Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = methane emission and mitigation strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 647 KB  
Review
A Critical Analysis of Agricultural Greenhouse Gas Emission Drivers and Mitigation Approaches
by Yezheng Zhu, Yixuan Zhang, Jiangbo Li, Yiting Liu, Chenghao Li, Dandong Cheng and Caiqing Qin
Atmosphere 2026, 17(1), 97; https://doi.org/10.3390/atmos17010097 (registering DOI) - 17 Jan 2026
Abstract
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial [...] Read more.
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial for achieving carbon budget balance. This article synthesizes the impact of farmland management practices on GHG emissions, evaluates prevalent accounting methods and their applicable scenarios, and proposes mitigation strategies based on systematic analysis. The present review (2000-2025) indicates that fertilizer management dominates research focus (accounting for over 50%), followed by water management (approximately 18%) and tillage practices (approximately 14%). Critically, the effects of these practices extend beyond GHG emissions, necessitating concurrent consideration of crop yields, soil health, and ecosystem resilience. Therefore, it is necessary to conduct joint research by integrating multiple approaches such as water-saving irrigation, conservation tillage and intercropping of leguminous crops, so as to enhance productivity and soil quality while reducing emissions. The GHG accounting framework and three primary accounting methods (In situ measurement, Satellite remote sensing, and Model simulation) each exhibit distinct advantages and limitations, requiring scenario-specific selection. Further refinement of these methodologies is imperative to optimize agricultural practices and achieve meaningful GHG reductions. Full article
(This article belongs to the Special Issue Gas Emissions from Soil)
67 pages, 4924 KB  
Review
Current Trends and Innovations in CO2 Hydrogenation Processes
by Egydio Terziotti Neto, Lucas Alves da Silva, Heloisa Ruschel Bortolini, Rita Maria Brito Alves and Reinaldo Giudici
Processes 2026, 14(2), 293; https://doi.org/10.3390/pr14020293 - 14 Jan 2026
Viewed by 103
Abstract
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development [...] Read more.
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development of low-carbon industrial processes. In addition to methanol and methane, other possible hydrogenation products (i.e., hydrocarbons, formic acid, acetic acid, dimethyl ether, and dimethyl carbonate) are of industrial relevance due to their wide range of applications. Therefore, this review aims to provide a comprehensive overview of the various aspects associated with thermocatalytic CO2 hydrogenation processes, from thermodynamic and kinetic studies to upscaled reactor modeling and process synthesis and optimization. The review proceeds to examine different integration strategies and optimization approaches for multi-product systems, with the objective of evaluating how distinct technologies may be combined in an integrated flowsheet. It then concludes by outlining future research opportunities in this field, particularly those related to developing comprehensive kinetic rate expressions and reactor modeling studies for routes with low technology readiness levels, the exploration of prospective reaction pathways, strategies to mitigate the dependence on green hydrogen (which, today, exhibits high costs), and the consideration of market price or product demand fluctuations in optimization studies. Overall, this review provides a solid base to support other decarbonization studies focused on hydrogenation technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Chemical Processes and Systems")
Show Figures

Figure 1

16 pages, 1713 KB  
Article
Astragalus Straw Inhibited Methane Emissions by Regulating Ruminal Fermentation Parameters and Microbial Community Dynamics in Lanzhou Fat-Tailed Sheep
by Juanshan Zheng, Wangmei Feng, Chi Ma, Xiang Pan, Tong Wang, Honghe Li, Junsong Zhang, Xiaofang Feng, Na Jiao, Siqiu Yang and Penghui Guo
Agriculture 2026, 16(2), 216; https://doi.org/10.3390/agriculture16020216 - 14 Jan 2026
Viewed by 136
Abstract
Methane (CH4), a significant greenhouse gas, ranks second only to carbon dioxide in its contribution to global warming. The application of Chinese herbs as a strategy to mitigate CH4 emissions in ruminants has shown promise. However, there is limited information [...] Read more.
Methane (CH4), a significant greenhouse gas, ranks second only to carbon dioxide in its contribution to global warming. The application of Chinese herbs as a strategy to mitigate CH4 emissions in ruminants has shown promise. However, there is limited information regarding the efficacy of Chinese herb straw in reducing CH4 emissions in ruminants. This research aimed to investigate the beneficial effects of varying levels of Astragalus straw supplementation on methane emissions and to elucidate the underlying molecular mechanisms. The study examined the effects of different supplementation levels (0%, 5%, 10%, 15%, 20%) on in vitro rumen fermentation, CH4 emissions, and ruminal microbial community in Lanzhou fat-tailed sheep using an in vitro fermentation method. The findings indicated that IVDMD, gas production, and CH4 production significantly decreased with increasing levels of Astragalus straw supplementation (p < 0.05). Simultaneously, the lowest levels of AA, AA/PA, and NH3-N, along with the highest concentrations of PA, BA, and MCP, were observed in the 20% supplementation group after 48 h of fermentation. In addition, supplementation with Astragalus straw resulted in an increased abundance of Bacteroidota, Spirochaetota, and Actinobacteriota, while decreasing the abundance of Firmicutes, Fibrobacterota, and Verrucomicrobiota. At the genus level, there was an observed increase in the abundance of Prevotella and Streptococcus, accompanied by a decrease in Rikenellaceae_RC9_gut_group. In conclusion, the supplementation of Astragalus straw has the potential to reduce CH4 production by altering ruminal fermentation patterns, fermentation parameters, and microbial dynamics. Full article
Show Figures

Figure 1

24 pages, 1775 KB  
Article
Effects of Aspergillus niger and Its Compound Preparations on Methane Emissions and Gastrointestinal Microbiota in Heat-Stressed Holstein Bulls
by Jiangge Wang, Shuaiqi Fu, Xianghui Yin, Shiqin Sun and Tengyun Gao
Animals 2026, 16(2), 154; https://doi.org/10.3390/ani16020154 - 6 Jan 2026
Viewed by 168
Abstract
The livestock sector is a major source of methane, a potent greenhouse gas, while heat stress impairs ruminant health. This study evaluated the efficacy of Aspergillus niger (AN) and its compound preparation (CP) as feed additives to mitigate methane emissions and heat stress [...] Read more.
The livestock sector is a major source of methane, a potent greenhouse gas, while heat stress impairs ruminant health. This study evaluated the efficacy of Aspergillus niger (AN) and its compound preparation (CP) as feed additives to mitigate methane emissions and heat stress in Holstein bulls. Twenty-four bulls were assigned to a control group (CON), a group supplemented with 6 g/d of AN, and a group with 20 g/d of CP. Methane emissions were measured using the SF6 tracer technique. Blood and ruminal fermentation parameters were also analyzed. Results showed that both AN and CP significantly reduced total methane emissions, emissions per unit of body weight, and per unit of dry matter intake compared to CON. Supplemented groups had significantly lower rectal temperatures and higher superoxide dismutase activity, with AN also increasing total antioxidant capacity. AN groups showed increased total volatile fatty acids, acetate, and propionate. Microbiota analysis revealed significant beta-diversity shifts with differential taxon enrichment. In conclusion, Aspergillus niger and its compound preparation effectively reduce enteric methane and alleviate heat stress by boosting antioxidant defenses and modulating rumen function, offering a dual-benefit strategy for sustainable ruminant production. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

19 pages, 2657 KB  
Article
Liquid Addition Techniques to Enhance Methane Biotrickling Filters at Dairy Barn Concentrations
by Anna M. Pryor, Peter A. Gostomski and Carlo R. Carere
Clean Technol. 2026, 8(1), 3; https://doi.org/10.3390/cleantechnol8010003 - 31 Dec 2025
Viewed by 323
Abstract
Dilute methane (CH4) emissions from dairy barns (<500 ppm) are a challenging agricultural greenhouse-gas source to abate via biofiltration because its poor solubility makes gas–liquid mass transfer a primary limitation in biotrickling filters (BTFs). Here, we evaluated lab-scale BTFs for treating [...] Read more.
Dilute methane (CH4) emissions from dairy barns (<500 ppm) are a challenging agricultural greenhouse-gas source to abate via biofiltration because its poor solubility makes gas–liquid mass transfer a primary limitation in biotrickling filters (BTFs). Here, we evaluated lab-scale BTFs for treating dairy-relevant CH4 concentrations and tested two enhancement strategies: (1) aerosolised nutrient delivery to improve liquid distribution and (2) reduced liquid addition rates to increase gas–liquid mass-transfer efficiency. Liquid-fed BTFs and aerosol-fed BTFs (ABTFs) packed with scoria or glass beads were compared. Aerosolised nutrients reduced the elimination capacity (EC) compared to biotrickling delivery. Switching from liquid to aerosol decreased an initial EC of ~30 g m−3 h−1 by 35% at 2500 ppm CH4, and the original EC was not recoverable. Slower liquid addition consistently improved CH4 removal for both delivery techniques. In a glass bead ABTF at 2500 ppm CH4, the EC increased from 5.5 to 12.4 g m−3 h−1 when the liquid coalescence rate decreased from 0.79 to 0.006 cm h−1. In a scoria ABTF, a 1.5-fold increase in EC was observed as the rate decreased from 2.36 to 0.15 cm h−1. Below a threshold liquid addition rate in the scoria BTF, the EC dropped ~33%, likely due to uneven wetting or high pH conditions. Therefore, optimising liquid delivery can significantly enhance BTF performance for agricultural CH4 mitigation. Full article
Show Figures

Figure 1

16 pages, 2049 KB  
Article
Sensitivity Analysis of N2O and CH4 Emissions in a Winter Wheat–Rice Double Cropping System
by Chuang Liu, Jiabao Wang, Zhili Sun, Yixiang Sun, Yi Liu and Lianhai Wu
Agriculture 2026, 16(1), 11; https://doi.org/10.3390/agriculture16010011 - 19 Dec 2025
Viewed by 283
Abstract
The sensitivity of model outputs to parameter variations is crucial for effective model calibration and application. This study assessed the sensitivity of N2O and CH4 emissions to varying weather conditions and fertilization practices in a winter wheat–rice cropping system. Using [...] Read more.
The sensitivity of model outputs to parameter variations is crucial for effective model calibration and application. This study assessed the sensitivity of N2O and CH4 emissions to varying weather conditions and fertilization practices in a winter wheat–rice cropping system. Using the Sobol first-order sensitivity index within the SPACSYS model, key parameters and input variables influencing gas emissions were identified. The results showed that the index effectively detected highly sensitive parameters, particularly those related to soil water content, oxygen dynamics and microbial processes. Both N2O and CH4 emissions were sensitive to carbon availability and soil oxygen levels. For N2O emissions, microbial process parameters and soil water content had substantial impacts, whereas CH4 emissions were more responsive to methane consumption, oxygen levels, and carbon substrates. Fertilization, rainfall and temperature showed high sensitivity for N2O emissions, while temperature emerged as the dominant factor controlling CH4 emissions. The identified parameters offer valuable insights for improving model performance and informing strategies to mitigate greenhouse gas emissions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 5850 KB  
Article
Effect of Promoters on Co/Al2O3 Catalysts for Partial Oxidation of Methane: Structure–Activity Correlations
by Khaled M. Banabdwin, Abdulaziz A. M. Abahussain, Amal BaQais, Ahmed A. Bhran, Alaaddin M. M. Saeed, Nawaf N. Alotaibi, Mohammed Abdullh Al Sudairi, Ahmed A. Ibrahim, Sunit Kumar Singh and Ahmed S Al-Fatesh
Catalysts 2025, 15(12), 1176; https://doi.org/10.3390/catal15121176 - 18 Dec 2025
Viewed by 544
Abstract
The development of cost-effective non-noble metal catalysts for the partial oxidation of methane (POM) remains a key strategy for producing hydrogen-rich syngas while mitigating greenhouse gas emissions. In this study, cobalt-supported alumina (Co/Al2O3) catalysts were prepared using 5 wt.% [...] Read more.
The development of cost-effective non-noble metal catalysts for the partial oxidation of methane (POM) remains a key strategy for producing hydrogen-rich syngas while mitigating greenhouse gas emissions. In this study, cobalt-supported alumina (Co/Al2O3) catalysts were prepared using 5 wt.% of Co and calcined at 600, 700, and 800 °C. Subsequently, Co/Al2O3 catalysts were promoted with 10 wt.% Mg, Si, Ti, and Zr at the optimized calcination temperature. The catalysts were systematically characterized by FT-IR, XRD, N2 physisorption, H2-TPR, and XPS analyses. Catalytic activity tests for POM of CH4 were conducted at 600 °C (CH4/O2 = 2 and GHSV = 14,400 mL g−1 h−1). Catalysts calcined at 700 °C (5Co/Al_700) exhibited the highest activity among unpromoted samples, with CH4 conversion of 43.9% and H2 yield of 41.8%. The superior performance was attributed to its high surface area and the abundance of reducible Co3+ species, generating a greater number of Co0 active sites. XPS results confirmed the structural stability of γ-Al2O3 and preserved Co–Al interactions across calcination temperatures, while promoters mainly modulated Co dispersion and redox accessibility. Among the promoted catalysts, the activity order followed: 5Co/10ZrAl > 5Co/10MgAl> unpromoted-5Co/Al_700 > 5Co/10SiAl > 5Co/10TiAl. Si and Ti promoted catalysts acquired less concentration of active sites and less activity as well. The concentration of reducible species as well as initial activity towards POM are comparable over Zr and Mg-promoted catalysts. However, earlier one has a higher edge of reducibility and sustained constant activity over time in a stream study. The Zr-promoted catalyst exhibited superior reducibility and remarkable stability, achieving 47.3% CH4 conversion and 44.4% H2 yield sustained over 300 min time-on-stream. TEM analysis of spent 5Co/10ZrAl indicated that Zr promotion suppressed graphitic carbon formation. Full article
Show Figures

Figure 1

20 pages, 722 KB  
Article
Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach
by Idowu Kolawole Odubote, Chisoni Mumba, Shimels Wassie, Christian Adjogo Bateki and Andreas Wilkes
Methane 2025, 4(4), 30; https://doi.org/10.3390/methane4040030 - 15 Dec 2025
Viewed by 637
Abstract
Agriculture is a significant contributor to greenhouse gas (GHG) emissions, with enteric methane (EntCH4) from cattle production being a major source. In Zambia, cattle play a critical role in rural livelihoods and food security, yet the contribution of cattle production systems [...] Read more.
Agriculture is a significant contributor to greenhouse gas (GHG) emissions, with enteric methane (EntCH4) from cattle production being a major source. In Zambia, cattle play a critical role in rural livelihoods and food security, yet the contribution of cattle production systems to national GHG emissions remains poorly quantified. This study used the Intergovernmental Panel on Climate Change (IPCC) Tier 2 method to estimate EntCH4 from Zambia’s cattle population from 1994 to 2022. The Tier 2 method provides a more accurate estimate than the Tier 1 method by incorporating country-specific data on cattle population demographics, husbandry, and feeding practices. The results show significant variations in EntCH4 over time, driven by changes in cattle population dynamics and production practices. This study underscored the importance of transitioning from the generalized Tier 1 to the Tier 2 method to capture the unique characteristics of Zambia’s cattle production systems. The present findings provide critical insights for developing targeted mitigation strategies that will support Zambia’s ongoing efforts to address climate change while promoting sustainable livestock production. Full article
Show Figures

Figure 1

36 pages, 1178 KB  
Article
Fuel Substitution in Cement Production: A Comparative Life Cycle Assessment of Refuse-Derived Fuel and Coal
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Sci 2025, 7(4), 184; https://doi.org/10.3390/sci7040184 - 12 Dec 2025
Viewed by 837
Abstract
Cement production in Africa remains carbon-intensive, primarily due to the use of coal-based thermal energy. This study conducts a comparative cradle-to-gate life cycle assessment (LCA) of cement production using 100% coal (Scenario A) against partial substitution with refuse-derived fuel (RDF) at a 20% [...] Read more.
Cement production in Africa remains carbon-intensive, primarily due to the use of coal-based thermal energy. This study conducts a comparative cradle-to-gate life cycle assessment (LCA) of cement production using 100% coal (Scenario A) against partial substitution with refuse-derived fuel (RDF) at a 20% thermal input rate (Scenario B), with case studies in South Africa and Ethiopia. The LCA, modeled in SimaPro 9.2.0.1 with Ecoinvent v3.7.1 and regional data, evaluates midpoint environmental impacts across the following five stages: raw materials, clinker production, electricity, fuel use, and transportation. The results show that Scenario B reduces the global warming potential (GWP) by 3.3–4.2% per kg of cement, with minimal increases in other impact categories. When avoided landfill methane is accounted for, GWP reduction improves to 6.7%. Fossil resource depletion drops by 10%, and toxicity and particulate emissions show marginal improvements. Economic analysis under South Africa’s 2025 carbon policy reveals a modest net cost increase of $2–3 per ton of cement and an abatement cost of $64–87 per ton of CO2. The study provides new insights by harmonizing LCA models across national contexts, linking emissions reductions to economic instruments, and quantifying the co-benefits of RDF for waste management. The results support RDF co-processing as a scalable mitigation strategy for the African cement sector, recommending substitution rates of 15–30%, policy alignment, and enhancement of the RDF supply chain to maximize impact. Full article
Show Figures

Figure 1

21 pages, 2046 KB  
Article
Mitigation of Greenhouse Gas Emissions Through Straw Management and Oxygenated and Biochar-Based Fertilizers
by Qi Sun, Yu-Feng Wang, Hao Jiang, Huichang Bian, Xiao-Jun Wang, Yan Li, Hong-Sheng Gao, Xue Pan, Shuai Hao and Xue-Jia Gu
Plants 2025, 14(24), 3791; https://doi.org/10.3390/plants14243791 - 12 Dec 2025
Viewed by 405
Abstract
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation [...] Read more.
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation strategies during rice cultivation. This study explored the effects of various oxygenation measures on GHG under straw-returning conditions through controlled pot experiments. Six distinct treatments were applied. These included straw not returned (NR, no straw applied), straw returned (SR), controlled irrigation (CI), oxygenation irrigation (OI), application of oxygenated fertilizer (OF, CaO2), and use of biochar-based fertilizer (CF). All treatment groups, with the exception of the NR group, involved the return of straw to the field. Creating rice production methods that increase yield and decrease emissions is of great importance to agricultural ecology. We postulated that using aeration methods under straw return conditions would stabilize rice yield and reduce GHG. The experimental results were consistent with our hypothesis. The experiment evaluated multiple parameters, including rice yield, leaf photosynthetic performance, soil ammonium and nitrate nitrogen (N) levels, and greenhouse gas emissions. The findings revealed that different oxygenation approaches significantly promoted rice tillering. Oxygenation measures have been shown to enhance rice yield by 19% to 65%. The highest tiller numbers were observed in the SR (22.75) and CF (21.6) treatments. Among all treatments, the CF achieved the highest seed setting rate at 0.94, which was notably greater than that of the other treatments. Total plant biomass was also significantly higher in the straw returning treatment (109.36 g), surpassing all other treatments. In terms of soil nitrogen dynamics, the OF treatment resulted in the highest nitrate nitrogen content. Meanwhile, the ammonium nitrogen concentrations across the four oxygenation treatments (CI, OI, OF, CF) ranged from approximately 7 to 8.9 mg kg−1. Regarding GHG, the CF treatment exhibited the lowest methane emissions, which were 33% lower compared to the straw returning treatment. The OF led to a 22% reduction in carbon dioxide emissions (CO2) relative to straw returning. Most notably, the CF reduced nitrous oxide emissions by 37% compared to the straw returning treatment. Overall, SR was found to substantially increase GHG. In contrast, all tested oxygenation measures—CI, OI, OF, and CF—were effective in suppressing GHG to varying degrees. Among these, the CF and OF demonstrated the most balanced and outstanding effects, both in reducing emissions and maintaining stable rice yields. Full article
Show Figures

Figure 1

15 pages, 710 KB  
Review
Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants
by Ibrahim Ahmad, Richard P. Rawnsley, John P. Bowman, Rohan Borojevic and Apeh A. Omede
Fermentation 2025, 11(12), 680; https://doi.org/10.3390/fermentation11120680 - 5 Dec 2025
Viewed by 674
Abstract
Enteric methane (CH4) emissions from ruminants contribute significantly to agricultural greenhouse gases. Anti-methanogenic feed additives (AMFA), such as Asparagopsis spp. and 3-nitrooxypropanol (3-NOP), reduce CH4 emissions by inhibiting methanogenic enzymes. However, CH4 inhibition often leads to dihydrogen (H2 [...] Read more.
Enteric methane (CH4) emissions from ruminants contribute significantly to agricultural greenhouse gases. Anti-methanogenic feed additives (AMFA), such as Asparagopsis spp. and 3-nitrooxypropanol (3-NOP), reduce CH4 emissions by inhibiting methanogenic enzymes. However, CH4 inhibition often leads to dihydrogen (H2) accumulation, which can impact rumen fermentation and decrease dry matter intake (DMI). Recent studies suggest that co-supplementation of CH4 inhibitors with alternative electron acceptors, such as phloroglucinol, fumaric acid, or acrylic acid, can redirect excess H2 during methanogenesis inhibition into fermentation products nutritionally beneficial for the host. This review summarizes findings from rumen simulation experiments and in vivo trials that have investigated the effects of combining a CH4 inhibitor with an alternative H2 acceptor to achieve effective methanogenesis inhibition. These trials demonstrate variable outcomes depending on additive combinations, inclusion rates, and adaptation periods. The use of phloroglucinol in vivo consistently decreased H2 emissions and altered fermentation patterns, promoting acetate production, compared with fumaric acid or acrylic acid as alternative electron acceptors. As a proof-of-concept, phloroglucinol shows promise as a co-supplement for reducing CH4 and H2 emissions while enhancing volatile fatty acid profiles in vivo. Optimizing microbial pathways for H2 utilization through targeted co-supplementation and microbial adaptation could enhance the sustainability of CH4 mitigation strategies using feed additive inhibitors in ruminants. Further research using multi-omics approaches is needed to elucidate the microbial mechanisms underlying the redirection of H2 toward beneficial fermentation products during enteric methanogenesis inhibition. This knowledge will help guide the formulation of novel co-supplements designed to reduce CH4 emissions and improve energy efficiency for sustainable livestock production. Full article
Show Figures

Figure 1

36 pages, 2395 KB  
Review
Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects
by Nisreen Salem, Kamalpreet Kaur Brar, Ali Asgarian, Kulwinder Kaur, Sara Magdouli and Nancy N. Perreault
Clean Technol. 2025, 7(4), 109; https://doi.org/10.3390/cleantechnol7040109 - 4 Dec 2025
Viewed by 1790
Abstract
Carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas (GHG), accounting for approximately 81% of total emissions, with methane (CH4), nitrous oxide (N2O), and fluorinated gases contributing the remainder. Rising atmospheric CO2 concentrations, driven primarily [...] Read more.
Carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas (GHG), accounting for approximately 81% of total emissions, with methane (CH4), nitrous oxide (N2O), and fluorinated gases contributing the remainder. Rising atmospheric CO2 concentrations, driven primarily by fossil fuel combustion, industrial processes, and transportation, have surpassed the Earth’s natural sequestration capacity, intensifying climate change impacts. Carbon Capture, Utilization, and Storage (CCUS) offers a portfolio of solutions to mitigate these emissions, encompassing pre-combustion, post-combustion, oxy-fuel combustion, and direct air capture (DAC) technologies. This review synthesizes advancements in CO2 capture materials including liquid absorbents (amines, amino acids, ionic liquids, hydroxides/carbonates), solid adsorbents (metal–organic frameworks, zeolites, carbon-based materials, metal oxides), hybrid sorbents, and emerging hydrogel-based systems and their integration with utilization and storage routes. Special emphasis is given to CO2 mineralization using mine tailings, steel slag, fly ash, and bauxite residue, as well as biological mineralization employing carbonic anhydrase (CA) immobilized in hydrogels. The techno-economic performance of these pathways is compared, highlighting that while high-capacity sorbents offer scalability, hydrogels and biomineralization excel in low-temperature regeneration and integration with waste valorization. Challenges remain in cost reduction, material stability under industrial flue gas conditions, and integration with renewable energy systems. The review concludes that hybrid, cross-technology CCUS configurations combining complementary capture, utilization, and storage strategies will be essential to meeting 2030 and 2050 climate targets. Full article
Show Figures

Figure 1

28 pages, 900 KB  
Article
Metabolic and Physiological Predictors of Enteric Methane Emissions in Early Lactation Dairy Cows: A Prospective Observational Study
by Justina Krištolaitytė, Karina Džermeikaitė, Lina Anskienė, Samanta Grigė, Akvilė Girdauskaitė, Arūnas Rutkauskas and Ramūnas Antanaitis
Life 2025, 15(12), 1815; https://doi.org/10.3390/life15121815 - 27 Nov 2025
Viewed by 553
Abstract
This study aimed to investigate the relationship between enteric methane (CH4) emissions and metabolic, physiological, and behavioural factors in early lactation Holstein cows. Forty-two cows were observed over a span of five consecutive weeks (0–100 days in lactation). CH4 concentration [...] Read more.
This study aimed to investigate the relationship between enteric methane (CH4) emissions and metabolic, physiological, and behavioural factors in early lactation Holstein cows. Forty-two cows were observed over a span of five consecutive weeks (0–100 days in lactation). CH4 concentration (ppm) was quantified with a portable laser detector, whereas rumination duration, temperature, and water consumption were documented using intraruminal boluses. Weekly blood samples were examined for beta-hydroxybutyrate (BHB), C-reactive protein (CRP), urea (UREA), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) levels. The evaluation of milk yield and composition was conducted utilising in-line infrared sensors. Cows were classified against clinical reference intervals, and associations were tested via group comparisons, correlations, multiple linear regression, linear mixed models (cow ID random effect), ROC analysis, and by relating CH4 to dry matter intake (DMI). Cows with elevated BHB (≥1.2 mmol/L) emitted 87.8% more CH4 than cows within range and showed higher CH4 yield per kg DMI; elevated GGT was likewise associated with higher CH4 (+25.2%). CH4 correlated positively with BHB (r = 0.54, p < 0.01), and negatively with rumination (r = −0.38, p < 0.05). Regression explained 30.2% of CH4 variance (adjusted R2 = 0.302): BHB was a positive predictor (β = 0.55, p = 0.047), whereas LDH was negative (β = −0.21, p = 0.033). A three-way interaction (BHB group × AST × GGT) was significant in the mixed model (F = 6.91, p = 0.002). For discrimination of high emitters, BHB achieved AUC = 0.889; among on-farm traits, milk yield (AUC = 0.823) and lactose (AUC = 0.701) performed best. DMI related inversely to CH4 yield (r = −0.69, p = 0.058). The findings indicate that enteric methane production during early lactation is not exclusively influenced by diet but is significantly associated with systemic metabolic health. Integrating physiological and production characteristics may improve precision-driven methane monitoring and mitigation strategies in dairy systems. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

24 pages, 7604 KB  
Article
Experimental Investigation of Performance and Emissions for a Hybrid Electric Vehicle Operating on Gasoline, CNG, and Dual Fuel over the WLTC
by Tadas Vipartas, Alfredas Rimkus, Saulius Stravinskas, Aurelijus Pitrėnas and Audrius Matulis
Appl. Sci. 2025, 15(23), 12541; https://doi.org/10.3390/app152312541 - 26 Nov 2025
Viewed by 534
Abstract
Hybrid electric vehicles (HEVs) frequently cycle their internal combustion engines (ICE), potentially cooling the three-way catalyst (TWC). This challenges the use of compressed natural gas (CNG), as methane (CH4) requires high temperatures for TWC oxidation. This study experimentally investigates the performance, [...] Read more.
Hybrid electric vehicles (HEVs) frequently cycle their internal combustion engines (ICE), potentially cooling the three-way catalyst (TWC). This challenges the use of compressed natural gas (CNG), as methane (CH4) requires high temperatures for TWC oxidation. This study experimentally investigates the performance, engine-out emissions (CO, NOx, CH4, NMHC, CO2), and catalyst temperatures of a Toyota RAV4 hybrid vehicle on gasoline (G), CNG, and dual fuel (MIX) during the WLTC. Engine-out emissions were measured upstream of the TWC. Results showed similar engine work output (~17.8 kWh/100 km), while CNG significantly reduced fuel mass consumption (−18.7%) and CO2 emissions (−27.5%) compared to gasoline, driven by both its higher LHV and higher average BTE. CO (−32.3%) and NOx (−34.0%) emissions were lower with CNG, linked to leaner operation and significantly retarded ignition timing for NOx control. However, CH4 emissions drastically increased with CNG. This study reveals a synergy between the same retarded ignition timing strategy used to successfully control engine-out NOx (−34.0%) and created a positive secondary effect, raising pre-TWC temperatures by 4.5%. Higher thermal condition is essential for the aftertreatment of chemically stable methane, highlighting a direct link between the engine’s NOx control logic and the potential to mitigate methane slip. Full article
(This article belongs to the Special Issue Modern Internal Combustion Engines: Design, Testing, and Application)
Show Figures

Figure 1

37 pages, 4377 KB  
Review
Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration
by Roxana Maria Madjar, Gina Vasile Scăețeanu, Ana-Cornelia Butcaru and Andrei Moț
Sustainability 2025, 17(22), 10228; https://doi.org/10.3390/su172210228 - 15 Nov 2025
Cited by 1 | Viewed by 1358
Abstract
The agricultural sector has a significant impact on the global carbon cycle, contributing substantially to greenhouse gas (GHG) emissions through various practices and processes. This review paper examines the significant role of the agricultural sector in the global carbon cycle, highlighting its substantial [...] Read more.
The agricultural sector has a significant impact on the global carbon cycle, contributing substantially to greenhouse gas (GHG) emissions through various practices and processes. This review paper examines the significant role of the agricultural sector in the global carbon cycle, highlighting its substantial contribution to GHG emissions through diverse practices and processes. The study explores the trends and spatial distribution of agricultural GHG emissions at both the global level and within the European Union (EU). Emphasis is placed on the principal gases released by this sector—methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)—with detailed attention to their sources, levels, environmental impacts, and key strategies to mitigate and control their effects, based on the latest scientific data. The paper further investigates emissions originating from livestock production, along with mitigation approaches including feed additives, selective breeding, and improved manure management techniques. Soil-derived emissions, particularly N2O and CO2 resulting from fertilizer application and microbial activity, are thoroughly explored. Additionally, the influence of various agricultural practices such as tillage, crop rotation, and fertilization on emission levels is analyzed, supported by updated data from recent literature. Special focus is given to the underlying mechanisms that regulate these emissions and the effectiveness of management interventions in reducing their magnitude. The research also evaluates current European legislative measures aimed at lowering agricultural emissions and promoting climate-resilient, sustainable farming systems. Various mitigation strategies—ranging from optimized land and nutrient management to the application of nitrification inhibitors and soil amendments are assessed for both their practical feasibility and long-term impact. Full article
Show Figures

Graphical abstract

Back to TopTop