Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants
Abstract
1. Background
Scope of the Review
2. Integrated Approach: Co-Supplementation of a Methane Inhibitor with an Alternative H2 Acceptor In Vitro and In Vivo
3. Potentials of H2 Acceptor Co-Supplementation for Enhanced Methanogenesis Inhibition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Del Prado, A.; Vibart, R.E.; Bilotto, F.M.; Faverin, C.; Garcia, F.; Henrique, F.L.; Leite, F.F.G.D.; Mazzetto, A.M.; Ridoutt, B.G.; Yáñez-Ruiz, D.R.; et al. Feed additives for methane mitigation: Assessment of feed additives as a strategy to mitigate enteric methane from ruminants—Accounting; How to quantify the mitigating potential of using antimethanogenic feed additives. J. Dairy Sci. 2025, 108, 411–429. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Wasson, D.E.; Yarish, C.; Hristov, A.N. Enteric methane mitigation through Asparagopsis taxiformis supplementation and potential algal alternatives. Front. Anim. Sci. 2022, 3, 999338. [Google Scholar] [CrossRef]
- Wood, J.M.; Kennedy, F.S.; Wolfe, R.S. Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 1968, 7, 1707–1713. [Google Scholar] [CrossRef]
- Glasson, C.R.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Gunsalus, R.P.; Romesser, J.A.; Wolfe, R.S. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 1978, 17, 2374–2377. [Google Scholar] [CrossRef]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K.; et al. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Bannink, A.; Dijkstra, J.; Durmic, Z.; Garcia, F.; Santos, F.G.; Huws, S.; Jeyanathan, J.; Lund, P.; Mackie, R.I.; et al. Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants. J. Dairy Sci. 2025, 108, 375–394. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, J.; Erlandsen, E.J.; Lund, P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 2016, 99, 6191–6205. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Cao, Y.; Cai, C.; Cui, H.; Yao, J. Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. AMB Express 2017, 7, 76. [Google Scholar] [CrossRef]
- van Zijderveld, S.M.; Gerrits, W.J.J.; Dijkstra, J.; Newbold, J.R.; Hulshof, R.B.A.; Perdok, H.B. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef]
- Ungerfeld, E.M.; Beauchemin, K.A.; Muñoz, C. Current Perspectives on Achieving Pronounced Enteric Methane Mitigation From Ruminant Production. Front. Anim. Sci. 2022, 2, 795200. [Google Scholar] [CrossRef]
- Melgar, A.; Harper, M.T.; Oh, J.; Giallongo, F.; Young, M.E.; Ott, T.L.; Duval, S.; Hristov, A.N. Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. J. Dairy Sci. 2020, 103, 410–432. [Google Scholar] [CrossRef] [PubMed]
- Cowley, F.C.; Kinley, R.D.; Mackenzie, S.L.; Fortes, M.R.; Palmieri, C.; Simanungkalit, G.; Almeida, A.K.; Roque, B.M. Bioactive metabolites of Asparagopsis stabilized in canola oil completely suppress methane emissions in beef cattle fed a feedlot diet. J. Anim. Sci. 2024, 102, skae109. [Google Scholar] [CrossRef]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.; Cheung, J.; Mitsumori, M.; McSweeney, C.S. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle. Front. Microbiol. 2016, 7, 1122. [Google Scholar] [CrossRef]
- Amgarten, M.; Schatzmann, H.J.; Wuthrich, A. ‘Lactate type’ response of ruminal fermentation to chloral hydrate, chloroform and trichloroethanol. J. Vet. Pharmacol. Ther. 1981, 4, 241–248. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Mackie, R.I.; Kim, H.; Kim, N.K.; Cann, I. Invited Review—Hydrogen production and hydrogen utilization in the rumen: Key to mitigating enteric methane production. Anim. Biosci. 2024, 37, 323–336. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L.; Stewart, C.S. Microbe-microbe interactions. In The Rumen Microbial Ecosystem; Springer: Dordrecht, The Netherlands, 1997; pp. 467–491. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation. PLoS ONE 2016, 11, e0168052. [Google Scholar] [CrossRef]
- Wolin, M.J. The Rumen Fermentation: A Model for Microbial Interactions in Anaerobic Ecosystems. In Advances in Microbial Ecology: Volume 3; Springer: Boston, MA, USA, 1979; pp. 49–77. [Google Scholar] [CrossRef]
- Russell, J.B.; Wallace, R.J. Energy-yielding and energy-consuming reactions. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 246–282. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Salem, A.Z.M.; Jena, R.; Kumar, S.; Singh, R.; Puniya, A.K. Rumen Microbiology: An Overview. In Rumen Microbiology: From Evolution to Revolution; Springer: New Delhi, India, 2015; pp. 3–16. [Google Scholar] [CrossRef]
- Durmic, Z.; Duin, E.C.; Bannink, A.; Belanche, A.; Carbone, V.; Carro, M.D.; Crüsemann, M.; Fievez, V.; Garcia, F.; Hristov, A.; et al. Feed additives for methane mitigation: Recommendations for identification and selection of bioactive compounds to develop antimethanogenic feed additives. J. Dairy Sci. 2025, 108, 302–321. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Ramin, M.; Chagas, J.C.; Halmemies-Beauchet-Filleau, A.; Singh, A.; Schnürer, A.; Danielsson, R. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformis. Front. Anim. Sci. 2023, 4, 1112969. [Google Scholar] [CrossRef]
- Thorsteinsson, M.; Lund, P.; Weisbjerg, M.R.; Noel, S.J.; Schönherz, A.A.; Hellwing, A.L.F.; Hansen, H.H.; Nielsen, M.O. Enteric methane emission of dairy cows supplemented with iodoform in a dose–response study. Sci. Rep. 2023, 13, 12797. [Google Scholar] [CrossRef]
- Maigaard, M.; Weisbjerg, M.R.; Johansen, M.; Walker, N.; Ohlsson, C.; Lund, P. Effects of dietary fat, nitrate, and 3-nitrooxypropanol and their combinations on methane emission, feed intake, and milk production in dairy cows. J. Dairy Sci. 2024, 107, 220–241. [Google Scholar] [CrossRef]
- Thorsteinsson, M.; Maigaard, M.; Lund, P.; Weisbjerg, M.R.; Nielsen, M.O. Effect of fumaric acid in combination with Asparagopsis taxiformis or nitrate on in vitro gas production, pH, and redox potential. JDS Commun. 2023, 4, 335–339. [Google Scholar] [CrossRef]
- Kjeldsen, M.H.; Weisbjerg, M.R.; Larsen, M.; Højberg, O.; Ohlsson, C.; Walker, N.; Hellwing, A.L.F.; Lund, P. Gas exchange, rumen hydrogen sinks, and nutrient digestibility and metabolism in lactating dairy cows fed 3-nitrooxypropanol and cracked rapeseed. J. Dairy Sci. 2024, 107, 2047–2065. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives towards Pronounced Mitigation of Enteric Methane Emissions from Ruminant Livestock. Methane 2022, 1, 262–285. [Google Scholar] [CrossRef]
- Romero, P.; Huang, R.; Jiménez, E.; Palma-Hidalgo, J.M.; Ungerfeld, E.M.; Popova, M.; Morgavi, D.P.; Belanche, A.; Yáñez-Ruiz, D.R. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro—Part 2. Dairy goats. Animal 2023, 17, 100789. [Google Scholar] [CrossRef]
- Romero, P.; Ungerfeld, E.M.; Popova, M.; Morgavi, D.P.; Yáñez-Ruiz, D.R.; Belanche, A. Exploring the combination of Asparagopsis taxiformis and phloroglucinol to decrease rumen methanogenesis and redirect hydrogen production in goats. Anim. Feed. Sci. Technol. 2024, 316, 116060. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. A theoretical comparison between two ruminal electron sinks. Front. Microbiol. 2013, 4, 319. [Google Scholar] [CrossRef]
- Huang, R.; Romero, P.; Belanche, A.; Ungerfeld, E.M.; Yanez-Ruiz, D.; Morgavi, D.P.; Popova, M. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro—Part 1. Dairy cows. Animal 2023, 17, 100788. [Google Scholar] [CrossRef]
- Battelli, M.; Maigaard, M.; Lashkari, S.; Nørskov, N.P.; Weisbjerg, M.R.; Nielsen, M.O. Combination of methane-inhibitors and hydrogen-acceptors: Effects on in vitro rumen fermentation. Ital. J. Anim. Sci. 2025, 24, 2029–2040. [Google Scholar] [CrossRef]
- Kim, E.T.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian-Australas. J. Anim. Sci. 2015, 28, 530–537. [Google Scholar] [CrossRef]
- Battelli, M.; Nielsen, M.O.; Nørskov, N.P. Dose- and substrate-dependent reduction of enteric methane and ammonia by natural additives in vitro. Front. Vet. Sci. 2023, 10, 1302346. [Google Scholar] [CrossRef]
- Krumholz, L.R.; Bryant, M.P. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 1986, 144, 8–14. [Google Scholar] [CrossRef]
- Berger, L.M.; Blank, R.; Zorn, F.; Wein, S.; Metges, C.C.; Wolffram, S. Ruminal degradation of quercetin and its influence on fermentation in ruminants. J. Dairy Sci. 2015, 98, 5688–5698. [Google Scholar] [CrossRef]
- Maigaard, M.; Weisbjerg, M.R.; Hellwing, A.L.F.; Larsen, M.; Andersen, F.B.; Lund, P. The acute effects of rumen pulse-dosing of hydrogen acceptors during methane inhibition with nitrate or 3-nitrooxypropanol in dairy cows. J. Dairy Sci. 2024, 107, 5681–5698. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Inhibition of Rumen Methanogenesis and Ruminant Productivity: A Meta-Analysis. Front. Vet. Sci. 2018, 5, 113. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Battelli, M.; Belanche, A.; Sanz, M.C.C.; Fernandez-Turren, G.; Garcia, F.; Jonker, A.; Kenny, D.A.; Lind, V.; et al. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J. Dairy Sci. 2025, 108, 322–355. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Ungerfeld, E.M.; Kohn, R.A.; Wallace, R.J.; Newbold, C.J. A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J. Anim. Sci. 2007, 85, 2556–2563. [Google Scholar] [CrossRef]
- Asanuma, N.; Iwamoto, M.; Hino, T. Effect of the Addition of Fumarate on Methane Production by Ruminal Microorganisms In Vitro. J. Dairy Sci. 1999, 82, 780–787. [Google Scholar] [CrossRef]
- Newbold, C.J.; López, S.; Nelson, N.; Ouda, J.O.; Wallace, R.J.; Moss, A.R. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 2005, 94, 27–35. [Google Scholar] [CrossRef]
- Chen, G.J.; Russell, J.B. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl. Environ. Microbiol. 1988, 54, 2742–2749. [Google Scholar] [CrossRef]
- Krumholz, L.R.; Crawford, R.L.; Hemling, M.E.; Bryant, M.P. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 1987, 169, 1886–1890. [Google Scholar] [CrossRef]
- Tsai, C.-G.; Jones, G.A. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 1975, 21, 794–801. [Google Scholar] [CrossRef]
- Tsai, C.-G.; Gates, D.M.; Ingledew, W.M.; Jones, G.A. Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15. Can. J. Microbiol. 1976, 22, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Conradt, D.; Hermann, B.; Gerhardt, S.; Einsle, O.; Müller, M. Biocatalytic Properties and Structural Analysis of Phloroglucinol Reductases. Angew. Chem. Int. Ed. 2016, 55, 15531–15534. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.R.K.; Hyder, I. Ruminant Digestion. In Textbook of Veterinary Physiology; Springer Nature: Singapore, 2023; pp. 353–366. [Google Scholar] [CrossRef]


| Reference | Type of Study, Duration | AMFA | Dose | Animals | Feed Substrate | CH4 Production/Emission (%) | H2 Accumulation/Emission (%) | Acetate Proportion (%) | Propionate Proportion (%) | A:P Ratio (%) | Total VFA (%) | DMI (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Huang et al. [38] | In vitro, 24 h | AT | 1.5% DM | In vitro culture * | High fiber substrate | −22 (c. C) | +104 (c. C) | −13 (c. C) | +12 (c. C) | −21 (c. C) | −9 (c. C) | N.A |
| In vitro, 24 h | AT + Phl | 1.5% + 6 mM | In vitro culture * | High fiber substrate | −38 (c. C) | +150 (n.s 1.5% AT) | +7 (n.s 1.5% AT) | −11 (n.s 1.5% AT) | +35 (n.s 1.5% AT) | +17 (s.s 1.5% AT) | N.A | |
| In vitro, 24 h | AT | 2.5% DM | In vitro culture * | High fiber substrate | −76 (c. C) | +541 (c. C) | −32 (c. C) | +35 (c. C) | −47 (c. C) | −22 (c. C) | N.A | |
| In vitro, 24 h | AT + Phl | 2.5% + 6 mM | In vitro culture * | High fiber substrate | −94 (c. C) | +10 (s.s 2.5% AT) | +41 (s.s 2.5% AT) | −24 (s.s 2.5% AT) | +68 (s.s 2.5% AT) | +18 (s.s 2.5% AT) | N.A | |
| In vitro, 24 h | BES | 3 μM | In vitro culture * | High fiber substrate | −51 (c. C) | +5733 (c. C) | −26 (c. C) | +33 (c. C) | −45 (c. C) | +2 (c. C) | N.A | |
| In vitro, 24 h | BES + Phl | 3 μM + 6 mM | In vitro culture * | High fiber substrate | −46 (c. C) | −36 (n.s BES) | +35 (s.s BES) | −33 (s.s BES) | +102 (s.s BES) | +11 (s.s BES) | N.A | |
| In vitro, 72 h | BES | 3 μM | In vitro culture * | High fiber substrate | −53 (c. C) | +363 (c. C) | −7 (c. C) | +7 (c. C) | −14 (c. C) | +0.7 (c. C) | N.A | |
| In vitro, 72 h | BES + Phl | 3 μM + 36 mM | In vitro culture * | High fiber substrate | −100 (c. C) | +23 (s.s BES) | +41.5 (s.s BES) | −83 (s.s BES) | +699 (s.s BES) | +71 (s.s BES) | N.A | |
| In vitro, 72 h | Phl | 36 mM | In vitro culture * | High fiber substrate | −100 (c. C) | +40 (s.s BES) | +41 (s.s BES) | −82 (s.s BES) | +672 (s.s BES) | +70 (s.s BES) | N.A | |
| Romero et al. [35] | In vitro, 24 h | AT | 1% DM | In vitro culture a | High fiber substrate | −94 (s.s C) | +779 (n.s C) | −13 (s.s C) | +33 (s.s C) | −34 (s.s C) | −7 (n.s C) | N.A |
| In vitro, 24 h | AT | 2% DM | In vitro culture a | High fiber substrate | −99 (s.s C) | +3650 (s.s C) | −14 (s.s C) | +33 (s.s C) | −19 (s.s C) | −4 (n.s C) | N.A | |
| In vitro, 24 h | AT | 3% DM | In vitro culture a | High fiber substrate | −100 (s.s C) | +5793 (s.s C) | −15 (s.s C) | +36 (s.s C) | −38 (s.s C) | −7 (n.s C) | N.A | |
| In vitro, 24 h | AT | 4% DM | In vitro culture a | High fiber substrate | −100 (s.s C) | +10,257 (s.s C) | −15 (s.s C) | +35 (s.s C) | −37 (s.s C) | −7 (n.s C) | N.A | |
| In vitro, 24 h | AT | 5% DM | In vitro culture a | High fiber substrate | −100 (s.s C) | +7007 (s.s C) | −15 (s.s C) | +35 (s.s C) | −37 (s.s C) | −8 (n.s C) | N.A | |
| In vitro, 5 d | AT | 2% DM | In vitro culture a | High fiber substrate | −99 (c. C) | +1450 (c. C) | −12 (s.s C) | +15 (s.s C) | −23 (c. C) | −18 (c. C) | N.A | |
| In vitro, 5 d | AT + Phl | 2% + 6 mM | In vitro culture a | High fiber substrate | −100 (c. C) | −37 (n.s 2% AT) | +8 (s.s 2% AT) | −18 (s.s 2% AT) | +31 (s.s 2% AT) | +18 (s.s 2% AT) | N.A | |
| In vitro, 5 d | AT | 2% DM | In vitro culture a | High fiber substrate | −99 (s.s C) | +2323 (s.s C) | −13 (s.s C) | +14 (s.s C) | −23 (s.s C) | −14 (s.s C) | N.A | |
| In vitro, 5 d | AT + Phl | 2% + 6 mM | In vitro culture a | High fiber substrate | −100 (s.s C) | −27 (s.s 2% AT) | +10 (s.s 2% AT) | −17 (s.s 2% AT) | +33 (n.s 2% AT) | +27 (s.s 2% AT) | N.A | |
| In vitro, 5 d | AT + Phl | 2% + 16 mM | In vitro culture a | High fiber substrate | −100 (s.s C) | −49 (s.s 2% AT) | +22 (s.s 2% AT) | −44 (s.s 2% AT) | +121 (s.s 2% AT) | +71 (s.s 2% AT) | N.A | |
| In vitro, 5 d | AT + Phl | 2% + 26 mM | In vitro culture a | High fiber substrate | −100 (s.s C) | −63 (s.s 2% AT) | +32 (s.s 2% AT) | −66 (s.s 2% AT) | +292 (s.s 2% AT) | +88 (s.s 2% AT) | N.A | |
| In vitro, 5 d | AT + Phl | 2% + 36 mM | In vitro culture a | High fiber substrate | −100 (s.s C) | −46 (s.s 2% AT) | +34 (s.s 2% AT) | −70 (s.s 2% AT) | +354 (s.s 2% AT) | +99 (s.s 2% AT) | N.A | |
| Thorsteinsson et al. [32] | In vitro, 24 h | Nit | 0.05 g | In vitro culture b | High fiber substrate | −56 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A |
| In vitro, 24 h | AT | 0.05 g | In vitro culture b | High fiber substrate | −98 (s.s C) | +202 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 24 h | Nit + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −47 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 24 h | AT + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −98 (s.s C) | +211 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 36 h | Nit | 0.05 g | In vitro culture b | High fiber substrate | −52 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 36 h | AT | 0.05 g | In vitro culture b | High fiber substrate | −99 (s.s C) | +82 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 36 h | Nit + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −46 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 36 h | AT + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −99 (s.s C) | +136 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 48 h | Nit | 0.05 g | In vitro culture b | High fiber substrate | −61 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 48 h | AT | 0.05 g | In vitro culture b | High fiber substrate | −99 (s.s C) | +124 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 48 h | Nit + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −55 (s.s C) | +0.00 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| In vitro, 48 h | AT + FA | 0.05 g + 0.05 g | In vitro culture b | High fiber substrate | −99 (s.s C) | +176 (n.s C) | N.D | N.D | N.D | N.D | N.A | |
| Battelli et al. [39] | In vitro, 24 h | IOD | 0.007% DM | In vitro culture b | High fiber substrate | −62 (s.s C) | +4803 (s.s C) | −7 (s.s C) c | +23 (s.s C) c | −25 (s.s C) | +3 (s.s C) | N.A |
| In vitro, 24 h | QUE | 3% DM | In vitro culture b | High fiber substrate | −19 (s.s C) | −19 (n.s C) | +2 (s.s C) c | −2 (s.s C) c | +4 (s.s C) | −3 (s.s C) | N.A | |
| In vitro, 24 h | ACP | 5% DM | In vitro culture b | High fiber substrate | −0.8 (s.s C) | −35 (n.s C) | +2 (s.s C) c | −6 (s.s C) c | +6 (s.s C) | −0.9 (s.s C) | N.A | |
| In vitro, 24 h | Phl | 23% DM | In vitro culture b | High fiber substrate | +4 (s.s C) | +3 (n.s C) | +17 (s.s C) c | −37 (s.s C) c | +82 (s.s C) | +42 (s.s C) | N.A | |
| In vitro, 24 h | VitE | 0.45% DM | In vitro culture b | High fiber substrate | +35 (s.s C) | +26 (n.s C) | +6 (s.s C) c | −24 (s.s C) c | +39 (s.s C) | +9 (s.s C) | N.A | |
| In vitro, 24 h | IOD + ACP | 0.007% + 5% | In vitro culture b | High fiber substrate | +0.00 (s.s C) | +835 (s.s C) | +1 (n.s C) c | +2 (n.s C) c | −2 (n.s C) | +10 (s.s C) | N.A | |
| In vitro, 24 h | IOD + Phl | 0.007% + 23% | In vitro culture b | High fiber substrate | −68 (s.s C) | +8416 (s.s C) | +9 (s.s C) c | −19 (s.s C) c | +31 (s.s C) | +46 (s.s C) | N.A | |
| In vitro, 24 h | IOD + VitE | 0.007% + 0.45% | In vitro culture b | High fiber substrate | −63 (s.s C) | +4965 (s.s C) | −5 (s.s C) c | +17 (s.s C) c | −13 (s.s C) | +3 (n.s C) | N.A | |
| In vitro, 24 h | QUE + ACP | 3% + 5% | In vitro culture b | High fiber substrate | −6 (s.s C) | −13 (n.s C) | +3 (s.s C) c | −5 (s.s C) c | +6 (s.s C) | −0.7 (s.s C) | N.A | |
| In vitro, 24 h | QUE + Phl | 3% + 23% | In vitro culture b | High fiber substrate | −32 (s.s C) | +2019 (s.s C) | +16 (s.s C) c | −31 (s.s C) c | +68 (s.s C) | +40 (s.s C) | N.A | |
| In vitro, 24 h | QUE + VitE | 3% + 0.45% | In vitro culture b | High fiber substrate | +0.00 (s.s C) | +26 (n.s C) | +7 (s.s C) c | −20 (s.s C) c | +31 (s.s C) | +5 (s.s C) | N.A | |
| In vitro, 24 h | IOD + QUE | 0.007% + 3% | In vitro culture b | High fiber substrate | −98 (s.s C) | +1642 (s.s C) | −2 (s.s C) c | +11 (s.s C) c | −13 (s.s C) | +0.00 (n.s C) | N.A | |
| In vitro, 24 h | IOD + QUE + ACP | 0.007 + 3 + 5% | In vitro culture b | High fiber substrate | −82 (s.s C) | +952 (s.s C) | −0.8 (n.s C) c | +7 (s.s C) c | −9 (s.s C) | +3 (s.s C) | N.A | |
| In vitro, 24 h | IOD + QUE + Phl | 0.007 + 3 + 23% | In vitro culture b | High fiber substrate | −96 (s.s C) | +2932 (s.s C) | +13 (s.s C) c | −24 (s.s C) c | +46 (s.s C) | +42 (s.s C) | N.A | |
| In vitro, 24 h | IOD + QUE + VitE | 0.007 + 3 + 0.45% | In vitro culture b | High fiber substrate | −98 (s.s C) | +1271 (s.s C) | −2 (s.s C) c | +9 (s.s C) c | −11 (s.s C) | +0.3 (n.s C) | N.A | |
| Maigaard et al. [44] | In vivo, N.S | Nit + FA | 15 g/kg DM + 390 g/d | Lactating cows | High forage | −2 (n.s C) | −36 (n.s C) | −2 (s.s C) | +6 (n.s C) | −6 (n.s C) | +0.00 (n.s C) | +5 (s.s C) |
| In vivo, N.S | Nit + AA | 15 g/kg DM + 242 g/d | Lactating cows | High forage | −4 (n.s C) | −47 (n.s C) | +4 (s.s C) | +6 (n.s C) | −0.4 (n.s C) | −7 (s.s C) | −11 (s.s C) | |
| In vivo, N.S | Nit + FA + AA | 15 g/kg DM + 195 g + 121 g/d | Lactating cows | High forage | +3 (n.s C) | −37 (n.s C) | +1 (n.s C) | +5 (n.s C) | −3 (n.s C) | −2 (s.s C) | +4 (s.s C) | |
| In vivo, N.S | 3-NOP + FA | 60 mg/kg DM + 390 g/d | Lactating cows | High forage | −21 (s.s C) | −11 (n.s C) | −3 (n.s C) | +13 (s.s C) | −16 (s.s C) | −3 (n.s C) | −6 (n.s C) | |
| In vivo, N.S | 3-NOP + AA | 60 mg/kg DM + 242 g/d | Lactating cows | High forage | −50 (s.s C) | +18 (n.s C) | −0.7 (n.s C) | +21 (s.s C) | −18 (s.s C) | −15 (s.s C) | −24 (s.s C) | |
| In vivo, N.S | 3-NOP + Phl | 60 mg/kg DM + 480 g/d | Lactating cows | High forage | −35 (s.s C) | −3 (n.s C) | +0.6 (n.s C) | +0.00 (n.s C) | −0.4 (n.s C) | −(n.s C) | −5 (n.s C) | |
| Romero et al. [36] | In vivo, 14 d | Phl | 20 g/kg DM/d | Dairy goats | High forage | −7 (c. C) | −34 (n.s C) | +9 (s.s C) | −16 (s.s C) | +30 (s.s C) | −4 (n.s C) | −1 (n.s C) |
| In vivo, 14 d | AT | 5 g/kg DM/d | Dairy goats | High forage | −40 (c. C) | +4383 (s.s C) | −11 (s.s C) | +33 (s.s C) | −30 (s.s C) | −5 (n.s C) | −6 (n.s C) | |
| In vivo, 14 d | AT + Phl | 5 g + 20 g/kg DM/d | Dairy goats | High forage | −47 (c. C) | −68 (s.s AT) | +11.8 (n.s AT) | −22 (n.s AT) | +39 (n.s AT) | +6 (n.s AT) | +1 (n.s AT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Rawnsley, R.P.; Bowman, J.P.; Borojevic, R.; Omede, A.A. Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants. Fermentation 2025, 11, 680. https://doi.org/10.3390/fermentation11120680
Ahmad I, Rawnsley RP, Bowman JP, Borojevic R, Omede AA. Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants. Fermentation. 2025; 11(12):680. https://doi.org/10.3390/fermentation11120680
Chicago/Turabian StyleAhmad, Ibrahim, Richard P. Rawnsley, John P. Bowman, Rohan Borojevic, and Apeh A. Omede. 2025. "Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants" Fermentation 11, no. 12: 680. https://doi.org/10.3390/fermentation11120680
APA StyleAhmad, I., Rawnsley, R. P., Bowman, J. P., Borojevic, R., & Omede, A. A. (2025). Insights into the Feed Additive Inhibitor and Alternative Hydrogen Acceptor Interactions: A Future Direction for Enhanced Methanogenesis Inhibition in Ruminants. Fermentation, 11(12), 680. https://doi.org/10.3390/fermentation11120680

