Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration
Abstract
1. Introduction
2. Methodology
3. Overview of GHG Emissions in Agriculture
3.1. GHG Emissions from Agriculture in the EU and Worldwide
3.2. Agricultural GHG Emissions in the EU by Source
4. EU Legislation Regulating GHG Emissions from Agriculture
| Legislation/Policy Frameworks | Description | Refs. |
|---|---|---|
| Effort Sharing Decision (ESD) (adopted in 2009) | Member States were required:
| [38] |
| Effort Sharing Regulation (ESR) (adopted in 2018, amended in 2023) |
| [39] |
| Land Use, Land-Use Change and Forestry (LULUCF) Regulation (adopted in 2018, amended in 2023) |
| [40] |
| European Green Deal (EGD) (adopted in 2019) | The European Commission has introduced a series of proposals to align the EU’s climate, energy, transport, and taxation policies with the goal of reducing net GHG emissions by at least 55% by 2030 compared to 1990 levels. | [41] |
| Farm to Fork Strategy (initiated in 2020) | It is a policy framework within the EGD aimed at creating a sustainable food system. It consists of actions designed to reduce GHG emissions by increasing organic farming and promoting sustainable agricultural practices (such as lower input usage). | [42] |
| EU Climate Law (ECL) (adopted in 2021) | The law also establishes an intermediate target of reducing net GHG emissions by at least 55% by 2030, compared to 1990 levels, and promotes sustainable land-use, emission-reduction strategies in agriculture. | [43] |
| Common Agricultural Policy (CAP) (launched in 1962; in 2021, the agreement on the reform of the CAP was formally adopted) | The CAP offers both legislative and financial instruments that encourage sustainable farming methods aimed at cutting GHG emissions, conserving natural resources, and thereby helping to implement the EU’s climate goals within the agricultural sector. | [44] |
5. Carbon Dioxide Emissions from Agricultural Practices
5.1. Burning Crop Residues
5.2. Land Management Practices
5.3. Microbial Soil Respiration
6. Methane Emissions from Cropping Systems and Livestock
6.1. Emissions from Cropping Systems
6.2. Livestock Emissions
6.2.1. Enteric Fermentation as Methane Source
| Improve Feeding Strategies | ||
| Forage quality | Adjusting forage quality and concentrate-to-forage ratio can reduce CH4 by up to 70%; younger/high-quality forage increases propionate and reduces H2 for methanogenesis. | [91,92] |
| Inclusion of legumes improves forage quality; tannin-containing legumes inhibit rumen fermentation. High alfalfa (78%) lowers CH4 ~10%, moderate (40%) has no effect. | [93] | |
| Maize silage lowers CH4 in dairy and cattle. | [94] | |
| Feed additives | ||
| Seaweeds | Asparagopsis taxiformis reduces CH4 up to 99% (bromoform inhibits methanogenesis); health concerns with heavy metals. | [95] |
| Pelleted Asparagopsis in beef diets reduces CH4 ~37.7%. | [96] | |
| Red, brown, and green seaweeds contain polysaccharides altering rumen microbes and CH4 emissions. | [97] | |
| Bee propolis extracts | Red propolis reduces CH4 in ewes by modulating rumen fermentation. | [98] |
| Saponins (glycosides) | Decrease methanogenic archaea and protozoa, reducing CH4. | [99] |
| Ionophores (antibiotics) | Monensin, lasalocid, narasin, and salinomycin reduce H2 available for methanogens; commonly used in beef diets. | [100] |
| Yeast | Alternative to ionophores (monensin); modulate rumen microbiome and fermentation, lowering CH4. | [101,102] |
| Organic acids | Formic, fumaric, malic acids and salts; alfalfa + fumaric acid enhances fermentation and reduces CH4. | [102,103] |
| 3-nitrooxypropanol (3-NOP) | Specific methanogenesis inhibitor; long-term reduction in dairy cows (~21% daily CH4). | [104] |
| Nitrate (NO3−) | Alternative H2 sink; reduces CH4 ~13.9–30%; caution due to nitrite toxicity risk. | [105] |
| Genetic breeding | ||
| Selective breeding for low-CH4 cows; Nordic Methane Index targets ~20% reduction. | [106,107] | |
| Improve animal health | ||
| Enhances digestion efficiency, reduces CH4; vaccination trials (sheep) inhibit methanogens; further research needed. | [108,109] | |
6.2.2. Manure as Methane Source
7. Nitrous Oxide Emissions from Agricultural Practices
7.1. Fertilizers—Types, Application Rates, Timing
7.2. Soil Amendments—Biochar
7.3. Nitrification Inhibitors
7.4. Crop Residue Incorporation
7.5. Tillage and Irrigation Management
7.6. Crop Rotations and Integrated Nutrient Management
8. Gaps, Challenges, and Future Perspectives for Reducing Agricultural GHG Emissions
8.1. Barriers
8.2. Gaps
8.3. Unanswered Questions
8.4. Further Perspectives
- (a)
- Technological advances: this includes the development of methane inhibitors, biochar amendments, advanced anaerobic digestion, and precision nutrient management to increase mitigation efficiency.
- (b)
- Integrated mitigation strategies: practices such as conservation agriculture, cover cropping, optimized fertilizer use, and improved manure management can reduce GHGs while enhancing soil health.
- (c)
- Enhancing soil carbon sequestration: this has the potential to offset a significant portion of CO2 emissions from agriculture. Practices like agroecology, organic farming, and agroforestry can improve soil carbon stocks, turning farms into carbon sinks.
- (d)
- Integrated policy frameworks: these should promote sustainable farming practices, incentivize farmers to adopt low-carbon technologies, and provide clear frameworks for measuring and reporting emissions.
- (e)
- Monitoring technologies: remote sensing, sensors, and modeling tools can provide real-time data on emissions.
- (f)
- Education and continuous research: these are essential for developing new technologies and practices.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, J.M.-F.; Franzluebbers, A.; Weyers, S.L.; Reicosky, D. Agricultural opportunities to mitigate greenhouse emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Kopittke, P.; Dalal, R.; McKenna, B.; Smith, P.; Wang, P.; Weng, Z.; Van der Bom, F.; Menzies, N. Soil is a major contributor to global greenhouse gas emissions and climate change. Soil 2024, 10, 873–885. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. 2013. Available online: https://www.fao.org/3/i3437e/i3437e.pdf (accessed on 25 July 2025).
- Abalos, D.; Recous, S.; Butterbach-Bahl, K.; De Notaris, C.; Rittl, T.; Topp, C.; Petersen, S.; Hansen, S.; Bleken, M.; Rees, R.; et al. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Sci. Total Environ. 2022, 828, 154388. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.; Ramankutty, N.; Brauman, K.; Cassidy, E.; Gerber, J.; Johnson, M.; Mueller, N.; O’Connell, C.; Ray, D.; West, P.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.; Lal, R.; Lorenz, K. Greenhouse gas emissions under conservation agriculture: A synthesis of field observations on integrating conservation tillage and cover crops. Acta Agric. Scand. B Soil Plant Sci. 2025, 75, 2515024. [Google Scholar] [CrossRef]
- Hristov, A.; Oh, J.; Giallongo, F.; Frederick, T.; Harper, M.; Weeks, H.; Branco, A.; Moate, P.; Deighton, M.; Williams, R.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Del Prado, A.; Edouard, N.; Mosquera, J.; Sommern, S.G. Manure management for greenhouse gas mitigation. Animal 2013, 7, 266–282. [Google Scholar] [CrossRef]
- Xie, X.; Cao, Y.; Li, Q.; Yang, X.; Wang, R.; Zhang, X.; Tan, Z.; Lin, B.; Wang, M. Mitigating enteric methane emissions: An overview of methanogenesis, inhibitors and future prospects. Anim. Nutr. 2025, 21, 84–96. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strat. Glob. Change 2007, 12, 855–873. [Google Scholar] [CrossRef]
- Wang, Z.; Xuan, H.; Liu, B.; Zhang, H.; Zheng, T.; Liu, Y.; Dai, L.; Xie, Y.; Shang, X.; Zhang, L.; et al. Diversified Cropping Modulates Microbial Communities and Greenhouse Gas Emissions by Enhancing Soil Nutrients. Agronomy 2025, 15, 1472. [Google Scholar] [CrossRef]
- Manono, B.O.; Gichana, Z. Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa. Earth 2025, 6, 74. [Google Scholar] [CrossRef]
- Das, S.; Beegum, S.; Acharya, B.S.; Panday, D. Soil Carbon Sequestration: A mechanistic perspective on limitations and future possibilities. Sustainability 2025, 17, 6015. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Kabange, N.R.; Kwon, Y.; Lee, S.-M.; Kang, J.-W.; Cha, J.-K.; Park, H.; Dzorkpe, G.D.; Shin, D.; Oh, K.-W.; Lee, J.-H. Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review. Sustainability 2023, 15, 15889. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Pang, T.; Neokye, E.O. A Review of Greenhouse Gas Emissions from Agricultural Soil. Sustainability 2024, 16, 4789. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Greenhouse Gas Emissions from Agriculture. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-agriculture (accessed on 31 July 2025).
- FAO. Greenhouse Gas Emissions from Agrifood Systems—Global, Regional and Country Trends, 2000–2022. FAOSTAT Analytical Brief Series; No. 94; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://openknowledge.fao.org/handle/20.500.14283/cd3167en (accessed on 26 July 2025).
- Carbon Chain. Available online: https://www.carbonchain.com/blog/understand-your-synthetic-fertilizer-emissions (accessed on 26 July 2025).
- Evangelista, C.; Milanesi, M.; Pietrucci, D.; Chillemi, G.; Bernabucci, U. Enteric Methane Emission in Livestock Sector: Bibliometric Research from 1986 to 2024 with Text Mining and Topic Analysis Approach by Machine Learning Algorithms. Animals 2024, 14, 3158. [Google Scholar] [CrossRef]
- Saeed, Q.; Zhang, A.; Mustafa, A.; Sun, B.; Zhang, S.; Yang, X. Effect of long-term fertilization on greenhouse gas emissions and carbon footprints in northwest China: A field scale investigation using wheat-maize-fallow rotation cycles. J. Clean. Prod. 2022, 332, 130075. [Google Scholar] [CrossRef]
- Silva, G.R.d.; Liska, A.J.; Bayer, C. Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment. Agronomy 2025, 15, 267. [Google Scholar] [CrossRef]
- World Bank Group Data. Carbon Dioxide (CO2) Emissions from Agriculture (Mt CO2e). Available online: https://data.worldbank.org/indicator/EN.GHG.CO2.AG.MT.CE.AR5?end=2023&name_desc=false&start=1970&view=chart&year=2023; (accessed on 2 August 2025).
- World Bank Group Data. Methane (CH4) Emissions from Agriculture (Mt CO2e). Available online: https://data.worldbank.org/indicator/EN.GHG.CH4.AG.MT.CE.AR5?end=2023&name_desc=false&start=1970&view=chart&year=2023; (accessed on 2 August 2025).
- World Bank Group Data. Nitrous Oxide (N2O) Emissions from Agriculture (Mt CO2e). Available online: https://data.worldbank.org/indicator/EN.GHG.N2O.AG.MT.CE.AR5?end=2023&name_desc=false&start=1970&view=chart&year=2023 (accessed on 2 August 2025).
- Verschuuren, J. Achieving agricultural greenhouse gas emission reductions in the EU post-2030: What options do we have? RECIEL 2022, 31, 246–257. [Google Scholar] [CrossRef]
- Mohammed, S.; Raihan, A.; Arshad, S.; Ata, B.; Ocwa, A.; Al-Dalahmeh, M.; Harsanyi, E. European Union agro-climate policies toward sustainability: Analyzing emission trends and land use dynamics (1990–2021). Resour. Environ. Sustain. 2025, 21, 100239. [Google Scholar] [CrossRef]
- Bilotto, F.; Christie-Whitehead, K.M.; Malcolm, B.; Barnes, N.; Cullen, B.; Ayre, M.; Harrison, M.T. Costs of transitioning the livestock sector to net-zero emissions under future climates. Nat. Commun. 2025, 16, 3810. [Google Scholar] [CrossRef]
- European Environment Agency. Methane, Climate Change and Air Quality in Europe: Exploring the Connections. Available online: https://www.eea.europa.eu/en/analysis/publications/methane-climate-change-and-air-quality-in-europe-exploring-the-connections?activeTab=6397c084-2e5f-4545-a873-f99323d40846 (accessed on 1 August 2025).
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Vasile Scăețeanu, G.; Madjar, R.M. The Control of Nitrogen in Farmlands for Sustainability in Agriculture. Sustainability 2025, 17, 5619. [Google Scholar] [CrossRef]
- Symeon, G.K.; Akamati, K.; Dotas, V.; Karatosidi, D.; Bizelis, I.; Laliotis, G.P. Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability 2025, 17, 586. [Google Scholar] [CrossRef]
- European Commission. Energy, Climate Change, Environment. 2050 Long-Term Strategy. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on 1 August 2025).
- European Commission. EU Emissions Trading System (EU ETS). 2023. Available online: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en (accessed on 28 October 2025).
- European Union. Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013. Off. J. Eur. Union 2018, 156, 26–42. [Google Scholar]
- European Union. Decision No 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020. Off. J. Eur. Union 2009, 140, 136–148. [Google Scholar]
- European Union. Regulation (EU) 2023/857 of the European Parliament and of the Council of 19 April 2023 amending Regulation (EU) 2018/842 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement, and Regulation (EU) 2018/1999 (Text with EEA relevance). Off. J. Eur. Union 2023, 111, 1–14. [Google Scholar]
- European Union. Regulation (EU) 2023/839 of the European Parliament and of the Council of 19 April 2023 amending Regulation (EU) 2018/841 as regards the scope, simplifying the reporting and compliance rules, and setting out the targets of the Member States for 2030, and Regulation (EU) 2018/1999 as regards improvement in monitoring, reporting, tracking of progress and review. Off. J. Eur. Union 2023, 107, 1–28. [Google Scholar]
- European Council. European Green Deal. Available online: https://www.consilium.europa.eu/en/policies/european-green-deal/ (accessed on 1 August 2025).
- European Commission. Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 1 August 2025).
- European Union. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Off. J. Eur. Union 2021, 243, 1–17. [Google Scholar]
- European Commission. Agriculture and Rural Development. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 1 August 2025).
- World Bank Group Data. Available online: https://data.worldbank.org/indicator/EN.GHG.ALL.LU.MT.CE.AR5 (accessed on 2 August 2025).
- Psistaki, K.; Tsantopoulos, G.; Paschalidou, A.K. An Overview of the Role of Forests in Climate Change Mitigation. Sustainability 2024, 16, 6089. [Google Scholar] [CrossRef]
- Deshpande, M.V.; Kumar, N.; Pillai, D.; Krishna, V.; Jain, M. Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. Sci. Total Environ. 2023, 904, 166944. [Google Scholar] [CrossRef] [PubMed]
- Flammini, A.; Pan, X.; Tubiello, F.N.; Qiu, S.Y.; Souza, L.R.; Quadrelli, R.; Bracco, S.; Benoit, P.; Sims, R. Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019. Earth Syst. Sci. Data 2022, 14, 811–821. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R. CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy 2023, 13, 3084. [Google Scholar] [CrossRef]
- Bahsi, K.; Ustaoglu, B.; Aksoy, S.; Sertel, E. Estimation of emissions from crop residue burning in Türkiye using remotely sensed data and the Google Earth Engine platform. Geocarto Int. 2023, 38, 2157052. [Google Scholar] [CrossRef]
- Çınar, T.; Cakır, M.F.; Aydın, A. Assessment of environmental and atmospheric impacts of stubble burning in Mardin-Diyarbakır (Southeastern of Türkiye): A remote sensing approach. Nat. Hazards 2025, 121, 17895–17912. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) No 1306/2013 of the European parliament and of the council of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008. Off. J. Eur. Union 2013, 347, 549–607. [Google Scholar]
- Hall, J.; Zibtsev, S.; Giglio, L.; Skakun, S.; Myroniuk, V.; Zhuravek, O.; Goldammer, J.G.; Kussul, N. Environmental and political implications of underestimated cropland burning in Ukraine. Environ. Res. Lett. 2021, 16, 064019. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, Y.; Yue, Z.; Tian, C.; Leng, P.; Cheng, H.; Chen, G.; et al. Responses of soil CO2 emissions to tillage practices in a wheat-maize cropping system a 4-year field study. Field Crop Res. 2023, 294, 108832. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Mo, F.; Liao, Y.; Wen, X. Reducing greenhouse gas emissions and improving net ecosystem economic benefit through long-term conservation tillage in a wheat-maize multiple cropping system in the Loess Plateau, China. Eur. J. Agron. 2022, 141, 126619. [Google Scholar] [CrossRef]
- Forte, A.; Fiorentino, N.; Fagnano, M.; Fierro, A. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Tillage Res. 2017, 166, 167–178. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.W.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef]
- European Commission. Soil: The Hidden Part of the Climate Cycle; Publications Office of the European Union: Luxembourg, 2011; pp. 8–10. [Google Scholar]
- Nissan, A.; Alcolombri, U.; Peleg, N.; Galili, N.; Jimnez-Martinez, J.-J.; Molnar, P.; Holzner, M. Global warming accelerates soil heterotrophic respiration. Nat. Commun. 2023, 14, 3452. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, X.-L.; Li, L.-Y.; Li, J.-Y.; Zhang, R.-Q.; Li, Z.-G.; Liu, Y. Aggregational differentiation of soil-respired CO2 and its δ13C variation across land-use types. Geoderma 2023, 432, 116384. [Google Scholar] [CrossRef]
- Khan, M.I.; Sarfraz, R.; Kim, T.; Park, H.-J.; Kim, P.J.; Kim, G.W. Partitioning carbon dioxide emissions from soil organic matter and urea in warm and cold cropping seasons. Atmos. Pollut. Res. 2024, 15, 101995. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Weng, S.; Li, Y.; Zhou, X. Effects of Water and Fertilizer Management Practices on Methane Emissions from Paddy Soils: Synthesis and Perspective. Int. J. Environ. Res. Public Health 2022, 19, 7324. [Google Scholar] [CrossRef]
- Rajendran, S.; Park, H.; Kim, J.; Park, S.J.; Shin, D.; Lee, J.-H.; Song, Y.H.; Paek, N.-C.; Kim, C.M. Methane emission from rice fields: Necessity for molecular approach for mitigation. Rice Sci. 2024, 31, 159–178. [Google Scholar] [CrossRef]
- Senthilraja, K.; Venkatesan, S.; Udhaya Nandhini, D.; Dhasarathan, M.; Prabha, B.; Boomiraj, K.; Mohan Kumar, S.; Bhuvaneswari, K.; Raveendran, M.; Geethalakshmi, V. Mitigating Methane Emission from the Rice Ecosystem through Organic Amendments. Agriculture 2023, 13, 1037. [Google Scholar] [CrossRef]
- Middelanis, T.; Looschelders, D.; Mueller, P.; Knorr, K.-H. Potential of biochar to mitigate methane production in paddy soils—Application of a new incubation and modelling approach. Biogeochemistry 2025, 168, 6. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, X.; Xia, W.; Li, Z.; Wang, L.; Chen, Z.; Ge, S. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Sci. Total Environ. 2023, 877, 162702. [Google Scholar] [CrossRef]
- Datta, A.; Santra, S.C.; Adhya, T.K. Effect of inorganic fertilizers (N,P,K) on methane emission from tropical rice field of India. Atmos. Environ. 2013, 66, 123–130. [Google Scholar] [CrossRef]
- Kantachote, D.; Nunkaew, T.; Kantha, T.; Chaiprapat, S. Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Appl. Soil Ecol. 2016, 100, 154–161. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, F.; Jin, K.; Liu, H.; Zhai, L. Methane emissions sources and impact mechanisms altered by the shift from rice-wheat to rice-crayfish rotation. J. Clean. Prod. 2024, 434, 139968. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Sudarmanian, N.S.; Geethalakshmi, V.; Deiveegan, M.; Ragunath, K.; Sivamurugan, A.P.; Shanmugapriya, P. Assessing Methane Emissions from Rice Fields in Large Irrigation Projects Using Satellite-Derived Land Surface Temperature and Agronomic Flooding: A Spatial Analysis. Agriculture 2024, 14, 496. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Choi, S.-E.; Kim, J.; Kim, M.; Hwang, W.; Roh, M.; Lee, S.; Lee, W.-K. Estimating Methane Emissions in Rice Paddies at the Parcel Level Using Drone-Based Time Series Vegetation Indices. Drones 2024, 8, 459. [Google Scholar] [CrossRef]
- Scarff, H.; Jacobs, J. Applying guidance for methane emission estimation for landfills. Waste Manag. 2006, 26, 417–429. [Google Scholar] [CrossRef]
- Delgado, M.; Lopez, A.; Esteban-Garcia, A.L.; Lobo, A. The importance of particularizing the model to estimate landfill GHG emissions. J. Environ. Manag. 2023, 325, 116600. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lou, Y.; Zhang, Z.; Ma, L.; Ojara, M.A. Estimation of methane emissions based on crop yield and remote sensing data in a paddy field. Greenh. Gases Sci. Technol. 2020, 10, 196–207. [Google Scholar] [CrossRef]
- Nikolaisen, M.; Hillier, J.; Smith, P.; Nayak, D. Modelling CH4 emission from rice ecosystem: A comparison between existing empirical models. Front. Agron. 2023, 4, 1058649. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Livestock Solutions for Climate Change. Available online: https://www.fao.org/family-farming/detail/en/c/1634679/ (accessed on 7 August 2025).
- Food and Agriculture Organization of the United Nations. Livestock and Enteric Methane. Available online: https://www.fao.org/in-action/enteric-methane/background/en (accessed on 14 August 2025).
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef]
- Pas, M.A.W.; Uddin, M.E.; Letelier, P.; Jackson, R.D.; Larson, R.A. Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure and the field. Appl. Animal Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Santander, D.; Clariget, J.; Banchero, G.; Alecrim, F.; Simon Zinno, C.; Mariotta, J.; Gere, J.; Ciganda, V.S. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals 2023, 13, 1177. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, L.; Jonker, A.; Munidasa, S.; Pacheco, D. A Review: Plant Carbohydrate Types-The Potential Impact on Ruminant Methane Emissions. Front. Vet. Sci. 2022, 9, 880115. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Akbay, A.; Augyte, S. The role of seaweed as a potential dietary supplementation for nteric methane mitigation in ruminants: Challenges and opportunities. Animal Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Prachumchai, R.; Dagaew, G.; Matra, M.; Phupaboon, S.; Sommai, S.; Suriyapa, C. Potential use of seaweed as a dietary supplement to m itigate enteric methane emission in ruminants. Sci. Total Environ. 2024, 931, 173015. [Google Scholar] [CrossRef]
- Broucek, J. Production of Methane Emissions from Ruminant Husbandry: A Review. J. Environ. Prot. 2014, 5, 1482–1493. [Google Scholar] [CrossRef]
- Grandl, F.; Amelchanka, S.L.; Furger, M.; Clauss, M.; Zeitz, J.O.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficieny with age. J. Dairy Sci. 2016, 99, 3472–3485. [Google Scholar] [CrossRef]
- Külling, D.R.; Menzi, H.; Kröber, T.F.; Neftel, A.; Sutter, F.; Lischer, P.; Kreuzer, M. Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. J. Agric. Sci. 2001, 137, 235–250. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.-W. Strategies to m itigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Haque, M. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef]
- Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals 2022, 12, 1132. [Google Scholar] [CrossRef]
- Eugene, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M.; Diao, Q.; Ma, T.; Tu, Y. Seaweed as a feed additive to mitigate enteric methane emissions in ruminants: Opportunities and challenges. J. Integr. Agric. 2025, 24, 1327–1341. [Google Scholar] [CrossRef]
- Meo-Filho, P.; Ramirez-Aguelo, J.; Kebreab, E. Mitigating methane emissions in grazing beef cattle with a seaweed-based feed additive: Implications for climate-smart agriculture. Agric. Sci. 2024, 121, e2410863121. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Zhang, Y.; Li, Z.; Li, T.; Ou, Y.; Shen, J.; Zhong, S.; Tan, K. Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers 2023, 15, 3153. [Google Scholar] [CrossRef]
- Morsy, A.S.; Soltan, Y.A.; El-Zaiat, H.M.; Alencar, S.M.; Abdalla, A.L. Bee propolis extract as a phytogenic feed additive diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Animal Feed. Sci. Technol. 2021, 273, 114834. [Google Scholar] [CrossRef]
- Ridla, M.; Laconi, E.B.; Jayanegara, A. Effects of saponin on enteric methane emission and nutrient digestibility of ruminants: An in vivo meta-analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012028. [Google Scholar] [CrossRef]
- Marques, R.d.S.; Cooke, R.F. Effects of Ionophores on Ruminal Function of Beef Cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef] [PubMed]
- Cagliari, A.R.; Magnani, E.; Rigon, F.; Loregian, K.E.; Casagrande, A.C.; Amancio, B.R.; Bueno da Silva, J.; Lisboa Santos, V.; Marcondes, M.I.; Paula, E.M.; et al. Evaluation of yeast-based additives, as an alternative to ionophores, on rumen fermentation of ruminant diets using an in vitro gas production system. Front. Anim. Sci. 2023, 4, 1233273. [Google Scholar] [CrossRef]
- Palangi, V.; Lackner, M. Management of Enteric Methane Emissions in Ruminants Using Feed Additives: A Review. Animals 2022, 12, 3452. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Macit, M. Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives Towards a Cleaner Ecosystem. Waste Biomass. Valor. 2021, 12, 4825–4834. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Burgers, E.; Dijkstra, J.; De Mol, R.; Muizelaar, W.; Walker, N.; Bannink, A. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. J. Dairy Sci. 2024, 107, 5556–5573. [Google Scholar] [CrossRef]
- Feng, X.Y.; Dijkstra, J.; Bannink, A.; Van Gastelen, S.; France, J.; Kebreab, E. Antimethanogenic effects of nitrate supplementation in cattle: A meta-analysis. J. Dairy Sci. 2020, 103, 11375–11385. [Google Scholar] [CrossRef]
- De Haas, Y.; Veerkamp, R.F.; De Jong, G.; Aldridge, M.N. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef]
- Viking Genetics. New Nordic Methane Index to Reduce Cow Emissions by 20%. Available online: https://www.vikinggenetics.com/news/nordic-methane-index (accessed on 18 August 2025).
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Baca-González, V.; Asensio-Calavia, P.; González-Acosta, S.; Pérez de la Lastra, J.M.; Morales de la Nuez, A. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines 2020, 8, 460. [Google Scholar] [CrossRef]
- Cardenas, A.; Ammon, C.; Schumacher, B.; Stinner, W.; Herrmann, C.; Schneider, M.; Weinrich, S.; Fischer, P.; Amon, T.; Amon, B. Methane emissions from storage of liquid dairy manure: Influences of season, temperature and storage duration. Waste Manag. 2021, 121, 393–402. [Google Scholar] [CrossRef]
- Hidayat, C.; Widiawati, Y.; Tiesnamurti, B.; Pramono, A.; Krisnan, R.; Shiddieqy, M.I. Comparisom of methane production from cattle, buffalo, goat, rabbit, chicken, and duck manure. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012112. [Google Scholar] [CrossRef]
- Vac, S.C.; Popita, G.-E.; Frunzeti, N.; Popovici, A. Evaluation of greenhouse gas emission from animal manure using the closed chamber method for gas fluxes. Not.Bot.Agrobo. 2013, 41, 576–581. [Google Scholar] [CrossRef]
- Ahlberg-Eliasson, K.; Westerholm, M.; Isaksson, S.; Schnürer, A. Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission from Digestates. Front. Energy Res. 2021, 9, 740314. [Google Scholar] [CrossRef]
- Hu, J.; Stenchly, K.; Gwenzi, W.; Wachendorf, M.; Kaetzl, K. Critical evaluation of biochar effects on methane production and process stability in anaerobic digestion. Front. Energy Res. 2023, 11, 1205818. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Ran, H.; Peng, P.; Wang, Y.; Peng, G.; Wu, Y.; Wen, X. Residual ciprofloxacin in chicken manure inhibits methane production in an anaerobic digestion system. Poultry Sci. 2025, 104, 104539. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Jeng, S.T.; Ho, A.; Hong, C.O.; Lee, C.H.; Kim, P.J. Cattle manure composting: Shifts in the methanogenic community structure, chemical composition, and consequences on methane production potential in a rice paddy. Appl. Soil Ecol. 2018, 124, 344–350. [Google Scholar] [CrossRef]
- Chen, W.; Liao, X.; Wu, Y.; Liang, J.B.; Mi, J.; Huang, J.; Zhang, H.; Wu, Y.; Qiao, Z.; Li, X.; et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag. 2017, 61, 506–515. [Google Scholar] [CrossRef]
- Hansen, R.R.; Nielsen, D.A.; Schramm, A.; Nielsen, L.P.; Revsbech, N.P.; Hansen, M.N. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry. J. Environ Qual. 2009, 38, 1311–1319. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, Q.; Ma, X.; Du, Y.; Du, X.; Xu, L.; Yang, Y. Solid–Liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment. Agriculture 2023, 13, 2284. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, W.; Xu, J.; Wang, W.; Wu, G.; Zhan, X.; Hu, Z.H. Evaluation of solid-liquid separation of dairy manure with different separator screen sizes on the resource recovery and greenhouse gas emissions reduction. J. Clean. Prod. 2024, 448, 141680. [Google Scholar] [CrossRef]
- Feng, L.; Ward, A.J.; Moset, V.; Møller, H.B. Methane emission during on-site pre-storage of animal manure prior to anaerobic digestion at biogas plant: Effect of storage temperature and addition of food waste. J. Environ. Manag. 2018, 225, 272–279. [Google Scholar] [CrossRef]
- Fabgueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Ma, C.; Dalbym, F.; Feilberg, A.; Jacobsen, B.; Petersen, S. Low-dose acidification as a methane mitigation strategy for manure management. ACS Agric. Sci. Technol. 2022, 2, 437–442. [Google Scholar] [CrossRef]
- Overmeyer, V.; Trimborn, M.; Clemens, J.; Hölscher, R.; Büscher, W. Acidification of slurry to reduce ammonia and methane emissions: Deployment of a retrofittable system in fattening pig barns. J. Environ. Manag. 2023, 331, 117263. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, H.W.; Dalby, F.; Feilberg, A.; Kofoed, M. Additives and methods for the mitigation of methane emission from stored liquid manure. Biosyst. Eng. 2023, 229, 209–245. [Google Scholar] [CrossRef]
- Lima, F.M.P.; Laniel, M.; Balde, H.; Gordon, R.; Vander Zaag, A. Methane emission reduction by adding sulfate to liquid dairy manure. J. Environ. Qual. 2025, 54, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Svane, S.; Karring, H. Combining fluoride with either phenolic compounds or plant extracts offers potential mitigation strategy for ammonia and methane emissions from livestock manure. Environ. Technol. Innov. 2022, 28, 102830. [Google Scholar] [CrossRef]
- Chiodini, M.E.; Costantini, M.; Zoli, M.; Bacenetti, J.; Aspesi, D.; Poggianella, L.; Acutis, M. Real-Scale Study on Methane and Carbon Dioxide Emission Reduction from Dairy Liquid Manure with the Commercial Additive SOP LAGOON. Sustainability 2023, 15, 1803. [Google Scholar] [CrossRef]
- Boku University. Metabolomics for the Investigation of Biological Nitrification Inhibitors in the Rhizosphere. Available online: https://boku.ac.at/en/docservice/doctoral-studies/doktoratsschulen/agrigenomics/research/projects/metabolomics-for-the-investigation-of-biological-nitrification-inhibitors-in-the-rhizosphere (accessed on 1 August 2025).
- Voigt, C.; Marushchak, M.; Abbott, B.; Biasi, C.; Elberling, B.; Siciliano, S.; Sonnentag, O.; Stewart, K.; Yang, Y.; Martikainen, P. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.; Li, Y.; Ding, H.; Sveen, T.R.; Zhang, Y. Soil moisture determines nitrous oxide emission and uptake. Sci. Total Environ. 2022, 822, 153566. [Google Scholar] [CrossRef]
- Cui, P.; Chen, Z.; Fan, F.; Yin, C.; Song, A.; Li, T.; Zhang, H.; Liang, Y. Soil texture is an easily overlooked factor affecting temperature sensitivity of N2O emissions. Sci. Total Environ. 2023, 862, 160648. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Mahmood, A.; Awan, M.I.; Barbanti, L.; Seleiman, M.F.; Bakhsh, G.; Alkharabsheh, H.M.; Babur, E.; Shao, J.; et al. Management Strategies to Mitigate N2O Emissions in Agriculture. Life 2022, 12, 439. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Liu, B.; Wang, H.; Qi, Z.; Wei, Q.; Liao, L.; Liu, S. Enhanced N2O Production Induced by Soil Salinity at a Specific Range. Int. J. Environ. Res. Public Health 2020, 17, 5169. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, H.; Wang, J.; Liu, Y.; Chen, D.; Zhang, H.; Wang, J.; Zhang, Y. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biol. Biochem. 2023, 178, 108961. [Google Scholar] [CrossRef]
- Ferland, D.; Wagner-Riddle, C.; Brown, S.E.; Bourgault, M.; Helgason, W.; Farrell, R.E.; Congreves, K.A. Improved nitrogen fertilizer management reduces nitrous oxide emissions in a northern Prairie cropland. Sci. Total Environ. 2024, 956, 177211. [Google Scholar] [CrossRef]
- Pelster, D.; Chantigny, M.; Royer, I.; Angers, D.; Vanasse, A. Reduced tillage increased growing season N2O emissions from a fine but not a coarse textured soil under the cool, humid climate of eastern Canada. Soil Tillage Res. 2021, 206, 104833. [Google Scholar] [CrossRef]
- Hu, N.; Chen, Q.; Zhu, L. The Responses of Soil N2O Emissions to Residue Returning Systems: A Meta-Analysis. Sustainability 2019, 11, 748. [Google Scholar] [CrossRef]
- Abalos, D.; Rittl, T.; Recous, S.; Thiebeau, P.; Topp, C.; Van Groenigen, K.J.; Butterbach-Bahl, K.; Thorman, R.; Smith, K.; Ahuja, I.; et al. Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analysis approach. Sci. Total Environ. 2022, 812, 152532. [Google Scholar] [CrossRef] [PubMed]
- Ottaiano, L.; Di Mola, I.; Di Tommasi, P.; Mori, M.; Magliulo, V.; Vitale, L. Effects of Irrigation on N2O Emissions in a Maize Crop Grown on Different Soil Types in Two Contrasting Seasons. Agriculture 2020, 10, 623. [Google Scholar] [CrossRef]
- Signor, D.; Cerri, C.E.P.; Conant, R. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environ. Res. Lett. 2013, 8, 015013. [Google Scholar] [CrossRef]
- Degaspari, I.A.M.; Soares, J.R.; Montezano, Z.F.; Del Grosso, S.J.; Vitti, A.C.; Rossetto, R.; Cantarella, H. Nitrogen sources and application rates affect emissions of N2O and NH3 in sugarcane. Nutr. Cycl. Agroecosyst. 2020, 116, 329–344. [Google Scholar] [CrossRef]
- Harty, M.A.; Forrestal, P.J.; Watson, C.J.; McGeough, K.L.; Carolan, R.; Krol, D.; Laughlin, R.J.; Richards, K.G.; Lanigan, G.J. Reducing nitrous oxide emissions by changing N fertilizer used from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 2016, 563–564, 576–586. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Q.; Lu, Y.; Ning, W.; Wu, R.; Li, T.; Mao, B.; Yang, Y.; Su, H.; Yang, Y.; et al. Reducing nitrogen fertilizer applications mitigates N2O emissions and maintains sugarcane yields in South China. Agric. Ecosyst. Environ. 2025, 377, 109250. [Google Scholar] [CrossRef]
- He, Z.; Ding, B.; Pei, S.; Cao, H.; Liang, J.; Li, Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Sci. Total Environ. 2023, 905, 166917. [Google Scholar] [CrossRef] [PubMed]
- Lebender, U.; Senbayram, M.; Lammel, J.; Kuhlman, H. Effect of mineral nitrogen fertilizer forms on N2O emissions from arable soils in winter wheat production. J. Plant Nutr. Soil Sci. 2014, 177, 722–732. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, G.; Yu, X.; Liang, D.; Xu, C.; Ji, C.; Wang, L.; Ma, H.; Wang, J. A slow-release fertilizer containing cyhalofop-butyl reduces N2O emissions by slowly releasing nitrogen and down-regulating the relative abundance of nirK. Sci. Total Environ. 2024, 906, 167493. [Google Scholar] [CrossRef] [PubMed]
- Hasukawa, H.; Inoda, Y.; Takayama, T.; Takemisa, K.; Sudo, S.; Akiyama, H.; Yanai, J. Effects of controlled release N fertilizers and reduced application rate on nitrous oxide emissions from soybean fields converted from rice paddies. Soil Sci. Plant Nutr. 2021, 67, 716–726. [Google Scholar] [CrossRef]
- Zebarth, B.; Snowdon, E.; Burton, D.; Goyer, C.; Dowbenko, R. Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Can. J. Soil Sci. 2012, 92, 759–769. [Google Scholar] [CrossRef]
- Bandara, W.B.M.A.C.; Sakai, K.; Anan, M.; Nakamura, S.; Setouchi, H.; Noborio, K.; Kai, T.; Rathnappriya, R.H.K. N2O emissions from controlled-release and conventional N-fertilizers applied to red-yellow soil in Okinawa, Japan. Soil Tillage Res. 2025, 248, 106376. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Hao, X.; Song, C.; Zong, Y.; Zhang, D.; Shi, X.; Li, P. Effects of controlled-release fertilizer on N2O emissions in wheat under elevated CO2 concentration and temperature. Plant Soil 2023, 488, 343–361. [Google Scholar] [CrossRef]
- Pereira, V.V.; Morales, M.M.; Pereira, D.H.; de Rezende, F.A.; de Souza Magalhães, C.A.; de Lima, L.B.; Marimon-Junior, B.H.; Petter, F.A. Activated Biochar-Based Organomineral Fertilizer Delays Nitrogen Release and Reduces N2O Emission. Sustainability 2022, 14, 12388. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, C.; Wang, T.; Zhang, G.; Bahn, M.; Mo, F.; Han, J. Biochar strategy for long-term N2O emission reduction: Insights into soil physical structure and microbial interaction. Soil Biol. Biochem. 2025, 202, 109685. [Google Scholar] [CrossRef]
- Moitinho, M.R.; Philippot, L.; Gongaza, L.C.; Bru, D.; Carvalho, J.L.N. Biochar addition reduces N2O emissions in fertilized soils under energy cane cultivation. Agric. Ecosyst. Environ. 2024, 359, 108744. [Google Scholar] [CrossRef]
- Dawar, K.; Saif-ur-Rahman; Fahad, S.; Alam, S.S.; Khan, S.A.; Dawar, A.; Younis, U.; Danish, S.; Datta, R.; Dick, R. Influence of variable biochar concentration on yield-scaled nitrous oxide emissions, Wheat yield and nitrogen use efficiency. Sci. Rep. 2021, 11, 16774. [Google Scholar] [CrossRef]
- Lin, F.; Wang, H.; Shaghaleh, H.; Ali Adam Hamad, A.; Zhang, Y.; Yang, B.; Alhaj Hamoud, Y. Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels. Atmosphere 2024, 15, 68. [Google Scholar] [CrossRef]
- Liu, H.; Wang, N.; Wang, Y.; Li, Y.; Zhang, Y.; Qi, G.; Dong, H.; Wang, H.; Zhang, X.; Li, X. Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time. Sustainability 2024, 16, 5813. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. (Eds.) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Malyan, S.K.; Maithani, D.; Kumar, V. Nitrous Oxide Production and Mitigation Through Nitrification Inhibitors in Agricultural Soils: A Mechanistic Understanding and Comprehensive Evaluation of Influencing Factors. Nitrogen 2025, 6, 14. [Google Scholar] [CrossRef]
- Tariq, A.; Larsem, K.S.; Hansen, L.V.; Jensen, L.S.; Bruun, S. Effect of nitrification inhibitor (DMPP) on nitrous oxide emissions from agricultural fields; automated and manual measurements. Sci. Total Environ. 2022, 847, 157650. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Q.; Yu, D.; Zhang, Y.; Uwiragiye, Y.; Fallah, N.; Chen, M.; Cheng, Y. Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils. Agronomy 2025, 15, 1536. [Google Scholar] [CrossRef]
- Muller, J.; De Rosa, D.; Friedl, J.; De Antoni Migliorati, M.; Rowlings, D.; Grace, P.; Scheer, C. Combining nitrification inhibitors with a reduced N rate maintains yield and reduces N2O emissions in sweet corn. Nutr. Cycl. Agroecosyst. 2023, 125, 107–121. [Google Scholar] [CrossRef]
- Hadi, A.; Jumadi, O.; Inubushi, K.; Yagi, K. Mitigation options for N2O emissions from a corn field in Kalimantan, Indonesia. Soil Sci. Plant Nutr. 2008, 54, 644–649. [Google Scholar] [CrossRef]
- Pelster, D.E.; Chantigny, M.H.; Rochette, P.; Angers, D.A.; Laganière, J.; Zebarth, B.; Goyer, C. Crop residue incorporation alters soil nitrous oxide emissions during freeze–thaw cycles. Can. J. Soil Sci. 2013, 93, 415–425. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Tian, C.; Zhu, N.; Leng, P.; Yue, Z.; Cheng, H.; et al. Effects of no-tillage on greenhouse has emissions in maize fields in a semi-humid temperate climate region. Environ. Pollut. 2022, 309, 119747. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Szara, E.; Skowronska, M.; Jadczyszyn, T. Soil N2O emissions under conventional and reduced tillage methods and maize cultivation. Plant Soil Environ. 2017, 63, 342–347. [Google Scholar] [CrossRef]
- Yoo, J.; Woo, S.H.; Park, K.D.; Chung, K.-Y. Effect of no-tillage and conventional tillage practices on the nitrous oxide (N2O) emissions in an upland soil: Soil N2O emission as affected by the fertilizer applications. Appl. Biol. Chem. 2016, 59, 787–797. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Rochette, P.; St-Georges, P.; McKim, U.F.; Chan, C. Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Can. J. Soil Sci. 2008, 88, 153–161. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32052. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Zhang, H.; Wang, M.; Xu, J.; Yu, L.; Cai, H. Deficit irrigation interacting with biochar mitigates N2O emissions from farmland in a wheat-maize rotation system. Agric. Water Manag. 2024, 297, 108843. [Google Scholar] [CrossRef]
- Flynn, N.; Stewart, C.; Comas, L.; Del Grosso, S.; Schnarr, C.; Schipanski, M.; Von Fisher, J.; Stuchiner, E.; Fonte, S. Deficit irrigation impacts on greenhouse gas emissions under drip-fertigated maize in the Great Plains of Colorado. J. Environ.Qual. 2022, 51, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Sun, H.; Liao, X.; Luo, J.; Lindsey, S.; Yuan, J.; He, T.; Zaman, M.; Ding, W. N2O and NO Emissions as Affected by the Continuous Combined Application of Organic and Mineral N Fertilizer to a Soil on the North China Plain. Agronomy 2020, 10, 1965. [Google Scholar] [CrossRef]
- Shu, X.; Wang, Y.; Wang, Y.; Ma, Y.; Men, M.; Zheng, Y.; Xue, C.; Peng, Z.; Noulas, C. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 2021, 11, 4396. [Google Scholar] [CrossRef]
- Biernat, L.; Taube, F.; Loges, R.; Kluß, C.; Reinsch, T. Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany. Sustainability 2020, 12, 3240. [Google Scholar] [CrossRef]
- Otieno, F.; Nalakurthi, S.-R.; Raji, M.; Tiwari, A.; Anton, I.; Gharbia, S. Farmer’s attitudes towards GHG emissions and adoption to low-cost sensor-driven smart farming for mitigation: The case of Ireland tillage and horticultural farmers. Smart Agric. Technol. 2024, 9, 100622. [Google Scholar] [CrossRef]
- Zhang, H.; Batchelor, W.D.; Hu, K.; Liang, H.; Han, H.; Li, J. Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China. Ecol. Modell. 2022, 470, 110019. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Kader, M.A.; Smith, P. Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land 2018, 7, 82. [Google Scholar] [CrossRef]
- Chen, X.; Tao, T.; Zhou, J.; Yu, H.; Guo, H.; Chen, H. Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle. Sustainability 2023, 15, 11994. [Google Scholar] [CrossRef]
- Tang, Y.; Qiao, Y.; Ma, Y.; Huang, W.; Komal, K.; Miao, S. Quantifying greenhouse gas emissions in agricultural systems: A comparative analysis of process models. Ecol. Model. 2024, 490, 110646. [Google Scholar] [CrossRef]
- Van Hoof, S. Climate Change Mitigation in Agriculture: Barriers to the Adoption of Carbon Farming Policies in the EU. Sustainability 2023, 15, 10452. [Google Scholar] [CrossRef]
- Spiegel, A.; Heidecke, C.; Rommel, J.; Matthews, A. Unravelling complexity of policies for climate change mitigation in agriculture. Q Open 2025, 5, qoaf007. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, H.; Riihimaki, J.; Salminen, J.; Savolainen, H. Framework for quantification of land use-based greenhouse gas emissions according to crop and farm type. J. Clean. Prod. 2025, 498, 145111. [Google Scholar] [CrossRef]
- Kimei, E.H.; Nyambo, D.G.; Mduma, N.; Kaijage, S. Review of Sources of Uncertainty and Techniques Used in Uncertainty Quantification and Sensitivity Analysis to Estimate Greenhouse Gas Emissions from Ruminants. Sustainability 2024, 16, 2219. [Google Scholar] [CrossRef]
- Masi, M.; De Rosa, M.; Vecchio, Y.; Bartoli, L.; Adinolfi, F. The long way to innovation adoption: Insights from precision agriculture. Agric. Econ. 2022, 10, 27. [Google Scholar] [CrossRef]
- Research and Markets. Global Precision Agriculture Market Analysis, 2023–2033: Efficiency, Yields, Cost Reduction, Sustainability All to Benefit with Growing Adoption. Available online: https://www.globenewswire.com/news-release/2024/4/3/2856713/28124/en/Global-Precision-Agriculture-Market-Analysis-2023-2033-Efficiency-Yields-Cost-Reduction-Sustainability-All-to-Benefit-with-Growing-Adoption.html (accessed on 6 November 2025).
- Oroian, C.; Odagiu, A.; Vizitiu, O. What carbon storage farming activities adopted by farmers? A survey from the North-Western region of Romania. Agrolife Sci. J. 2024, 13, 192–199. [Google Scholar] [CrossRef]















| Control Measure | Effects | Ref. |
|---|---|---|
| Anaerobic digestion | Manure in sealed digesters produces CH4 (biogas) for renewable energy; biochar addition can increase CH4 yield up to 80%; ciprofloxacin can inhibit CH4 production in hen manure. | [113,114,115] |
| Composting | Aerobic composting reduces CH4 by altering nutrients and microbial activity; biochar (cornstalk, bamboo, woody, coir) further reduces CH4; cornstalk biochar reduced CH4 by 26.1%. | [116,117] |
| Manure covering | Reduces CH4 emissions; polyethylene cover lowers pig manure CH4 by 88%; straw reduces CH4 by 26–50%. | [118] |
| Solid–Liquid separation | Mechanical separation divides manure into solid (organic matter) and liquid (nutrients); screen size affects CH4 emissions. | [119,120] |
| Lower storage temperature | Higher temperatures increase CH4 due to faster microbial activity and organic matter degradation. | [121] |
| Manure acidification | Adding acids (H2SO4, HCl, HNO3, H3PO4) lowers pH, inhibiting methanogens; CH4 reductions: 46–96% (pig slurry), 67% with 17.1 kg H2SO4/m3, pH 5.5 → 95–99% (pig)/65–99% (cattle). | [122,123,124,125] |
| Additives | CaSO4 reduces CH4 by 63% (higher than H3PO4 54%, lower than H2SO4 91%); polyphenols + NaF reduce CH4; commercial additives like SOP LAGOON also effective. | [126,127,128] |
| Product | Crop/Details | Effects | Refs. |
|---|---|---|---|
| Slow-release fertilizer + cyhalofop-butyl | Rice paddies | Lowest cumulative N2O emissions and highest yield among all treatments; inhibits nitrification in paddy soils. | [147] |
| Controlled-release coated urea (CRCU)/calcium nitrate (CRCN) | Soybean (after rice) | 14–41% lower N2O emissions vs. ammonium chloride; effective even at reduced N rates. | [148] |
| Polymer-coated urea (PCU) | Potato | Increases N availability but may raise N2O emissions when nitrate leaching risk is low. | [149] |
| Controlled-release fertilizer (CRF) vs. ammonium sulfate (AS) | Temperate soils | CRF soils emitted less N2O; controlled nutrient release reduced emission peaks. | [150] |
| Controlled-release fertilizer (CRF) vs. urea | Wheat | 29–66% reduction in N2O; inhibits nitrification processes; stable under high CO2 conditions without yield loss. | [151] |
| Biochar-based CRF | Leaching columns | 7–66% reduction in N2O emissions and lower nitrate leaching. | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madjar, R.M.; Vasile Scăețeanu, G.; Butcaru, A.-C.; Moț, A. Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration. Sustainability 2025, 17, 10228. https://doi.org/10.3390/su172210228
Madjar RM, Vasile Scăețeanu G, Butcaru A-C, Moț A. Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration. Sustainability. 2025; 17(22):10228. https://doi.org/10.3390/su172210228
Chicago/Turabian StyleMadjar, Roxana Maria, Gina Vasile Scăețeanu, Ana-Cornelia Butcaru, and Andrei Moț. 2025. "Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration" Sustainability 17, no. 22: 10228. https://doi.org/10.3390/su172210228
APA StyleMadjar, R. M., Vasile Scăețeanu, G., Butcaru, A.-C., & Moț, A. (2025). Sustainable Approaches to Agricultural Greenhouse Gas Mitigation in the EU: Practices, Mechanisms, and Policy Integration. Sustainability, 17(22), 10228. https://doi.org/10.3390/su172210228

