% | 80% | 77% | ||
Normal | 84.11% | 89.30% | 86.36% | ||
Polyps | 74% | 83% | 78% | ||
Ulcerative Colitis | 91% | 83% | 87% | ||
SAVE | Dyed-Lifted Polyps | 86% | 76% | 81% | 85% |
Dyed-Resection Margins | 78% | 78% | 78% | ||
Esophagitis | 85% | 75% | 80% | ||
Normal | 87.81% | 89.67% | 88.90% | ||
Polyps | 84% | 86% | 85% | ||
Ulcerative Colitis | 77% | 89% | 82% |
3.2. EfficientNet-B2
Dataset | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Dyed-Lifted Polyps | 77% | 83% | 79% | 85% |
Dyed-Resection Margins | 90% | 77% | 83% | ||
Esophagitis | 81% | 76% | 78% | ||
Normal | 86.19% | 89.14% | 89.37% | ||
Polyps | 79% | 85% | 82% | ||
Ulcerative Colitis | 96% | 78% | 86% | ||
SAVE | Dyed-Lifted Polyps | 86% | 80% | 83% | 86% |
Dyed-Resection Margins | 83% | 82% | 83% | ||
Esophagitis | 80% | 81% | 81% | ||
Normal | 87.73% | 89.81% | 89.53% | ||
Polyps | 84% | 86% | 85% | ||
Ulcerative Colitis | 93% | 84% | 88% |
3.3. ResNet-50
Dataset | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Dyed-Lifted | 77% | 81% | 79% | 83% |
Polyps | 79% | 85% | 82% | ||
Dyed-Resection Margins | 89% | 71% | 79% | ||
Esophagitis | 77% | 75% | 76% | ||
Normal | 84.9% | 90.5% | 87.7% | ||
Polyps | 76% | 87% | 81% | ||
Ulcerative Colitis | 98% | 81% | 88% | ||
SAVE | Dyed-Lifted Polyps | 81% | 81% | 81% | 85% |
Dyed-Resection Margins | 77% | 79% | 78% | ||
Esophagitis | 80% | 76% | 78% | ||
Normal | 87.3% | 90.9% | 88.8% | ||
Polyps | 90% | 85% | 87% | ||
Ulcerative Colitis | 91% | 85% | 88% |
3.4. EfficientNet-B5
Dataset | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Dyed-Lifted Polyps | 69% | 85% | 76% | 81% |
Dyed-Resection Margins | 96% | 62% | 75% | ||
Esophagitis | 70% | 73% | 72% | ||
Normal | 82.9% | 88.3% | 85.4% | ||
Polyps | 78% | 86% | 82% | ||
Ulcerative Colitis | 98% | 76% | 86% | ||
SAVE | Dyed-Lifted Polyps | 77% | 80% | 78% | 83% |
Dyed-Resection Margins | 76% | 72% | 74% | ||
Esophagitis | 78% | 76% | 77% | ||
Normal | 86.5% | 90.0% | 88.3% | ||
Polyps | 83% | 79% | 81% | ||
Ulcerative Colitis | 88% | 84% | 86% |
3.5. EfficientNetV2-B0
Dataset | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Dyed-Lifted Polyps | 76% | 85% | 80% | 84% |
Dyed-Resection Margins | 93% | 71% | 81% | ||
Esophagitis | 76% | 75% | 76% | ||
Normal | 83.5% | 92.2% | 89.4% | ||
Polyps | 77% | 85% | 81% | ||
Ulcerative Colitis | 98% | 82% | 89% | ||
SAVE | Dyed-Lifted Polyps | 82% | 81% | 82% | 86% |
Dyed-Resection Margins | 85% | 82% | 83% | ||
Esophagitis | 81% | 81% | 81% | ||
Normal | 89.8% | 91.2% | 90.5% | ||
Polyps | 84% | 84% | 84% | ||
Ulcerative Colitis | 88% | 90% | 89% |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAVE | Spectrum Aided Vision Enhancer |
WLI | White Light Imaging |
HSI | Hyperspectral Imaging |
NBI | Narrow Band Imaging |
PCA | Principal Component Analysis |
RMSE | Root Mean Square Error |
SSIM | Structural Similarity Index |
GID | Gastrointestinal Diseases |
CE | Capsule Endoscopy |
PSNR | Peak Signal-to-Noise Ratio |
FSA | Fast Simulated Annealing |
CNN | Convolutional Neural Network |
GFLOPs | Giga Floating Point Operations per Second |
WHO | World Health Organization |
References
- Ananthakrishnan, A.N.; Xavier, R.J. Gastrointestinal diseases. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 16–26. [Google Scholar]
- Peery, A.F.; Murphy, C.C.; Anderson, C.; Jensen, E.T.; Deutsch-Link, S.; Egberg, M.D.; Lund, J.L.; Subramaniam, D.; Dellon, E.S.; Sperber, A.D. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the united States: Update 2024. Gastroenterology 2025, 168, 1000–1024. [Google Scholar] [CrossRef]
- Naz, J.; Sharif, M.; Yasmin, M.; Raza, M.; Khan, M.A. Detection and classification of gastrointestinal diseases using machine learning. Curr. Med. Imaging Rev. 2021, 17, 479–490. [Google Scholar] [CrossRef]
- Hmoud Al-Adhaileh, M.; Mohammed Senan, E.; Alsaade, F.W.; Aldhyani, T.H.H.; Alsharif, N.; Abdullah Alqarni, A.; Uddin, M.I.; Alzahrani, M.Y.; Alzain, E.D.; Jadhav, M.E. Deep learning algorithms for detection and classification of gastrointestinal diseases. Complexity 2021, 2021, 6170416. [Google Scholar] [CrossRef]
- Wallner, B.; Björ, O.; Andreasson, A.; Vieth, M.; Schmidt, P.T.; Hellström, P.M.; Forsberg, A.; Talley, N.J.; Agreus, L. Z-line alterations and gastroesophageal reflux: An endoscopic population-based prospective cohort study. Scand. J. Gastroenterol. 2019, 54, 1065–1069. [Google Scholar] [CrossRef]
- Kamboj, A.K.; Gaddam, S.; Lo, S.K.; Rezaie, A. Irregular Z-Line: To Biopsy or Not to Biopsy? Dig. Dis. Sci. 2024, 69, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Visaggi, P.; Ghisa, M.; Barberio, B.; Maniero, D.; Greco, E.; Savarino, V.; Black, C.J.; Ford, A.C.; de Bortoli, N.; Savarino, E. Treatment trends for eosinophilic esophagitis and the other eosinophilic gastrointestinal diseases: Systematic review of clinical trials. Dig. Liver Dis. 2023, 55, 208–222. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Oouchi, S.; Fujisawa, T. Eosinophilic gastrointestinal diseases-Pathogenesis, diagnosis, and treatment. Allergol. Int. 2019, 68, 420–429. [Google Scholar] [CrossRef]
- Fan, K.; Eslick, G.D.; Nair, P.M.; Burns, G.L.; Walker, M.M.; Hoedt, E.C.; Keely, S.; Talley, N.J. Human intestinal spirochetosis, irritable bowel syndrome, and colonic polyps: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 1222–1234. [Google Scholar] [CrossRef]
- Waldum, H.; Fossmark, R. Gastritis, gastric polyps and gastric cancer. Int. J. Mol. Sci. 2021, 22, 6548. [Google Scholar] [CrossRef] [PubMed]
- Gros, B.; Kaplan, G.G. Ulcerative colitis in adults: A review. JAMA 2023, 330, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Kucharzik, T.; Koletzko, S.; Kannengiesser, K.; Dignass, A. Ulcerative colitis—Diagnostic and therapeutic algorithms. Dtsch. Ärzteblatt Int. 2020, 117, 564. [Google Scholar] [CrossRef]
- Sharma, P. Barrett esophagus: A review. JAMA 2022, 328, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Peters, Y.; Al-Kaabi, A.; Shaheen, N.J.; Chak, A.; Blum, A.; Souza, R.F.; Di Pietro, M.; Iyer, P.G.; Pech, O.; Fitzgerald, R.C. Barrett oesophagus. Nat. Rev. Dis. Primers 2019, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.; Naeem, A.; Sadeghi-Niaraki, A.; Naqvi, R.A.; Lee, S.-W. Multi-classification deep learning models for detection of ulcerative colitis, polyps, and dyed-lifted polyps using wireless capsule endoscopy images. Complex Intell. Syst. 2024, 10, 2477–2497. [Google Scholar] [CrossRef]
- Chetcuti Zammit, S.; Sidhu, R. Capsule endoscopy—Recent developments and future directions. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 127–137. [Google Scholar] [CrossRef]
- Hosoe, N.; Takabayashi, K.; Ogata, H.; Kanai, T. Capsule endoscopy for small-intestinal disorders: Current status. Dig. Endosc. 2019, 31, 498–507. [Google Scholar] [CrossRef]
- Cushing, K.; Higgins, P.D. Management of Crohn disease: A review. JAMA 2021, 325, 69–80. [Google Scholar] [CrossRef]
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef]
- Kim, S.H.; Chun, H.J. Capsule endoscopy: Pitfalls and approaches to overcome. Diagnostics 2021, 11, 1765. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Karim, S.; Qadir, A.; Farooq, U.; Shakir, M.; Laghari, A.A. Hyperspectral imaging: A review and trends towards medical imaging. Curr. Med. Imaging Rev. 2023, 19, 417–427. [Google Scholar] [CrossRef]
- Grigoroiu, A.; Yoon, J.; Bohndiek, S.E. Deep learning applied to hyperspectral endoscopy for online spectral classification. Sci. Rep. 2020, 10, 3947. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.S.; Ket, S.; Bassett, P.; Aponte, D.; De Aguiar, S.; Gupta, N.; Horimatsu, T.; Ikematsu, H.; Inoue, T.; Kaltenbach, T. Narrow-band imaging for detection of neoplasia at colonoscopy: A meta-analysis of data from individual patients in randomized controlled trials. Gastroenterology 2019, 157, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Shen, Z.; Zhang, X.; Sang, J.; Ding, Y.; Yang, X.; Li, J.; Chen, M.; Jin, C. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020, 23, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Du, Q. Hyperspectral band selection: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral imaging combined with artificial intelligence in the early detection of esophageal cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Karmakar, R.; Mukundan, A.; Tsao, Y.-M.; Sung, T.-C.; Lu, C.-L.; Wang, H.-C. Spectrum aided vision enhancer enhances mucosal visualization by hyperspectral imaging in capsule endoscopy. Sci. Rep. 2024, 14, 22243. [Google Scholar] [CrossRef]
- Smedsrud, P.H.; Thambawita, V.; Hicks, S.A.; Gjestang, H.; Nedrejord, O.O.; Næss, E.; Borgli, H.; Jha, D.; Berstad, T.J.D.; Eskeland, S.L. Kvasir-Capsule, a video capsule endoscopy dataset. Sci. Data 2021, 8, 142. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. (Eds.) Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. (Eds.) Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. (Eds.) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. (Eds.) Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Zhang, J.; Su, R.; Fu, Q.; Ren, W.; Heide, F.; Nie, Y. A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging. Sci. Rep. 2022, 12, 11905. [Google Scholar] [CrossRef] [PubMed]
- Akgun, T.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 2005, 14, 1860–1875. [Google Scholar] [CrossRef]
- Klimza, H.; Maćkowiak, B.; Zagaja, K.; Jackowska, J.; Banaszewski, J.; Wierzbicka, M. The usefulness of narrow-band Imaging (NBI) in nasopharyngeal lesions—Validation of the Ni NBI classification dedicated for vascular pattern in the nasopharynx. PLoS ONE 2024, 19, e0302043. [Google Scholar] [CrossRef]
Model | Depth (D) | Width (W) | Resolution (R) | Parameters | FLOPs (Billion) |
---|---|---|---|---|---|
EfficientNet-B2 | 1.2× | 1.4× | 260 × 260 | 9.2 M | 1.0 |
EfficientNet-B5 | 2.2× | 2.6× | 456 × 456 | 30 M | 9.9 |
EfficientNetV2-B0 | 16 | 1.2× | 192 × 192 | 7.1 M | 0.8 GFLOPs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-J.; Lee, K.-H.; Chou, C.-K.; Karmakar, R.; Mukundan, A.; Chen, T.-H.; Gupta, D.; Ghosh, G.; Liu, T.-Y.; Wang, H.-C. Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning. Bioengineering 2025, 12, 828. https://doi.org/10.3390/bioengineering12080828
Tsai T-J, Lee K-H, Chou C-K, Karmakar R, Mukundan A, Chen T-H, Gupta D, Ghosh G, Liu T-Y, Wang H-C. Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning. Bioengineering. 2025; 12(8):828. https://doi.org/10.3390/bioengineering12080828
Chicago/Turabian StyleTsai, Tsung-Jung, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu, and Hsiang-Chen Wang. 2025. "Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning" Bioengineering 12, no. 8: 828. https://doi.org/10.3390/bioengineering12080828
APA StyleTsai, T.-J., Lee, K.-H., Chou, C.-K., Karmakar, R., Mukundan, A., Chen, T.-H., Gupta, D., Ghosh, G., Liu, T.-Y., & Wang, H.-C. (2025). Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning. Bioengineering, 12(8), 828. https://doi.org/10.3390/bioengineering12080828