Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
Abstract
1. Introduction
1.1. Global Climate Change and Agricultural Implications
1.2. Environmental Effects on Seed Development and Physiology
1.3. Research Gaps and Agronomic Importance of the Tropical Legume S. capitata
1.4. Objectives and Hypotheses
2. Materials and Methods
2.1. Species Description
2.2. Treatments
2.2.1. Field Treatments in Maternal Plants
- Flowers and seeds sampling
2.2.2. Laboratory Analyses
- Seed production and quality
- Seed Coat Color Classification
- Seed Germination Analysis
- Abnormal germinated seedlings
- Genetic diversity analysis between generations
- Statistical analyses
3. Results
3.1. Production and Seed Quality
3.2. Coat Seed Colors
3.3. Seed Germination
3.3.1. Effect of Warming and Elevated CO2 on Germination
3.3.2. Effects from Both Storage Time and Treatments
3.3.3. Abnormal Seedlings
3.4. Effects of Warming, Elevated CO2, and Their Interaction on Genetic Diversity Parameters in S. capitata
3.4.1. Frequency Analysis
3.4.2. Genetic Parameters Analysis of Maternal Plants vs. Progeny
3.4.3. ANOVA Analysis
3.4.4. Genetic Structure Analyses
- PCoA, AMOVA, and Fst analysis among populations.
4. Discussion
4.1. Seed Quality and Germination Dynamics
4.2. Germination
4.3. Seed Coat Color and Germination
4.4. Maternal Effects, Pollination Dynamics, and Genetic Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. The Summary for Policymakers—Synthesis Report of the IPCC Sixth Assessment Report (AR6). 2023. Available online: https://www.ipcc.ch/report/ar6/syr/summary-for-policymakers/ (accessed on 1 March 2025).
- NOAA. Assessing the Global Climate in 2024. Available online: https://www.ncei.noaa.gov/news/global-climate-202413 (accessed on 22 June 2025).
- Le Mouël, C.; Forslund, A. How can we feed the world in 2050? A review of the responses from global scenario studies. Eur. Rev. Agric. Econ. 2017, 44, 541–591. [Google Scholar] [CrossRef]
- Berg, A.; de Noblet-Ducoudré, N.; Sultan, B.; Lengaigne, M.; Guimberteau, M. Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agric. For. Meteorol. 2013, 170, 89–102. [Google Scholar] [CrossRef]
- Janni, M.; Maestri, E.; Gullì, M.; Marmiroli, M.; Marmiroli, N. Plant responses to climate change, how global warming may impact on food security: A critical review. Front. Plant Sci. 2024, 14, 1297569. [Google Scholar] [CrossRef]
- Alzate-Marin, A.L.; Rivas, P.M.S.; Galaschi-Teixeira, J.S.; Bonifacio-Anacleto, F.; Silva, C.C.; Schuster, I.; Nazareno, A.G.; Giuliatti, S.; da Rocha Filho, L.C.; Garófalo, C.A.; et al. Warming and Elevated CO2 Induces Changes in the Reproductive Dynamics of a Tropical Plant Species. Sci. Total Environ. 2021, 768, 144899. [Google Scholar] [CrossRef] [PubMed]
- Hacket-Pain, A.; Bogdziewicz, M. Climate change and plant reproduction: Trends and drivers of mast seeding change. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200379. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Barot, S.; El-Kassaby, Y.A.; Loeuille, N. Impact of temperature shifts on the joint evolution of seed dormancy and size. Ecol. Evol. 2017, 7, 26–37. [Google Scholar] [CrossRef]
- Singh, B.; Singh, S.K.; Matcha, S.K.; Kakani, V.G.; Wijewardana, C.; Chastain, D.; Gao, W.; Reddy, K.R. Parental environmental effects on seed quality and germination response to temperature of Andropogon gerardii. Agronomy 2019, 9, 304. [Google Scholar] [CrossRef]
- Luzuriaga, A.L.; Escudero, A.; Pérez-García, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 2006, 46, 163–174. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Hampton, J.G.; Boelt, B.; Rolston, M.P.; Chastain, T.G. Effects of elevated CO2 and temperature on seed quality. J. Agric. Sci. 2013, 151, 154–162. [Google Scholar] [CrossRef]
- Allen, L.H., Jr.; Baker, J.T.; Boote, K.J. The CO2 Fertilization Effect: Higher Carbohydrate Production and Retention as Biomass and Seed Yield. In Global Climate Change and Agricultural Production; Bazzaz, F., Sombroek, W., Eds.; FAO: Rome, Italy, 1996; pp. 65–100. Available online: https://openknowledge.fao.org/handle/20.500.14283/w5183e (accessed on 12 June 2025).
- Jablonski, L.M.; Wang, X.; Curtis, P.S. Plant reproduction under elevated CO2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytol. 2002, 156, 9–26. [Google Scholar] [CrossRef]
- Shinohara, T.; Hampton, J.G.; Hill, M.J. Location of deterioration within garden pea (Pisum sativum) cotyledons is associated with the timing of exposure to high temperature. N. Z. J. Crop Hortic. Sci. 2006, 34, 299–309. [Google Scholar] [CrossRef]
- Hikosaka, K.; Kinugasa, T.; Oikawa, S.; Onoda, Y.; Hirose, T. Effects of elevated CO2 concentration on seed production in C3 annual plants. J. Exp. Bot. 2011, 62, 1523–1530. [Google Scholar] [CrossRef]
- Marty, C.; BassiriRad, H. Seed germination and rising atmospheric CO2 concentration: A meta-analysis of parental and direct effects. New Phytol. 2014, 202, 401–414. [Google Scholar] [CrossRef]
- Costa, N.M.d.S.; Schultze-Kraft, R. Biogeografia de Stylosanthes capitata Vog. e S. guianensis Sw. var. pauciflora. Pesqui. Agropecuária Bras. 1990, 25, 1547–1554. [Google Scholar]
- Jardim, R.R.; Fries, D.D.; Dias, D.L.S.; Figueiredo, A.J.; Pires, A.J.V.; Teixeira, F.A.; Júnior, F.P.A.; Paiva, L.S. Effect of intercropping and nitrogen fertilization on production characteristics of Stylosanthes cv. Campo Grande and Xaraés grass. Grassl. Sci. 2021, 67, 48–54. [Google Scholar] [CrossRef]
- Embrapa Gado de Corte. Cultivo e uso do estilosantes-campo-grande. In Comunicado Técnico 105; Campo Grande: Mato Grosso do Sul, Brasil, 2007; p. 8. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/319150/1/Cot105.pdf (accessed on 13 June 2025).
- da Costa, L.C.; Valls, J.F.M. Stylosanthes in Lista de Espécies da Flora do Brasil. Jard. Botânico Do Rio De Janeiro; 2015. Available online: http://floradobrasil2015.jbrj.gov.br/jabot/floradobrasil/FB29860 (accessed on 1 July 2025).
- Bonifácio-Anacleto, F.; Barrios-Leal, D.Y.; Sobral-Souza, T.; Alzate-Marin, A.L. Climate change impacts the distribution and suitability of two wild species of the genus Stylosanthes. J. Arid. Environ. 2024, 221, 105124. [Google Scholar] [CrossRef]
- Alzate-Marin, A.L.; Teixeira, S.P.; da Rocha-Filho, L.C.; Bonifácio-Anacleto, F.; Rivas, P.M.S.; San Martin, J.A.; Martinez, C.A. Elevated CO2 and Warming Affect Pollen Development in a Tropical Legume Forage Species. Flora 2021, 283, 151904. [Google Scholar] [CrossRef]
- Maluf, R.P.; Alzate-Marin, A.L.; Silva, C.C.; Pansarin, L.M.; Bonifácio-Anacleto, F.; Schuster, I.; de Mello Prado, R.; Martinez, C.A. Warming and soil water availability affect plant-flower visitor interactions for Stylosanthes capitata, a tropical forage legume. Sci. Total Environ. 2022, 817, 152982. [Google Scholar] [CrossRef]
- Bonifácio Anacleto, F.; Barrera San Martin, J.A.; Reutemann, A.G.; Habermann, E.; Pozner, R.E.; Nazareno, A.G.; Nogueira, F.M.; Martinez, C.A.; Alzate-Marin, A.L. Warming and water deficit impact the reproductive features of the tropical forage species Stylosanthes capitata. Environ. Exp. Bot. 2024, 226, 105002. [Google Scholar] [CrossRef]
- Costa, L.C.D.; Sartori, Â.L.B.; Pott, A. Estudo taxonômico de Stylosanthes (Leguminosae-Papilionoideae-Dalbergieae) em Mato Grosso do Sul, Brasil. Rodriguésia 2008, 59, 547–572. [Google Scholar] [CrossRef]
- Kimball, B.A.; Conley, M.M.; Wang, S.; Lin, X.; Luo, C.; Morgan, J.; Smith, D. Infrared heater arrays for warming ecosystem field plots. Glob. Change Biol. 2008, 14, 309–320. [Google Scholar] [CrossRef]
- Miglietta, F.; Peressotti, A.; Vaccari, F.P.; Zaldei, A.; Scarascia-Mugnozza, G. Free-air CO2 enrichment (FACE) of a poplar plantation: The POPFACE fumigation system. New Phytol. 2001, 150, 465–476. [Google Scholar] [CrossRef]
- Habermann, E.; Dias de Oliveira, E.A.; Contin, D.R.; San Martin, J.A.B.; Curtarelli, L.; Gonzalez-Meler, M.A.; Martinez, C.A. Stomatal development and conductance of a tropical forage legume are regulated by elevated [CO2] under moderate warming. Front. Plant Sci. 2019, 10, 609. [Google Scholar] [CrossRef]
- Martinez, C.A.; Bianconi, M.; Silva, L.; Approbato, A.; Lemos, M.; Santos, L.; Curtarelli, L.; Rodrigues, A.; Mello, T.; Manchon, F. Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production in Stylosanthes capitata Vogel. Environ. Exp. Bot. 2014, 102, 58–67. [Google Scholar] [CrossRef]
- Prado, C.H.B.d.A.; Camargo-Bortolin, L.H.G.d.; Castro, E.; Martinez, C.A. Leaf dynamics of Panicum maximum under future climatic changes. PLoS ONE 2016, 11, e0149620. [Google Scholar]
- Battistin, A.; Martins, P.S. Dormancy of the seeds species and 3 varieties of the genera Stylosanthes (Leguminosae-Papilionoideae). Ciência E Nat. 1984, 6, 143–149. [Google Scholar]
- McIvor, F.G. Germination characteristics of seven Stylosanthes species. Aust. J. Exp. Agric. Anim. Husb. 1976, 16, 723–728. [Google Scholar] [CrossRef]
- Rodrigues, A.P.d.A.C.; Laura, V.A.; Pereira, S.R.; Souza, A.d.L.; Freitas, M.E.d. Temperatura de germinação em sementes de estilosantes. Rev. Bras. Sementes 2010, 32, 166–173. [Google Scholar] [CrossRef]
- Chaves, I.S.; Silva, N.C.Q.; Ribeiro, D.M. Effect of the seed coat on dormancy and germination in Stylosanthes humilis H. B. K. seeds. J. Seed Sci. 2017, 39, 114–122. [Google Scholar] [CrossRef]
- Brasil—MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Regras para análise de sementes/Ministério da Agricultura, Pecuária e Abastecimento. In Secretaria de Defesa Agropecuária; Mapa/ACS: Brasília, Brazil, 2009. Available online: https://repositorio-dspace.agricultura.gov.br/handle/1/423 (accessed on 23 June 2025).
- Maguire, J.D. Speed of Germination—Aid in Selection and Evaluation for Seedling Emergence and Vigor 1. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Labouriau, L.G.; Valadares, M.E.B. On the germination of seeds of Calotropis procera (Ait.) R. Br. An. Acad. Bras. Ciências 1976, 48, 263–284. [Google Scholar]
- Ferreira, A.G.; Borghetti, F. Germinação: Do Básico ao Aplicado; Artmed: Porto Alegre, Brazil, 2004; pp. 209–222.41. [Google Scholar]
- Alzate-Marin, A.L.; Guidugli, M.C.; Soriani, H.H.; Martinez, C.A.; Mestriner, M.A. An efficient and rapid DNA minipreparation procedure suitable for PCR/SSR and RAPD analyses in tropical forest tree species. Braz. Arch. Biol. Technol. 2009, 52, 1217–1224. [Google Scholar] [CrossRef]
- Mason, A.S. SSR Genotyping. In Plant Genotyping; Batley, J., Ed.; Springer: New York, NY, USA, 2015; pp. 77–89. [Google Scholar]
- Santos, M.O.; Resende, R.M.S.; Chiari, L.; Karia, C.T.; Zucchi, M.I.; Souza, A.P. Development and characterization of microsatellite markers in Stylosanthes capitata Vogel. Mol. Ecol. Resour. 2009, 9, 870–873. [Google Scholar] [CrossRef]
- Santos-Garcia, M.O.; Resende, R.M.S.; Chiari, L.; Zucchi, M.I.; Souza, A.P. Mating systems in tropical forages: Stylosanthes capitata Vog. and Stylosanthes guianensis (Aubl.) Sw. Euphytica 2011, 178, 185–193. [Google Scholar] [CrossRef]
- Alzate-Marin, A.L.; Costa-Silva, C.; Sá Rivas, P.M.; Bonifacio-Anacleto, F.; Santos, L.G.; Moraes Filho, R.M.; Martinez, C.A. Diagnostic fingerprints ISSR/SSR for tropical leguminous species Stylosanthes capitata and Stylosanthes macrocephala. Sci. Agric. 2019, 77, e20180252. [Google Scholar] [CrossRef]
- Hammer, O. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Peakall, R.O.D.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Change Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature 2017, 4, 371–405. [Google Scholar] [CrossRef]
- Pascual, L.S.; Segarra-Medina, C.; Gómez-Cadenas, A.; López-Climent, M.F.; Vives-Peris, V.; Zandalinas, S.I. Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. J. Plant Physiol. 2022, 276, 153764. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Bulleri, F.; Marín-Guirao, L.; Pernice, M.; Procaccini, G. Photo-physiology and morphology reveal divergent warming responses in northern and southern hemisphere seagrasses. Mar. Biol. 2021, 168, 113. [Google Scholar] [CrossRef]
- Marshall, D.L.; Avritt, J.J.; Maliakal-Witt, S.; Medeiros, J.S.; Shaner, M.G. The impact of plant and flower age on mating patterns. Ann. Bot. 2010, 105, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Egli, D.B. Seed Biology and the Yield of Grain Crops, 2nd ed.; CAB International: Oxfordshire, UK, 2017. [Google Scholar]
- Olivera-Viciedo, D.; de Mello Prado, R.; Martinez, C.A.; Habermann, E.; de Cássia Piccolo, M.; Calero-Hurtado, A.; Barreto, R.F.; Peña, K. Are the interaction effects of warming and drought on nutritional status and biomass production in a tropical forage legume greater than their individual effects? Planta 2021, 254, 104. [Google Scholar] [CrossRef]
- Amthor, J.S. Effects of Atmospheric CO2 Concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Res. 2001, 73, 1–34. [Google Scholar] [CrossRef]
- Miyagi, K.; Kinugasa, T.; Hikosaka, K.; Hirose, T. Elevated CO2 concentration, nitrogen use, and seed production in annual plants. Glob. Change Biol. 2007, 13, 2161–2170. [Google Scholar] [CrossRef]
- Madan, P.; Jagadish, S.V.K.; Craufurd, P.Q.; Fitzgerald, M.; Lafarge, T.; Wheeler, T.R. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J. Exp. Bot. 2012, 63, 3843–3852. [Google Scholar] [CrossRef]
- Vijayalakshmi, D.; Priya, J.R.; Vinitha, A.; Ramya, G. Interactive effects of elevated CO2 with combined heat and drought stresses on the physiology and yield of C3 and C4 plants. J. Crop Sci. Biotechnol. 2024, 27, 1–16. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L.; Hakala, K. Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. J. Agric. Sci. 2011, 149, 49–62. [Google Scholar] [CrossRef]
- Milberg, P.; Andersson, L.; Elfverson, C.; Regnér, S. Germination characteristics of seeds differing in mass. Seed Sci. Res. 1996, 6, 191–198. [Google Scholar] [CrossRef]
- Paz, H.; Martínez-Ramos, M. Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 2003, 84, 439–450. [Google Scholar] [CrossRef]
- Austin, J.R.; Frost, E.; Vidi, P.-A.; Kessler, F.; Staehelin, L.A. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 2016, 18, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- van Wijk, K.J.; Kessler, F. Plastoglobuli: Plastid micro compartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu. Rev. Plant Biol. 2017, 68, 253–289. [Google Scholar] [CrossRef] [PubMed]
- Hovenden, M.J.; Wills, K.E.; Chaplin, R.E.; Vander Schoor, J.K.; Williams, A.L.; Osanai, Y.; Newton, P.C.D. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 2008, 14, 1633–1641. [Google Scholar] [CrossRef]
- Idso, S.B.; Kimball, B.A.; Anderson, M.G.; Mauney, J.R. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of air temperature. Agric. Ecosyst. Environ. 1987, 20, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Shao, L.; Tang, H.; Chen, J.; Yuan, T.; Chen, X.; Meng, H.; Xiang, D.; Xu, R.; Liu, Q.; et al. Panicle temperature explains contrasting yield responses of rice genotypes to elevated CO2 and increased temperature in T-FACE environments. J. Exp. Bot. 2025, 23, eraf170. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Boyle, D.L.; Schapaugh, W.T. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Crop Sci. 2012, 199, 171–177. [Google Scholar] [CrossRef]
- Matsui, T.; Namuco, O.S.; Ziska, L.H.; Horie, T. effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 1997, 51, 213–219. [Google Scholar] [CrossRef]
- Boretti, A. Evaluating water use efficiency and CO2 absorption in plants under rising atmospheric carbon dioxide levels. J. Atmos. Sol.-Terr. Phys. 2025, 266, 106409. [Google Scholar] [CrossRef]
- Parsons, R.F. Incidence and ecology of very fast germination. Seed Sci. Res. 2012, 22, 161–167. [Google Scholar] [CrossRef]
- Imaizumi, T.; Ohigashi, K.; Koarai, A. Maternal temperature has a longer-term impact on seedling emergence than genetic variation in seed dormancy, and this effect may intensify under global warming. Plant Cell Environ. 2025, 48, 5304–5316. [Google Scholar] [CrossRef] [PubMed]
- Fenner, M. The effects of the parent environment on seed germinability. Seed Sci. Res. 1991, 1, 75–84. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed Dormancy and the Control of Germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Skubacz, A.; Daszkowska-Golec, A. Seed dormancy: The complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In Phytohormones—Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- White, F.J.; Hay, F.R.; Abeli, T.; Mondoni, A. Two decades of climate change alters seed longevity in an alpine herb: Implications for ex situ seed conservation. Alp. Bot. 2022, 133, 11–20. [Google Scholar] [CrossRef]
- Probert, R.J.; Daws, M.I.; Hay, F.R. Ecological correlates of ex situ seed longevity: A comparative study on 195 species. Ann. Bot. 2009, 104, 57–69. [Google Scholar] [CrossRef]
- Toda-Matsunaga, S.; Toda, Y.; Mega, R.; Tadano, S.; Alyza, M.; Yamasaki, Y.; Akashi, K.; Tsujimoto, H. Wheat seeds exposed to heat during formation can germinate at high temperatures. Front. Plant Sci. 2025, 16, 1539926. [Google Scholar] [CrossRef]
- Edwards, G.R.; Newton, P.C.D.; Tilbrook, J.C.; Clark, H. Seedling performance of pasture species under elevated CO2. New Phytol. 2001, 150, 359–369. [Google Scholar] [CrossRef]
- Voegele, A.; Graeber, K.; Oracz, K.; Tarkowská, D.; Jacquemoud, D.; Turečková, V.; Urbanová, T.; Strnad, M.; Leubner-Metzger, G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J. Exp. Bot. 2012, 63, 5337–5350. [Google Scholar] [CrossRef]
- Moulay, O.; Zemouri, Z.; Djabeur, A. The relationship between seeds coat color of Retama sphaerocarpa (L.) Boiss and their germinability. Biologia 2023, 78, 1979–1990. [Google Scholar] [CrossRef]
- Gao, S.; Fan, Y.C.; Yu, M.Y.; Zhang, J.W.; Wang, J.F. Effects of drought stress on seed germination and seedling growth of alfalfa with different seed coat colors. Legume Res.-Int. J. 2023, 46, 1339–1344. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Wang, X.; Wang, L.; Zhang, M.; Ren, M. Effects of abiotic stress on anthocyanin accumulation and grain weight in purple wheat. Crop Pasture Sci. 2018, 69, 1208–1214. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Dakora, F.D. Seed-Coat Pigmentation Plays a Crucial Role in Partner Selection and N2 Fixation in Legume-Root-Microbe Associations in African Soils. Plants 2024, 13, 1464. [Google Scholar] [CrossRef] [PubMed]
- Travis, D.; Kohn, J. Comparing levels of geitonogamous visitation by honey bees and other pollinators. J. Pollinat. Ecol. 2023, 35, 170–179. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Wilhite, B.; Neale, D.B. Environmental genome-wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine. Genome Biol. Evol. 2019, 11, 2976–2989. [Google Scholar] [CrossRef]
- Awan, S.; Footitt, S.; Finch-Savage, W.E. Interaction of maternal environment and allelic differences in seed vigour genes determines seed performance in Brassica oleracea. Plant J. 2018, 94, 1098–1108. [Google Scholar] [CrossRef]
- Schneider, H.M. Characterization, costs, cues and future perspectives of phenotypic plasticity. Ann. Bot. 2022, 130, 131–148. [Google Scholar] [CrossRef]
Source of Variation | Treatments (Average ± SE) | ANOVA | |||||
---|---|---|---|---|---|---|---|
aTEaCO2 | aTEeCO2 | eTEaCO2 | eTEeCO2 | aTEeCO2 | eTEaCO2 | eTEeCO2 | |
SPI (total number) | 14.12 ± 1.24 a | 15.05 ± 0.46 a | 20.62 ± 1.18 b | 19.50 ± 1.08 b | F = 0.179, p = 0.67 ns | F = 12.80, p = 0.001 ** | F = 1.05, p = 0.31 ns |
HSW (mg) | 0.23 ± 0.008 a | 0.24 ± 0.006 a | 0.23 ± 0.004 a | 0.22 ± 0.006 a | F = 0.0079, p = 0.93 ns | F = 1.14, p = 0.29 ns | F = 0.07, p = 0.79 ns |
Seed abortions (%) # | 9.75 ± 1.09 a | 8.06 ± 1.02 a | 5.56 ± 0.98 b | 7.31 ± 1.87 a | F = 0.033, p = 0.90 ns | F = 6.52, p = 0.013 * | F = 1.06, p = 0.31 ns |
Non-viable seeds (%) # | 15.62 ± 2.65 a | 12.25 ± 1.81 a | 6.69 ± 1.10 b | 8.75 ± 1.86 a | F = 0.09, p = 0.75 ns | F = 8.69, p = 0.004 ** | F = 2.04, p = 0.16 ns |
Source of Variation | Mean Coat Color Seed % (Cc) ± SE | Factorial Analyses # | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
df | F | p-Value | ||||||||
B | Brd | Br | Bed | Be | G | |||||
aTEaCO2 | 2.42 ± 1.31 | 9.08 ± 4.09 | 26.25 ± 5.14 | 33.25 ± 3.12 | 25.08 ± 2.89 | 3.83 ± 1.01 | - | - | - | |
aTEeCO2 | 4.67 ± 2.19 | 8.83 ± 2.04 | 23.00 ± 4.42 | 32.75 ± 9.04 | 27.67 ± 5.31 | 3.08 ± 0.85 | 1 | 0.00 | 0.991 | ns |
eTEaCO2 | 0.42 ± 0.22 | 3.25 ± 1.94 | 6.75 ± 1.16 | 68.17 ± 7.17 | 19.33 ± 7.82 | 2.08 ± 1.10 | 1 | 4.18 | 0.0465 | * |
eTEeCO2 | 0.58 ± 0.58 | 7.25 ± 5.26 | 5.33 ± 1.08 | 69.67 ± 4.28 | 16.25 ± 8.38 | 0.92 ± 0.55 | 1 | 0.043 | 0.84 | ns |
Cc | 2.02 ± 0.99 | 7.10 ± 1.35 | 15.33 ± 5.41 | 50.96 ± 10.37 | 22.08 ± 2.61 | 2.48 ± 0.63 | 5 | 63.36 | p < 0.0001 | *** |
Cc × aTEeCO2 | 5 | 0.230 | 0.95 | ns | ||||||
Cc × eTEaCO2 | 5 | 11.90 | p < 0.0001 | *** | ||||||
Cc × eTEeCO2 | 5 | 0.171 | 0.972 | ns |
Source of Variation | Mean ± (SE) | Factorial Analyses | |||
---|---|---|---|---|---|
df | F | p-Value | |||
(a) Germination speed index (GSI) | |||||
aTEaCO2 | 54.07 ± 6.17 | - | - | - | - |
aTEeCO2 | 54.10 ± 6.19 | 1 | 2.08 | 0.157 | ns |
eTEaCO2 | 66.80 ± 5.61 | 1 | 10.9 | 0.0022 | ** |
eTEeCO2 | 59.03 ± 5.32 | 1 | 2.11 | 0.155 | ns |
Weeks | 58.50 ± 11.64 | 2 | 75.6 | 0.0001 | *** |
Week × aTEeCO2 | 2 | 2.43 | 0.103 | ns | |
Week × eTEaCO2 | 2 | 0.149 | 0.86 | ns | |
Week × eTEeCO2 | 2 | 8.05 | 0.0013 | ** | |
(b) Germination time (GT) | |||||
aTEaCO2 | 2.72 ± 0.25 | - | - | - | - |
aTEeCO2 | 2.51 ± 0.31 | 1 | 0.69 | 0.41 | ns |
eTEaCO2 | 2.06 ± 0.25 | 1 | 8.90 | 0.0051 | ** |
eTEeCO2 | 2.46 ± 0.25 | 1 | 6.75 | 0.014 | * |
Weeks | 2.44 ± 0.57 | 2 | 92.9 | p < 0.0001 | *** |
Week × aTEeCO2 | - | 2 | 0.49 | 0.62 | ns |
Week × eTEaCO2 | - | 2 | 0.56 | 0.57 | ns |
Week × eTEeCO2 | - | 2 | 1.02 | 0.371 | ns |
(c) Germination percentage (Gr-%) # | |||||
aTEaCO2 | 85.50 ± 3.50 | - | - | - | - |
aTEeCO2 | 91.58 ± 2.16 | 1 | 0.68 | 0.413 | ns |
eTEaCO2 | 95.08 ± 1.37 | 1 | 11.85 | 0.0015 | ** |
eTEeCO2 | 94.08 ± 1.48 | 1 | 3.562 | 0.07 | ns |
Weeks | 91.56 ± 1.45 | 2 | 10.92 | 0.0002 | *** |
Week × aTEeCO2 | - | 2 | 0.19 | 0.981 | ns |
Week × eTEaCO2 | - | 2 | 3.288 | 0.048 | * |
Week × eTEeCO2 | - | 2 | 1.104 | 0.343 | ns |
(d) Abnormal Seedlings (%) # | |||||
aTEaCO2 | 2.92 ± 0.63 | - | - | - | |
aTEeCO2 | 3.50 ± 0.87 | 1 | 0.49 | 0.48 | ns |
eTEaCO2 | 1.33 ± 0.48 | 1 | 8.82 | 0.0048 | ** |
eTEeCO2 | 1.75 ± 0.63 | 1 | 0.025 | 0.87 | ns |
Population | Source of Variation | A# | Ae # | Ho # | He | Fis # |
---|---|---|---|---|---|---|
Mothers | aTEaCO2 | 6.14 ± 0.70 | 4.72 ± 0.69 | 0.36 ± 0.11 | 0.77 ± 0.02 | 0.55 ± 0.13 |
Mothers | aTEeCO2 | 5.29 ± 0.86 | 3.84 ± 0.68 | 0.34 ± 0.14 | 0.70 ± 0.04 | 0.56 ± 0.17 |
Mothers | eTEaCO2 | 4.57 ± 0.75 | 3.09 ± 0.59 | 0.40 ± 0.12 | 0.62 ± 0.05 | 0.37 ± 0.19 |
Mothers | eTEeCO2 | 5.57 ± 0.61 | 3.59 ± 0.45 | 0.34 ± 0.09 | 0.70 ± 0.02 | 0.52 ± 0,12 |
Mean | 5.39 ± 0.36 | 3.81 ± 0.31 | 0.36 ± 0.06 | 0.70 ± 0.02 | 0.50 ± 0.07 | |
Progeny | aTEaCO2 | 6.57 ± 0.61 | 4.60 ± 0.73 a | 0.30 ± 0.12 | 0.76 ± 0.02 a | 0.63 ± 0.13 |
Progeny | aTEeCO2 | 6.43 ± 0.80 | 3.91 ± 0.63 a | 0.35 ± 0.13 | 0.72 ± 0.03 ab | 0.54 ± 0.16 |
Progeny | eTEaCO2 | 5.57 ± 0.90 | 2.99 ± 0.57 a | 0.28 ± 0.12 | 0.61 ± 0.05 b | 0.59 ± 0.15 |
Progeny | eTEeCO2 | 6.29 ± 0.61 | 3.43 ± 0.50 a | 0.30 ± 0.10 | 0.68 ± 0.03 ab | 0.58 ± 0.11 |
Mean | 6.21 ± 0.35 | 3.73 ± 0.31 | 0.31 ± 0.06 | 0.69 ± 0.02 | 0.58 ± 0.07 | |
ANOVA | ||||||
Progeny | aTEeCO2 | F = 0.32, p = 0.57 ns | F = 0.00, p = 0.98 ns | F = 0.18, p = 0.67 ns | F = 0.14, p = 0.71 ns | F = 0.72, p = 0.41 ns |
Progeny | eTEaCO2 | F = 1.04, p = 0.32 | F = 4.46, p = 0.045 * | F = 0.001, p = 0.97 ns | F = 6.30, p = 0.019 * | F = 0.11, p = 0.75 ns |
Progeny | eTEeCO2 | F = 0.76, p = 0.39 ns | F = 1.44, p = 0.24 ns | F = 0.27, p = 0.61 ns | F = 2.50, p = 0.13 ns | F = 0.44, p = 0.51 ns |
Among Pops | Within Pops | Total | p-value | ||||
---|---|---|---|---|---|---|---|
Est. Var | (%) | Est. Var | (%) | Est. Var | (%) | ||
Mothers | 0.061 | 1 | 8.394 | 99 | 8.456 | 100 | 0.304 |
Progeny | 0.784 | 9 | 8.202 | 91 | 8.987 | 100 | 0.001 |
Mothers + Progeny | 0.704 | 8 | 8.213 | 92 | 8.917 | 100 | 0.001 |
Matrices | Progenies | |||
---|---|---|---|---|
Value | SE | Value | SE | |
Fst | 0.066 | 0.005 | 0.065 | 0.007 |
Nm | 3.713 | 0.363 | 3.843 | 0.449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, P.M.S.; Bonifácio-Anacleto, F.; Schuster, I.; Martinez, C.A.; Alzate-Marin, A.L. Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage. Genes 2025, 16, 913. https://doi.org/10.3390/genes16080913
Rivas PMS, Bonifácio-Anacleto F, Schuster I, Martinez CA, Alzate-Marin AL. Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage. Genes. 2025; 16(8):913. https://doi.org/10.3390/genes16080913
Chicago/Turabian StyleRivas, Priscila Marlys Sá, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez, and Ana Lilia Alzate-Marin. 2025. "Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage" Genes 16, no. 8: 913. https://doi.org/10.3390/genes16080913
APA StyleRivas, P. M. S., Bonifácio-Anacleto, F., Schuster, I., Martinez, C. A., & Alzate-Marin, A. L. (2025). Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage. Genes, 16(8), 913. https://doi.org/10.3390/genes16080913