Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Cattle Production Systems in Zambia
2.2. Defining and Sub-Categorizing Cattle Production Systems
2.3. Data Collection
2.4. Cattle Subcategories (Herd Structure) and Population Data
2.5. Liveweight and Weight Gain
2.6. Proportions of Females Giving Birth, Milk Yield and Milk Fat
2.7. Work Hours for Oxen
2.8. Diet Composition and Feed Characteristics
2.9. Other Coefficients in the IPCC Tier 2 Method
2.10. Gross Energy Intake Estimation
2.11. Enteric Methane Emission Factors
2.12. Uncertainty Analysis
3. Results
3.1. Cattle Population
3.2. Trends and Sources of Total Emissions
3.3. Emission Factors
3.4. Uncertainty
| (a) | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Commercial Dairy System | Emergent Dairy System | |||||||||||||||||||
| Adult Cows | Adult Males | Heifers | Steers/Bulls | Calves | Implied Emission Factor | Adult Cows | Adult Males | Heifers | Steers/Bulls | Calves | Implied Emission Factor | |||||||||
| 1994 | 83.5 | 61.3 | 48.4 | 47.5 | 17.9 | 68.2 | 70.0 | 60.2 | 51.8 | 48.7 | 18.3 | 55.2 | ||||||||
| 1995 | 84.6 | 61.3 | 48.4 | 47.5 | 17.9 | 68.9 | 70.1 | 60.2 | 51.8 | 48.7 | 18.3 | 55.2 | ||||||||
| 1996 | 85.7 | 61.3 | 48.4 | 47.4 | 17.9 | 69.5 | 70.1 | 60.2 | 51.8 | 48.6 | 18.3 | 55.2 | ||||||||
| 1997 | 86.9 | 61.2 | 48.3 | 47.4 | 17.9 | 70.2 | 70.1 | 60.2 | 51.8 | 48.6 | 18.2 | 55.2 | ||||||||
| 1998 | 88.0 | 61.2 | 48.3 | 47.4 | 17.9 | 70.9 | 70.1 | 60.2 | 51.7 | 48.6 | 18.2 | 55.2 | ||||||||
| 1999 | 89.1 | 61.2 | 48.3 | 47.4 | 17.9 | 71.5 | 70.1 | 60.2 | 51.7 | 48.6 | 18.2 | 55.3 | ||||||||
| 2000 | 90.2 | 61.2 | 48.3 | 47.4 | 17.9 | 72.2 | 70.1 | 60.2 | 51.7 | 48.6 | 18.2 | 55.2 | ||||||||
| 2001 | 91.3 | 61.1 | 48.2 | 47.3 | 17.9 | 72.8 | 70.2 | 60.2 | 51.7 | 48.6 | 18.2 | 55.2 | ||||||||
| 2002 | 92.4 | 61.1 | 48.2 | 47.3 | 17.9 | 73.5 | 70.2 | 60.1 | 51.7 | 48.6 | 18.2 | 55.2 | ||||||||
| 2003 | 93.5 | 61.1 | 48.2 | 47.3 | 17.9 | 74.2 | 70.2 | 60.1 | 51.7 | 48.6 | 18.2 | 55.2 | ||||||||
| 2004 | 94.7 | 61.1 | 48.2 | 47.3 | 17.9 | 74.8 | 70.2 | 60.1 | 51.7 | 48.5 | 18.2 | 55.2 | ||||||||
| 2005 | 95.8 | 61.1 | 48.2 | 47.3 | 17.9 | 75.5 | 70.2 | 60.1 | 51.7 | 48.5 | 18.2 | 55.3 | ||||||||
| 2006 | 96.9 | 61.0 | 48.1 | 47.2 | 17.9 | 76.1 | 70.2 | 60.1 | 51.6 | 48.5 | 18.2 | 55.3 | ||||||||
| 2007 | 98.0 | 61.0 | 48.1 | 47.2 | 17.8 | 76.8 | 70.3 | 60.1 | 51.6 | 48.5 | 18.2 | 55.3 | ||||||||
| 2008 | 99.1 | 61.0 | 48.1 | 47.2 | 17.8 | 77.5 | 70.3 | 60.1 | 51.6 | 48.5 | 18.2 | 55.3 | ||||||||
| 2009 | 100.2 | 61.0 | 48.1 | 47.2 | 17.8 | 78.1 | 70.4 | 60.1 | 51.7 | 48.5 | 18.2 | 55.3 | ||||||||
| 2010 | 101.3 | 61.0 | 48.1 | 47.2 | 17.8 | 78.8 | 70.4 | 60.1 | 51.7 | 48.6 | 18.2 | 55.4 | ||||||||
| 2011 | 102.4 | 60.9 | 48.1 | 47.1 | 17.8 | 79.4 | 70.5 | 60.2 | 51.7 | 48.6 | 18.2 | 55.4 | ||||||||
| 2012 | 103.5 | 60.9 | 48.0 | 47.1 | 17.8 | 80.1 | 70.6 | 60.2 | 51.7 | 48.6 | 18.2 | 55.5 | ||||||||
| 2013 | 104.6 | 60.9 | 48.0 | 47.1 | 17.8 | 80.7 | 70.6 | 60.2 | 51.8 | 48.6 | 18.3 | 55.5 | ||||||||
| 2014 | 105.8 | 60.9 | 48.0 | 47.1 | 17.8 | 81.4 | 70.7 | 60.2 | 51.8 | 48.7 | 18.3 | 55.5 | ||||||||
| 2015 | 106.9 | 60.9 | 48.0 | 47.1 | 17.8 | 82.1 | 70.7 | 60.3 | 51.8 | 48.7 | 18.3 | 55.6 | ||||||||
| 2016 | 108.0 | 60.8 | 48.0 | 47.1 | 17.8 | 82.7 | 70.8 | 60.3 | 51.8 | 48.7 | 18.3 | 55.6 | ||||||||
| 2017 | 109.1 | 60.8 | 47.9 | 47.0 | 17.8 | 83.4 | 70.9 | 60.3 | 51.9 | 48.7 | 18.3 | 55.7 | ||||||||
| 2018 | 110.2 | 60.8 | 47.9 | 47.0 | 17.8 | 84.0 | 70.9 | 60.3 | 51.9 | 48.7 | 18.3 | 55.7 | ||||||||
| 2019 | 111.3 | 60.8 | 47.9 | 47.0 | 17.8 | 84.7 | 71.0 | 60.3 | 51.9 | 48.8 | 18.3 | 55.7 | ||||||||
| 2020 | 112.4 | 60.8 | 47.9 | 47.0 | 17.8 | 85.4 | 71.0 | 60.4 | 51.9 | 48.8 | 18.3 | 55.8 | ||||||||
| 2021 | 113.5 | 60.7 | 47.9 | 47.0 | 17.8 | 86.0 | 71.1 | 60.4 | 52.0 | 48.8 | 18.3 | 55.8 | ||||||||
| 2022 | 114.6 | 60.7 | 47.9 | 47.0 | 17.7 | 86.7 | 71.2 | 60.4 | 52.0 | 48.8 | 18.3 | 55.9 | ||||||||
| Mean | 99.1 + 9.1 | 61.0 + 0.2 | 48.1 + 0.2 | 47.2 + 0.1 | 17.8 + 0.1 | 77.4 + 5.4 | 70.5 + 0.4 | 60.2 + 0.1 | 51.8 + 0.1 | 48.6 + 0.1 | 18.3 + 0.0 | 55.4 + 0.2 | ||||||||
| (b) | ||||||||||||||||||||
| Commercial Beef | Emergent | Extensive/Traditional Beef | ||||||||||||||||||
| Adult cows | Adult males | Heifers | Steers/bulls | Calves | Feedlot | Implied emission factor | Adult cows | Adult males | Heifers | Steers/bulls | Calves | Implied emission factor | Adult cows | Adult males | Oxen | Heifers | Steers/bulls | Calves | Implied emission factor | |
| 1994 | 92.4 | 67.5 | 44.9 | 49.3 | 46.0 | 40.9 | 66.3 | 77.5 | 68.3 | 36.4 | 38.5 | 18.5 | 54.1 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 1995 | 92.7 | 67.8 | 45.1 | 49.6 | 46.3 | 41.1 | 66.6 | 77.1 | 68.0 | 36.2 | 38.3 | 18.4 | 53.9 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 1996 | 93.1 | 68.1 | 45.3 | 49.8 | 46.6 | 41.4 | 66.9 | 76.8 | 67.7 | 36.0 | 38.1 | 18.3 | 53.6 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 1997 | 93.5 | 68.4 | 45.5 | 50.0 | 46.9 | 41.6 | 67.2 | 76.5 | 67.4 | 35.8 | 38.0 | 18.2 | 53.4 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 1998 | 93.9 | 68.7 | 45.7 | 50.3 | 47.1 | 41.8 | 67.5 | 76.2 | 67.2 | 35.7 | 37.8 | 18.1 | 53. | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 1999 | 94.3 | 69.0 | 46.0 | 50.5 | 47.4 | 42.1 | 67.8 | 75.8 | 66.9 | 35.5 | 37.6 | 18.0 | 52.9 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2000 | 94.7 | 69.3 | 46.2 | 50.8 | 47.7 | 42.3 | 68.2 | 75.5 | 66.6 | 35.3 | 37.4 | 17.9 | 56.7 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2001 | 95.2 | 69.6 | 46.4 | 51.0 | 48.0 | 42.6 | 68.5 | 75.2 | 66.3 | 35.1 | 37.2 | 17.8 | 52.4 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2002 | 95.6 | 69.9 | 46.6 | 51.3 | 48.3 | 42.8 | 68.8 | 74.9 | 66.1 | 35.0 | 37.0 | 17.8 | 52.2 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2003 | 96.0 | 70.2 | 46.9 | 51.5 | 48.6 | 43.0 | 69.1 | 74.6 | 65.8 | 34.8 | 36.9 | 17.7 | 51.9 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2004 | 96.4 | 70.5 | 47.1 | 51.8 | 48.9 | 43.3 | 69.5 | 74.3 | 65.5 | 34.6 | 36.7 | 17.6 | 51.8 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2005 | 96.8 | 70.8 | 47.3 | 52.0 | 49.2 | 43.5 | 69.8 | 74.0 | 65.3 | 34.5 | 36.5 | 17.5 | 51.6 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2006 | 97.3 | 71.1 | 47.6 | 52.3 | 49.5 | 43.8 | 70.1 | 73.7 | 65.0 | 34.3 | 36.4 | 17.4 | 51.3 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2007 | 97.3 | 71.1 | 47.6 | 52.3 | 49.5 | 43.9 | 70.2 | 73.7 | 65.0 | 34.3 | 36.4 | 17.4 | 51.3 | 73.5 | 72.7 | 87.1 | 49.6 | 52.7 | 24.4 | 65.0 |
| 2008 | 97.4 | 71.2 | 47.6 | 52.4 | 49.6 | 44.0 | 70.3 | 73.7 | 65.0 | 34.3 | 36.3 | 17.4 | 51.3 | 73.3 | 72.6 | 86.9 | 49.4 | 52.6 | 24.3 | 65.0 |
| 2009 | 97.6 | 71.3 | 47.7 | 52.5 | 49.7 | 44.2 | 70.4 | 73.6 | 64.9 | 34.3 | 36.3 | 17.4 | 51.3 | 73.2 | 72.5 | 86.7 | 49.3 | 52.5 | 24.3 | 64.9 |
| 2010 | 97.8 | 71.5 | 47.8 | 52.6 | 49.9 | 44.4 | 70.6 | 73.6 | 64.9 | 34.3 | 36.3 | 17.4 | 51.2 | 73.0 | 72.3 | 86.6 | 49.2 | 52.4 | 24.2 | 64.8 |
| 2011 | 97.9 | 71.6 | 47.9 | 52.7 | 50.0 | 44.5 | 70.7 | 73.5 | 64.8 | 34.2 | 36.2 | 17.4 | 51.2 | 72.9 | 72.2 | 86.4 | 49.1 | 52.3 | 24.2 | 64.5 |
| 2012 | 98.1 | 71.7 | 48.0 | 52.8 | 50.1 | 44.7 | 70.9 | 73.5 | 64.8 | 34.2 | 36.2 | 17.4 | 51.2 | 72.8 | 72.1 | 86.3 | 49.0 | 52.1 | 24.1 | 64.4 |
| 2013 | 98.2 | 71.8 | 48.1 | 52.9 | 50.2 | 44.8 | 71.0 | 73.4 | 64.8 | 34.2 | 36.2 | 17.3 | 51.1 | 72.6 | 71.9 | 86.1 | 48.9 | 52.0 | 24.1 | 64.3 |
| 2014 | 98.4 | 71.9 | 48.2 | 53.0 | 50.3 | 45.0 | 71.1 | 73.4 | 64.7 | 34.2 | 36.2 | 17.3 | 51.1 | 72.5 | 71.8 | 85.9 | 48.8 | 51.9 | 24.0 | 64.2 |
| 2015 | 98.6 | 72.1 | 48.3 | 53.1 | 50.5 | 45.2 | 71.3 | 73.3 | 64.7 | 34.1 | 36.1 | 17.3 | 51.1 | 72.4 | 71.7 | 85.8 | 48.7 | 51.8 | 24.0 | 64.1 |
| 2016 | 98.7 | 72.2 | 48.4 | 53.2 | 50.6 | 45.3 | 71.4 | 73.3 | 64.6 | 34.1 | 36.1 | 17.3 | 51.0 | 72.2 | 71.5 | 85.6 | 48.6 | 51.7 | 23.9 | 63.9 |
| 2017 | 98.9 | 72.3 | 48.4 | 53.3 | 50.7 | 45.5 | 71.6 | 73.2 | 64.6 | 34.1 | 36.1 | 17.3 | 50.9 | 72.1 | 71.4 | 85.5 | 48.5 | 51.6 | 23.9 | 63.8 |
| 2018 | 99.1 | 72.4 | 48.5 | 53.4 | 50.8 | 45.7 | 71.7 | 73.2 | 64.5 | 34.1 | 36.1 | 17.3 | 50.9 | 72.0 | 71.3 | 85.3 | 48.4 | 51.5 | 23.8 | 63.7 |
| 2019 | 99.2 | 72.6 | 48.6 | 53.5 | 51.0 | 45.8 | 71.8 | 73.1 | 64.5 | 34.0 | 36.0 | 17.3 | 50.9 | 71.9 | 71.2 | 85.2 | 48.3 | 51.3 | 23.7 | 63.6 |
| 2020 | 99.4 | 72.7 | 48.7 | 53.6 | 51.1 | 46.0 | 72.0 | 73.1 | 64.5 | 34.0 | 36.0 | 17.2 | 50.9 | 71.7 | 71.0 | 85.0 | 48.2 | 51.2 | 23.7 | 63.4 |
| 2021 | 99.4 | 72.7 | 48.7 | 53.6 | 51.1 | 46.1 | 72.0 | 73.1 | 64.5 | 34.0 | 36.0 | 17.2 | 50.9 | 71.7 | 71.0 | 85.0 | 48.2 | 51.2 | 23.7 | 63.4 |
| 2022 | 99.4 | 72.7 | 48.7 | 53.6 | 51.1 | 46.2 | 72.0 | 73.1 | 64.5 | 34.0 | 36.0 | 17.2 | 50.9 | 71.7 | 71.0 | 85.0 | 48.2 | 51.2 | 23.7 | 63.4 |
| Mean | 96.8 + 2.2 | 70.8 + 1.6 | 47.3 + 1.2 | 52.0 + 1.3 | 49.2 + 1.6 | 43.8 + 1.6 | 69.8 + 1.8 | 74.3 + 1.4 | 65.6 + 1.2 | 34.7 + 0.7 | 36.7 + 0.8 | 17.6 + 0.4 | 51.9 + 1.3 | 72.9 + 0.7 | 72.2 + 0.6 | 86.4 + 0.8 | 49.1 + 0.5 | 52.2 + 0.6 | 24.2 + 0.3 | 64.5 + 0.6 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SADC. Macroeconomic Statistics Bulletin; Southern African Development Community (SADC) Secretariat: Gaborone, Botswana, 2020; 77p. [Google Scholar]
- FAOSTAT. Statistical Database 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 June 2022).
- Herrero, M.; Havlik, P.; McIntire, J.; Palazzo, A.; Valin, H. African Livestock Futures: Realizing the Potential of Livestock for Food Security, Poverty Reduction and the Environment in Sub-Saharan Africa; Office of the Special Representative of the UN Secretary General for Food Security and Nutrition; The United Nations System Influenza Coordination (UNSIC): Geneva, Switzerland, 2008; 118p, Available online: https://pure.iiasa.ac.at/id/eprint/11154/2/LiveStock_ExSum_ENG_20140725_02_web.pdf (accessed on 23 August 2023).
- Enahoro, D.; Mason-D’Croz, D.; Mul, M.; Rich, K.M.; Robinson, T.P.; Thornton, P.; Staal, S.S. Supporting sustainable expansion of livestock production in South Asia and Sub-Saharan Africa: Scenario analysis of investment options. Glob. Food Secur. 2019, 20, 114–121. [Google Scholar] [CrossRef]
- Odubote, I.K. Characterization of production systems and management practices of the cattle population in Zambia. Trop. Anim. Health Prod. 2022, 54, 216. [Google Scholar] [CrossRef]
- DLD. 2024 Annual Report; Department of Livestock Department, Ministry of Fisheries and Livestock: Lusaka, Zambia, 2024; 45p. [Google Scholar]
- Mumba, C.; Hasler, B.; Muma, J.B.; Munyeme, M.; Sitali, D.C.; Skjerve, E.; Rich, M.K. Practices of traditional beef farmers in their production and marketing of cattle in Zambia. Trop. Anim. Health Prod. 2018, 50, 49–62. [Google Scholar] [CrossRef]
- GRZ. Zambia. Third National Communication to the United Nations Framework Convention on Climate Change (UNFCCC). 2020. Available online: https://unfccc.int/documents/254196 (accessed on 20 August 2023).
- Graham, M.W.; Butterbach-Bahl, K.; du Toit, C.J.L.; Korir, D.; Leitner, S.; Merbold, L.; Mwape, A.; Ndung’u, P.W.; Pelster, D.E.; Rufino, M.C.; et al. Research Progress on Greenhouse Gas Emissions From Livestock in Sub-Saharan Africa Falls Short of National Inventory Ambitions. Front. Soil Sci. 2022, 2, 927452. [Google Scholar] [CrossRef]
- Ministry of Green Economy and Environment. NDC Implementation Framework for Zambia 2023-2030; Ministry of Green Economy and Environment Office: Lusaka, Zambia, 2023. [Google Scholar]
- Wilkes, A.; Wassie, S.E.; Tadesse, M.; Assefa, B.; Abu, M.; Ketema, A.; Solomon, D. Inventory of Greenhouse Gas Emissions from Cattle, Sheep, and Goats in Ethiopia (1994–2018) Calculated Using the IPCC Tier 2 Approach; Environment and Climate Change Directorate of the Ministry of Agriculture: Addis Ababa, Ethiopia, 2020. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- OIE. Terrestrial Animal Health Code-Chapter 7.11-Animal Welfare and Dairy Cattle Production Systems. 2021. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/current/en/chapitre_aw_dairy_cattle.pdf (accessed on 15 July 2023).
- Sinkala, Y.; Simuunza, M.; Pfeiffer, D.U.; Munang’andu, H.M.; Mulumba, M.; Kasanga, C.J.; Muma, J.B.; Mweene, A.S. Challenges and Economic Implications in the Control of Foot and Mouth Disease in Sub-Saharan Africa: Lessons from the Zambian Experience. Vet. Med. Int. 2014, 2014, 373921. [Google Scholar] [CrossRef]
- Ouatahar, L.; Bannink, A.; Lanigan, G.; Amon, B. Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Sci. Total Environ. 2021, 776, 145932. [Google Scholar] [CrossRef]
- Pica-Ciamarra, U.; Baker, D.; Morgan, N.; Zezza, A.; Azzarri, C.; Ly, C.; Nsiima, L.; Nouala, S.; Okello, P.; Sserugga, J. Investing in the Livestock Sector: Why Good Numbers Matter; A Sourcebook for Decision Makers on How to Improve Livestock Data; World Bank: Washington, DC, USA, 2014; 144p, Available online: https://openknowledge.worldbank.org/handle/0986/17830 (accessed on 1 December 2016).
- Neven, D.; Katjiuongua, H.; Adjosoediro, I.; Reardon, T.; Chuzu, P.N.; Tembo, G.; Ndiyoi, M. Food Sector Transformation and Standards in Zambia: Smallholder Farmer Participation and Growth in the Dairy Sector; Staff Papers 2006-18; Michigan State University: East Lansing, MI, USA, 2006. [Google Scholar] [CrossRef]
- World Bank. What Would it Take for Zambia’s Beef and Dairy Industries to Achieve Their Potential? Finance and Private Sector Development Unit, Africa Region. 2011. Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/63ef02b0-bea4-54ed-935e-9f46ccaaa821/content (accessed on 23 April 2022).
- Dutilly, C.; Alary, V.; Bonnet, P.; Lesnoff, M.; Fandamu, P.; de Haan, C. Multi-scale assessment of the livestock sector for policy design in Zambia. J. Policy Model. 2020, 42, 401–418. [Google Scholar] [CrossRef]
- ACF. Final Report on the Dairy Value Chain Study in Zambia; Agricultural Consultative Forum: Lusaka, Zambia, 2012; 123p. [Google Scholar]
- SNV Netherlands Development Organisation. Assessment of Opportunities for Improving Dairy Production, Marketing, and Adoption of Good Animal Husbandry Practices Within Traditional Cattle Keeping Areas of Zambia; SNV Netherlands Development Organisation: The Hague, The Netherlands, 2012. [Google Scholar]
- Kawambwa, P.; Hendriksen, G.; Zandonda, E.; Wanga, L. Business Viability Assessment Study of Smallholder Dairy Farming in Zambia; Wageningen Environmental Research (Alterra), Wageningen University: Wageningen, The Netherlands, 2014; 52p. [Google Scholar]
- ZEMA. Zambia—First Biennial Update Report (BUR) to the United Nations Framework Convention on Climate Change; ZEMA: Lusaka, Zambia, 2020. [Google Scholar]
- SAIPAR. Affordability of Protein-Rich Foods: Evidence from Zambia. 2019. Available online: https://assets.cdcgroup.com/wp-content/uploads/2018/12/14110951/Affordability-of-Protein-Rich-Foods-Evidence-from-Zambia.pdf (accessed on 25 April 2023).
- Mumba, C.M. Livestock Greenhouse Gas Inventory Activity Data for Zambia; Consultancy report submitted to FANRPAN; FANRPAN: Pretoria, South Africa, 2020. [Google Scholar]
- SIDA. Project Review of the Dairy Association of Zambia’s Digital Information Management System (DIMS) Project; SIDA: Lusaka, Zambia; Sundbyberg, Sweden, 2020. [Google Scholar]
- Zambeef. Kalundu Dairy Farm: Zambia’s Biggest Dairy. 2022. Available online: https://www.farmersweekly.co.za/animals/kalundu-dairy-farm-zambias-biggest-dairy/ (accessed on 24 August 2023).
- Hofer, A. Small Scale Dairy Farming in Zambia. 2015. Available online: https://stud.epsilon.slu.se/8066/7/hofer_a_150617.pdf (accessed on 23 August 2023).
- Ledgard, S.; Falconer, S.; Carlson, B.; Wedderburn, L.; Howley, C. Review of Greenhouse Gas Profiles for Six MFAT Agricultural Aid Projects; Report for the Ministry of Foreign Affairs and Trade of New Zealand; RE450/2018/074; Ministry of Foreign Affairs and Trade of New Zealand: Wellington, New Zealand, 2018. [Google Scholar]
- GIZ. Milk Yield Dataset; GIZ: Lusaka, Zambia, 2021; Unpublished Work. [Google Scholar]
- ZNS. Milk Yield Dataset; ZNS: Lusaka, Zambia, 2022; Unpublished Work. [Google Scholar]
- Odubote, I.K.; Musimuko, E.; Rensing, S.; Schmitt, F.; Kapotwe, B. Genetic survey in the smallholder dairy production system of Southern province of Zambia. J. Anim. Breed. Genet. 2023, 140, 235–252. [Google Scholar] [CrossRef] [PubMed]
- ZDTP. Practical Farm Advice F06A- Feeding Calendar for Smallholder Dairy Cows in Zambia; Zambia Dairy Transformation Programme: Lusaka, Zambia, 2020. [Google Scholar]
- GIZ. Milk Yield and Body Weight Dataset; GIZ: Lusaka, Zambia, 2022; Unpublished Work. [Google Scholar]
- Baars, R.M.T.; de Jong, R.; Zwart, D. Costs and returns of the crop-cattle system in the Western Province of Zambia. Revue Élev. Méd. Vét. Pays Trop. 1996, 49, 243–251. [Google Scholar]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Collingwood, VIC, Australia, 2007. [Google Scholar]
- Milne, A.E.; Glendining, M.J.; Bellamy, P.; Misselbrook, T.; Gilhespy, S.; Gasado, M.R.; Hulin, A.; van Oijen, M.; Whitmore, A.P. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in UK’s greenhouse gas inventory for agriculture. Atmos. Environ. 2014, 82, 94–105. [Google Scholar] [CrossRef][Green Version]
- Ministry of Fisheries and Livestock Zambia; Zambia Statistics Agency. The 2022 Livestock Survey Report; Ministry of Fisheries and Livestock: Lusaka, Zambia; Zambia Statistics Agency: Lusaka, Zambia, 2022; 132p. [Google Scholar][Green Version]
- Monni, S.; Perälä, P.; Regina, K. Uncertainty in Agricultural CH4 and N2O Emissions from Finland—Possibilities to Increase Accuracy in Emission Estimates. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 545–571. [Google Scholar] [CrossRef]
- Karimi-Zindashty, Y.; Macdonald, J.D.; Desjardins, R.L.; Worth, D.E.; Hutchinson, J.J.; Vergé, X.P.C. Sources of uncertainty in the IPCC Tier 2 Canadian livestock model. J. Agric. Sci. 2012, 150, 556–569. [Google Scholar] [CrossRef]
- Chang, J.; Peng, S.; Yin, Y.; Ciais, P.; Havlik, P.; Herrero, M. The key role of production efficiency changes in livestock methane emission mitigation. AGU Adv. 2021, 2, e2021AV000391. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Oosting, S.J.; Tui, S.H.K.; Masikati, P.; Falconnier, G.N.; Giller, K.E. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: A call for integrated impact assessments. Reg. Environ. Change 2016, 16, 2331–2343. [Google Scholar] [CrossRef]
- Wassie, S.E.; Wilkes, A.; Tadesse, M.; Assefa, B.; Abu, M.; Solomon, D. Enteric methane emission estimates for cattle in Ethiopia from 1994 to 2018. S. Afr. J. Anim. Sci. 2022, 52, 346–365. [Google Scholar]
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and regional trends in greenhouse gas emissions from livestock. Clim. Change 2014, 126, 203–216. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa. Environ. Res. 2021, 195, 110833. [Google Scholar] [CrossRef]
- SDL. Inventory of GHG Emissions from Dairy Cattle in Kenya 1995–2017. Nairobi, Kenya, 2020. Available online: https://globalresearchalliance.org/wp-content/uploads/2021/11/Kenya-Dairy-Cattle-GHG-Inventory-Report_2020.pdf (accessed on 4 September 2023).
- ZEMA. Zambia—Third National Communication (TNC) to the United Nations Framework Convention on Climate Change; ZEMA: Lusaka, Zambia, 2020. [Google Scholar]
- Gurmu, E.B.; Ndung’U, P.W.; Wilkes, A.; Getahun, D.; Graham, M.W.; Leitner, S.M.; Marquardt, S.; Mulat, D.G.; Merbold, L.; Worku, T.; et al. Comparison of Tier 1 and 2 methodologies for estimating intake and enteric methane emission factors from smallholder cattle systems in Africa: A case study from Ethiopia. Anim.-Open Space 2024, 3, 100064. [Google Scholar] [CrossRef]
- Gurmu, E.B.; Wilkes, A.; Poole, J.; Marquardt, S.; Ndun’gu, P.; Onyango, A.A.; Merbold, L.; Kori, D.; del Prado, A.; Pardo, G.; et al. Protocol for a Tier 2 Approach to Generate Context-Specific Enteric Methane Emission Factors (Ef) for Cattle Production Systems Using Ipcc Method; 2024 Manual 77; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2024. [Google Scholar]
- Bateki, C.A.; Wilkes, A.; Schlecht, E. Accuracy of enteric methane emission models for cattle in sub-Saharan Africa: Status quo and the way forward. J. Anim. Sci. 2023, 101, skad397. [Google Scholar] [CrossRef]
- Du Toit, C.J.L.; Meissner, H.H.; Van Niekerk, W.A. Direct methane and nitrous oxide emissions of South African dairy and beef cattle. S. Afr. J. Anim. Sci. 2013, 43, 320–339. [Google Scholar] [CrossRef]
- Odubote, I.K. Establishment of National Livestock Databank for Genetic Improvement Programmes in Zambia. Bull. Anim. Health Prod. 2019, 67, 161–168. [Google Scholar]

| Livestock Category | Production System | Animal Subcategories |
|---|---|---|
| Dairy | Commercial dairy system | Adult cows (>3 years) |
| Adult males (>3 years) | ||
| Heifers (1–3 years) | ||
| Steers/Bulls (1–3 years) | ||
| Calves (<1 year) | ||
| Emergent dairy system | Adult cows (>3 years) | |
| Adult males (>3 years) | ||
| Heifers (1–3 years) | ||
| Steers/Bulls (1–3 years | ||
| Calves (<1 year) | ||
| Other cattle | Commercial beef | Adult cows (>3 years) |
| Adult males (>3 years) | ||
| Heifers (1–3 years) | ||
| Steers/Bulls (1–3 years) | ||
| Calves (<1 year) | ||
| Feedlot (91 days) | ||
| Emergent beef | Adult cows (>3 years) | |
| Adult males (>3 years) | ||
| Heifers (1–3 years) | ||
| Steers/Bulls (1–3 years) | ||
| Calves (<1 year) | ||
| Extensive/Traditional beef | Adult cows (>3 years) | |
| Adult males (>3 years) | ||
| Oxen (>3 years) | ||
| Heifers (1–3 years) | ||
| Steers/Bulls (1–3 years) | ||
| Calves (<1 year) |
| Year | Commercial Dairy | Emergent Dairy | Total Dairy Cattle Population | Commercial Beef | Emergent Beef | Traditional Beef | Total Beef Cattle Population | Total Cattle Population |
|---|---|---|---|---|---|---|---|---|
| 1994 | 61,181 | 183,544 | 244,725 | 338,615 | 144,785 | 1,851,873 | 2,335,273 | 2,579,998 |
| 1995 | 67,500 | 202,500 | 270,000 | 308,851 | 132,060 | 1,689,091 | 2,130,002 | 2,400,002 |
| 1996 | 63,000 | 189,000 | 252,000 | 282,460 | 120,776 | 1,544,765 | 1,948,001 | 2,200,001 |
| 1997 | 47,251 | 141,751 | 189,002 | 364,169 | 155,715 | 1,991,633 | 2,511,517 | 2,700,519 |
| 1998 | 49,000 | 147,000 | 196,000 | 369,920 | 158,173 | 2,023,083 | 2,551,176 | 2,747,176 |
| 1999 | 52,500 | 157,500 | 210,000 | 390,758 | 167,083 | 2,137,040 | 2,694,881 | 2,904,881 |
| 2000 | 62,500 | 187,500 | 250,000 | 343,793 | 147,001 | 1,880,193 | 2,370,987 | 2,620,987 |
| 2001 | 65,000 | 195,000 | 260,000 | 353,800 | 151,280 | 1,934,920 | 2,440,000 | 2,700,000 |
| 2002 | 70,000 | 210,000 | 280,000 | 324,443 | 138,727 | 1,774,377 | 2,237,547 | 2,517,547 |
| 2003 | 70,000 | 210,000 | 280,000 | 303,843 | 129,918 | 1,661,710 | 2,095,471 | 2,375,471 |
| 2004 | 67,500 | 202,500 | 270,000 | 300,435 | 128,461 | 1,643,073 | 2,071,969 | 2,341,969 |
| 2005 | 70,000 | 210,000 | 280,000 | 331,580 | 141,778 | 1,813,397 | 2,286,755 | 2,566,755 |
| 2006 | 67,500 | 202,500 | 270,000 | 366,843 | 156,858 | 2,006,261 | 2,529,962 | 2,799,962 |
| 2007 | 70,000 | 210,000 | 280,000 | 315,747 | 135,008 | 1,726,807 | 2,177,562 | 2,457,562 |
| 2008 | 71,251 | 213,751 | 285,002 | 294,399 | 125,881 | 1,610,049 | 2,030,329 | 2,315,331 |
| 2009 | 72,500 | 217,500 | 290,000 | 398,460 | 170,376 | 2,179,165 | 2,748,001 | 3,038,001 |
| 2010 | 73,751 | 221,251 | 295,002 | 406,726 | 173,910 | 2,224,366 | 2,805,002 | 3,100,004 |
| 2011 | 73,751 | 221,251 | 295,002 | 325,495 | 139,177 | 1,780,123 | 2,244,795 | 2,539,797 |
| 2012 | 73,751 | 221,251 | 295,002 | 525,931 | 224,882 | 2,876,297 | 3,627,110 | 3,922,112 |
| 2013 | 73,751 | 221,251 | 295,002 | 541,091 | 231,364 | 2,959,205 | 3,731,660 | 4,026,662 |
| 2014 | 75,000 | 225,000 | 300,000 | 548,826 | 234,670 | 3,001,506 | 3,785,002 | 4,085,002 |
| 2015 | 68,751 | 206,251 | 275,002 | 532,345 | 227,624 | 2,911,378 | 3,671,347 | 3,946,349 |
| 2016 | 67,500 | 202,500 | 270,000 | 510,873 | 218,442 | 2,793,948 | 3,523,263 | 3,793,263 |
| 2017 | 71,251 | 213,751 | 285,002 | 502,873 | 213,157 | 2,750,187 | 3,466,217 | 3,751,219 |
| 2018 | 69,166 | 207,500 | 276,666 | 498,510 | 211,965 | 2,726,334 | 3,436,809 | 3,713,475 |
| 2019 | 69,304 | 207,916 | 277,220 | 495,723 | 214,573 | 2,711,100 | 3,421,396 | 3,698,616 |
| 2020 | 69,908 | 209,722 | 279,630 | 501,822 | 217,180 | 2,744,449 | 3,463,451 | 3,743,081 |
| 2021 | 70,510 | 211,528 | 282,038 | 507,920 | 219,785 | 2,777,798 | 3,505,503 | 3,787,541 |
| 2022 | 105,726 | 317,180 | 422,906 | 620,029 | 265,117 | 3,390,919 | 4,276,065 | 4,698,971 |
| Year | Commercial Dairy Farm | Emergent Dairy Farm | Commercial Beef | Emergent Beef | Extensive/Traditional | Total |
|---|---|---|---|---|---|---|
| 1994 | 4.2 | 10.1 | 22.4 | 7.8 | 120.4 | 165.0 |
| 1995 | 4.6 | 11.2 | 20.6 | 7.1 | 109.9 | 153.4 |
| 1996 | 4.4 | 10.4 | 18.9 | 6.5 | 100.5 | 140.7 |
| 1997 | 3.3 | 7.8 | 24.5 | 8.3 | 129.5 | 173.5 |
| 1998 | 3.5 | 8.1 | 25.0 | 8.4 | 131.6 | 176.6 |
| 1999 | 3.8 | 8.7 | 26.5 | 8.8 | 139.0 | 186.8 |
| 2000 | 4.5 | 10.4 | 23.4 | 7.7 | 122.3 | 168.3 |
| 2001 | 4.7 | 10.8 | 24.2 | 7.9 | 125.8 | 173.5 |
| 2002 | 5.1 | 11.6 | 22.3 | 7.2 | 115.4 | 161.7 |
| 2003 | 5.2 | 11.6 | 21.0 | 6.8 | 108.1 | 152.6 |
| 2004 | 5.0 | 11.2 | 20.9 | 6.7 | 106.9 | 150.6 |
| 2005 | 5.3 | 11.6 | 23.1 | 7.3 | 117.9 | 165.3 |
| 2006 | 5.1 | 11.2 | 25.7 | 8.1 | 130.5 | 180.6 |
| 2007 | 5.4 | 11.6 | 22.2 | 6.9 | 112.3 | 158.4 |
| 2008 | 5.5 | 11.8 | 20.7 | 6.5 | 104.5 | 149.0 |
| 2009 | 5.7 | 12.0 | 28.1 | 8.7 | 141.2 | 195.7 |
| 2010 | 5.8 | 12.3 | 28.7 | 8.9 | 143.8 | 199.5 |
| 2011 | 5.9 | 12.3 | 23.0 | 7.1 | 114.9 | 163.1 |
| 2012 | 5.9 | 12.3 | 37.3 | 11.5 | 185.3 | 252.2 |
| 2013 | 6.0 | 12.3 | 38.4 | 11.8 | 190.3 | 258.7 |
| 2014 | 6.1 | 12.5 | 39.0 | 12.0 | 192.6 | 262.2 |
| 2015 | 5.6 | 11.5 | 37.9 | 11.6 | 186.5 | 253.1 |
| 2016 | 5.6 | 11.3 | 36.5 | 11.1 | 178.6 | 243.1 |
| 2017 | 5.9 | 11.9 | 36.0 | 11.0 | 175.5 | 240.2 |
| 2018 | 5.8 | 11.6 | 35.7 | 10.9 | 173.6 | 237.5 |
| 2019 | 5.9 | 11.6 | 35.6 | 10.8 | 172.3 | 236.3 |
| 2020 | 6.0 | 11.7 | 36.1 | 10.9 | 174.1 | 239.0 |
| 2021 | 6.1 | 11.8 | 36.6 | 11.1 | 176.2 | 241.9 |
| 2022 | 6.2 | 11.9 | 37.0 | 11.2 | 178.3 | 300.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odubote, I.K.; Mumba, C.; Wassie, S.; Bateki, C.A.; Wilkes, A. Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach. Methane 2025, 4, 30. https://doi.org/10.3390/methane4040030
Odubote IK, Mumba C, Wassie S, Bateki CA, Wilkes A. Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach. Methane. 2025; 4(4):30. https://doi.org/10.3390/methane4040030
Chicago/Turabian StyleOdubote, Idowu Kolawole, Chisoni Mumba, Shimels Wassie, Christian Adjogo Bateki, and Andreas Wilkes. 2025. "Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach" Methane 4, no. 4: 30. https://doi.org/10.3390/methane4040030
APA StyleOdubote, I. K., Mumba, C., Wassie, S., Bateki, C. A., & Wilkes, A. (2025). Enteric Methane Emission Estimates for Cattle in Zambia from 1994 to 2022 Using the IPCC Tier 2 Approach. Methane, 4(4), 30. https://doi.org/10.3390/methane4040030

