Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,280)

Search Parameters:
Keywords = metastasis promoter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 619 KiB  
Review
Novel Strategy to Prevent Cancer Metastasis with Metastasis-Regulating miRNAs Found in Extracellular Vesicles Secreted from Stemness-High Cells
by Mikako Saito and Hideaki Matsuoka
Cancers 2025, 17(17), 2734; https://doi.org/10.3390/cancers17172734 - 22 Aug 2025
Abstract
Preventing metastasis and recurrence after cancer treatment remains a challenge. Extracellular vesicles (EVs) have long garnered attention as tools for vaccination. To develop high-performance vaccines, there has been an ongoing search for high-performance miRNAs and high-performance EVs as resources. In recent years, stemness-high [...] Read more.
Preventing metastasis and recurrence after cancer treatment remains a challenge. Extracellular vesicles (EVs) have long garnered attention as tools for vaccination. To develop high-performance vaccines, there has been an ongoing search for high-performance miRNAs and high-performance EVs as resources. In recent years, stemness-high cells have been reported to represent valuable resources for EVs, offering a level of performance not previously achieved. A differential miRNA analysis was performed between metastasis-suppressive EVs and metastasis-promoting EVs to predict miRNAs specific to metastasis regulation. These newly identified miRNAs were expected to show good performance in metastasis suppression. It is noticeable that these miRNAs seem to be categorized differently from the cancer-associated miRNAs that have been extensively studied to date. In order to further develop vaccine therapy, it is widely recognized that continuing to explore methods for further enhancing the metastasis-suppressive potential of EVs and mRNAs is a fundamental and urgent task. Significant progress has been made through the discovery of stemness-high cells as new EV resources and the results of miRNA exploration focused on metastasis regulation. This review aims to address current challenges by presenting relevant, up-to-date information and providing insights that may lead to new discoveries. Full article
Show Figures

Figure 1

15 pages, 1516 KiB  
Article
Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis
by Rumiko Saito, Yasuyuki Shigematsu, Mahmut Amori, Gulanbar Amori, Manabu Takamatsu, Kenji Nishida, Hiroaki Kanda, Yu Takahashi, Yuji Miura, Kengo Takeuchi, Shunji Takahashi and Kentaro Inamura
Cancers 2025, 17(17), 2733; https://doi.org/10.3390/cancers17172733 - 22 Aug 2025
Abstract
Background: Enterotoxigenic Bacteroides fragilis (ETBF) carries the bft toxin gene, which influences the host immune response and inflammatory pathways and promotes colorectal cancer (CRC). This study investigated the potential role of ETBF in CRC liver metastasis. Methods: We reviewed the records [...] Read more.
Background: Enterotoxigenic Bacteroides fragilis (ETBF) carries the bft toxin gene, which influences the host immune response and inflammatory pathways and promotes colorectal cancer (CRC). This study investigated the potential role of ETBF in CRC liver metastasis. Methods: We reviewed the records of 226 consecutive patients who underwent curative-intent (R0) resection of CRC liver metastases. ETBF DNA in fresh-frozen metastasis specimens was quantified using droplet digital PCR (ddPCR). Patients were grouped into very-low (≤80%; N = 178), low (80–90%; N = 24), and high (>90%; N = 24) ETBF-DNA groups. Three tissue cores per specimen were stained for CD8, CD4, CD20, FOXP3, CD68, and CD163, and immune-cell densities were measured digitally (cells/mm2). Results: ETBF DNA was detected in 219 of 226 lesions (96.9%). The densities of cytotoxic CD8+ T-cells, effector CD4+ T-cells, CD20+ B-cells, and CD163+ macrophages did not differ significantly by ETBF-DNA group (Ptrend all > 0.12). FOXP3+ regulatory T-cells (Tregs) decreased (Ptrend = 0.010), and CD68+ macrophages increased (Ptrend = 0.020) as ETBF-DNA levels increased. ETBF-DNA levels in CRC liver metastases were not associated with disease-free survival or overall survival or serum C-reactive protein levels. Conclusions: ETBF was present in almost all CRC liver metastases. Higher ETBF levels were associated with a tumor-immune microenvironment enriched in CD68+ macrophages and deficient in FOXP3+ Tregs, suggesting that ETBF facilitates immune evasion without loss of effector lymphocytes. Although ETBF-DNA levels did not predict survival in this single-center cohort, the potential role of ETBF in immune remodeling and as a candidate biomarker and therapeutic target in metastatic CRC warrants further study. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

26 pages, 1606 KiB  
Review
Extracellular Vesicles Derived from Breast Cancer Cells: Emerging Biomarkers of Tumor Progression and Metastasis
by Sona Bernatova, Andreas Nicodemou, Michaela Cehakova, Lubos Danisovic and Martin Bohac
Biomolecules 2025, 15(8), 1195; https://doi.org/10.3390/biom15081195 - 19 Aug 2025
Viewed by 130
Abstract
Breast cancer (BC) remains one of the most prevalent and life-threatening malignancies worldwide, marked by significant heterogeneity and complex mechanisms of progression. Despite major advances in understanding its molecular and cellular basis, the processes driving tumor progression and metastasis continue to challenge effective [...] Read more.
Breast cancer (BC) remains one of the most prevalent and life-threatening malignancies worldwide, marked by significant heterogeneity and complex mechanisms of progression. Despite major advances in understanding its molecular and cellular basis, the processes driving tumor progression and metastasis continue to challenge effective treatment. Among the emerging research areas, extracellular vesicles (EVs) have gained considerable attention for their key role in intercellular communication and their contribution to cancer biology. In BC, tumor cell-derived EVs are implicated in multiple processes that promote disease progression, including tumor growth, remodeling of the tumor microenvironment, and facilitation of metastasis. By transferring oncogenic signals to recipient cells, EVs critically shape the metastatic niche and support the spread of cancer cells to distant organs. Recent studies highlight the diverse functions of BC-derived EVs in modulating immune responses, inducing angiogenesis, and enhancing cancer cell invasiveness. This review explores the role of BC-derived EVs in tumor progression and metastasis. We discuss their molecular composition, mechanisms of action, and impact on the tumor microenvironment, aiming to provide insights into their role in BC pathophysiology and discuss potential clinical applications. A deeper understanding of the complex interplay between EVs and cancer progression may pave the way for innovative strategies to combat BC and improve patient outcomes. Full article
Show Figures

Figure 1

16 pages, 3156 KiB  
Article
Tumor-Specific EphA2 Receptor Tyrosine Kinase Inhibits Anti-Tumor Immunity by Recruiting Suppressive Myeloid Populations in Murine Models of Non-Small Cell Lung Cancer
by Eileen Shiuan, Shan Wang and Dana M. Brantley-Sieders
Cancers 2025, 17(16), 2693; https://doi.org/10.3390/cancers17162693 - 19 Aug 2025
Viewed by 188
Abstract
Background: EphA2 is a receptor tyrosine kinase that contributes to tumor growth and metastasis and has been identified as a viable target for many solid cancers. Investigating EphA2’s impact on the host immune system may advance our understanding of tumor immune evasion and [...] Read more.
Background: EphA2 is a receptor tyrosine kinase that contributes to tumor growth and metastasis and has been identified as a viable target for many solid cancers. Investigating EphA2’s impact on the host immune system may advance our understanding of tumor immune evasion and the consequences of targeting EphA2 on the tumor microenvironment. Methods: Here, we examine how tumor-specific EphA2 affects the activation and infiltration of immune cell populations and the cytokine and chemokine milieu in murine models of non-small cell lung cancer (NSCLC). Results: Although EphA2 overexpression in NSCLC cells did not display proliferative advantage in vitro, it conferred a growth advantage in vivo. Analysis of lung tumor infiltrates via flow cytometry revealed decreased natural killer and T cells in the EphA2-overexpressing tumors, as well as increased myeloid populations, including tumor-associated macrophages (TAMs). T-cell activation, particularly in CD8+ T cells, was decreased, while PD-1 expression was increased. These changes were accompanied by increased monocyte-attracting chemokines, specifically CCL2, CCL7, CCL8, and CCL12, and immunosuppressive proteins TGF-β and arginase 1 in RNA expression analyses. Conclusions: Our studies suggest EphA2 on tumor cells recruits monocytes and promotes their differentiation into TAMs that likely inhibit the activation and infiltration of cytotoxic lymphocytes, promoting tumor immune escape. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

16 pages, 1040 KiB  
Article
PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates
by Evangelia Ntikoudi, Thomas Karagkounis, Konstantinos S. Mylonas, Stylianos Kykalos, Dimitrios Schizas, Ioannis N. Vamvakaris, Ekaterini Politi, Michail V. Karamouzis and Stamatios Theocharis
Med. Sci. 2025, 13(3), 140; https://doi.org/10.3390/medsci13030140 - 17 Aug 2025
Viewed by 233
Abstract
Background/Objectives: PROX1 (prospero homeobox 1) is a transcription factor involved in lymphangiogenesis and cellular differentiation. Its role in cancer biology appears to be highly context-dependent, with it exhibiting both tumor-promoting and -suppressive functions across various malignancies. Nonetheless, the clinical significance of PROX1 expression [...] Read more.
Background/Objectives: PROX1 (prospero homeobox 1) is a transcription factor involved in lymphangiogenesis and cellular differentiation. Its role in cancer biology appears to be highly context-dependent, with it exhibiting both tumor-promoting and -suppressive functions across various malignancies. Nonetheless, the clinical significance of PROX1 expression in non-small cell lung cancer (NSCLC) remains poorly elucidated. The objective of this study is to evaluate the immunohistochemical expression of PROX1 in NSCLC, specifically in the adenocarcinoma and squamous cell carcinoma subtypes, and to assess its correlation with clinicopathologic features and overall survival (OS). Methods: This retrospective study included surgically resected specimens from 121 patients with histologically confirmed NSCLC. PROX1 expression was assessed via immunohistochemistry on formalin-fixed, paraffin-embedded specimens. Staining intensity (graded 0– National and Kapodistrian University of Athens 3) and the percentage of positive tumor cells were recorded. Correlations with histological subtype, tumor characteristics, and OS were analyzed using chi-square tests, one-way ANOVA, and Kaplan–Meier survival analysis with log-rank testing. Results: Low PROX1 intensity (level 1) was significantly associated with P63 positivity (p = 0.028), while high PROX1 intensity (level 3) correlated with nodal metastasis to station 3 (S3+) (p = 0.025). Additionally, alveolar-pattern adenocarcinomas exhibited intermediate PROX1 expression (26–50%) (p = 0.010). Although PROX1 positivity did not differ among mucinous and non-mucinous adenocarcinomas (p = 0.152), its distribution across defined expression subgroups was statistically significant (p = 0.002). Tumors with low PROX1 expression (0–24%) were associated with a larger maximum tumor diameter (p = 0.026). PROX1 expression was not independently associated with OS (p > 0.05). Factors significantly associated with improved survival included an age < 50 years, female sex, the absence of necrosis, fewer than 10 positive lymph nodes, a lymph node ratio < 0.5, and the absence of extensive nodal involvement in stations 5, 10, 11, and 12. Conclusions: Although PROX1 expression is variably associated with specific histologic subtypes and nodal metastases in NSCLC, it does not independently predict overall survival. Its expression patterns suggest a potential role in tumor differentiation and lymphatic spread. Further mechanistic and immunologic studies are warranted to elucidate the functional significance of PROX1 in lung cancer biology. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

34 pages, 3045 KiB  
Review
Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target
by Noah Brandl, Rebecca Seitz, Noah Sendtner, Martina Müller and Karsten Gülow
Antioxidants 2025, 14(8), 1002; https://doi.org/10.3390/antiox14081002 - 16 Aug 2025
Viewed by 498
Abstract
Reactive oxygen species (ROS) act as double-edged swords in cancer biology—facilitating tumor growth, survival, and metastasis at moderate levels while inducing oxidative damage and cell death when exceeding cellular buffering capacity. To survive under chronic oxidative stress, cancer cells rely on robust antioxidant [...] Read more.
Reactive oxygen species (ROS) act as double-edged swords in cancer biology—facilitating tumor growth, survival, and metastasis at moderate levels while inducing oxidative damage and cell death when exceeding cellular buffering capacity. To survive under chronic oxidative stress, cancer cells rely on robust antioxidant systems such as the glutathione (GSH) and thioredoxin (Trx), and superoxide dismutases (SODs). These systems maintain redox homeostasis and sustain ROS-sensitive signaling pathways including MAPK/ERK, PI3K/Akt/mTOR, NF-κB, STAT3, and HIF-1α. Targeting the antioxidant defense mechanisms of cancer cells has emerged as a promising therapeutic strategy. Inhibiting the glutathione system induces ferroptosis, a non-apoptotic form of cell death driven by lipid peroxidation, with compounds like withaferin A and altretamine showing strong preclinical activity. Disruption of the Trx system by agents such as PX-12 and dimethyl fumarate (DMF) impairs redox-sensitive survival signaling. Trx reductase inhibition by auranofin or mitomycin C further destabilizes redox balance, promoting mitochondrial dysfunction and apoptosis. SOD1 inhibitors, including ATN-224 and disulfiram, selectively enhance oxidative stress in tumor cells and are currently being tested in clinical trials. Mounting preclinical and clinical evidence supports redox modulation as a cancer-selective vulnerability. Pharmacologically tipping the redox balance beyond the threshold of cellular tolerance offers a rational and potentially powerful approach to eliminate malignant cells while sparing healthy tissue, highlighting novel strategies for targeted cancer therapy at the interface of redox biology and oncology. Full article
Show Figures

Figure 1

37 pages, 2836 KiB  
Review
Tensins in Cancer: Integration of Their Domain Functions, Context-Dependent Regulation and Biomarker Potential
by Junyi Zheng, Hualong Zhao, Lisha Wei, Jinjun Jiang and Wenlong Xia
Biology 2025, 14(8), 1053; https://doi.org/10.3390/biology14081053 - 14 Aug 2025
Viewed by 316
Abstract
Tensins (TNS1–4) are pivotal molecular scaffolds bridging the actin cytoskeleton to integrin-based adhesions, orchestrating signal transduction and governing cellular processes in cancer. Structurally, the N-terminal actin-binding domain (ABD) in TNS1–3 enables cytoskeletal regulation and interactions with regulators like the Rho GAP DLC1, while [...] Read more.
Tensins (TNS1–4) are pivotal molecular scaffolds bridging the actin cytoskeleton to integrin-based adhesions, orchestrating signal transduction and governing cellular processes in cancer. Structurally, the N-terminal actin-binding domain (ABD) in TNS1–3 enables cytoskeletal regulation and interactions with regulators like the Rho GAP DLC1, while ABD-deficient TNS4 functions as a focal adhesion signal amplifier. Functionally, TNS1–3 exhibit context-dependent duality as tumor promoters or suppressors, dictated by tissue-specific microenvironments and signaling crosstalk. In contrast, TNS4 acts predominantly as an oncoprotein across carcinomas by stabilizing epidermal growth factor receptor (EGFR), driving epithelial–mesenchymal transition and invasion, and sustaining proliferation. Clinically, tensin dysregulation correlates with metastasis and poor prognosis: TNS2 serves as a diagnostic biomarker for gastrointestinal stromal tumors, aberrant TNS1/TNS3 expression predicts metastasis risk, and TNS4 is recurrently embedded in multi-gene prognostic signatures. This review synthesizes their structural basis, regulatory mechanisms, and clinical relevance, highlighting context-dependent switches and TNS4’s therapeutic potential. Full article
Show Figures

Graphical abstract

16 pages, 1118 KiB  
Review
The Role of Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1) in Cancer Stem Cell Signaling
by Matthew S. Jung, Won-Young Choi, Wenjing Zhang, Francisco N. Barrera and Rachel S. Perkins
Int. J. Mol. Sci. 2025, 26(16), 7828; https://doi.org/10.3390/ijms26167828 - 13 Aug 2025
Viewed by 377
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a key regulator of cancer stem cell (CSC) biology and signaling. In CSCs, ROR1 acts as a receptor or co-receptor, interacting with non-canonical WNT ligands, and forming complexes with proteins like CD19 and HER2, to [...] Read more.
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a key regulator of cancer stem cell (CSC) biology and signaling. In CSCs, ROR1 acts as a receptor or co-receptor, interacting with non-canonical WNT ligands, and forming complexes with proteins like CD19 and HER2, to activate diverse downstream signaling pathways. ROR1 signaling in CSCs promotes proliferation, maintains stemness, and enhances migration, invasion, and the epithelial-to-mesenchymal transition (EMT). While minimally expressed after embryogenesis, ROR1 is aberrantly upregulated in numerous cancers, including ovarian, breast, pancreatic, and hematologic malignancies. ROR1 overexpression drives tumor progression, resistance to chemotherapies, disease recurrence, and ultimately metastasis. This expression pattern positions ROR1 as a promising target for CSC-specific therapies. High ROR1 expression is consistently linked to aggressive disease and poor patient outcomes. Here, we review ROR1′s role in CSCs and highlight the complex signaling that is observed in the CSC population. Further, we evaluate the gaps in the current understanding of ROR1 signaling in CSCs and describe how ROR1 regulates the associated signaling pathways. Finally, we provide an up-to-date summary of the promising therapeutic strategies targeting ROR1 that overcome conventional cancer treatment limitations. This review highlights the role of ROR1 as a critical, functional driver of CSCs and adverse patient outcomes across various malignancies. Full article
(This article belongs to the Special Issue New Advances in Cancer Stem Cell Research: 2nd Edition)
Show Figures

Figure 1

19 pages, 2367 KiB  
Article
Integrative High-Throughput RNAi Screening Identifies BRSK1, STK32C and STK40 as Novel Activators of YAP/TAZ
by Mandeep K. Gill, Siyuan Song, Tania Christova and Liliana Attisano
Int. J. Mol. Sci. 2025, 26(16), 7810; https://doi.org/10.3390/ijms26167810 - 13 Aug 2025
Viewed by 272
Abstract
Disruption of the Hippo pathway leads to activation of the YAP/TAZ transcriptional program which promotes tumor initiation, progression and metastasis in diverse cancers. Aggressive triple-negative breast cancers (TNBC) lack an effective therapy; thus, inactivating YAP and TAZ has emerged as an attractive approach [...] Read more.
Disruption of the Hippo pathway leads to activation of the YAP/TAZ transcriptional program which promotes tumor initiation, progression and metastasis in diverse cancers. Aggressive triple-negative breast cancers (TNBC) lack an effective therapy; thus, inactivating YAP and TAZ has emerged as an attractive approach and a new treatment modality. Thus, we performed two complementary high-throughput RNAi-based kinome screens to uncover cancer-associated activators of YAP/TAZ in two TNBC cell lines, MDA-MB231 and MDA-MB468. Integrated analysis that combined a YAP/TAZ localization screen with a TEAD-luciferase reporter screen, identified novel regulators including BRSK1, STK32C and STK40. The AMPK family members NUAKs, MARKs and SIKs are known to inhibit the Hippo kinase cassette; here, we uncover BRSK1, another AMPK family member as a regulator of YAP/TAZ. We also reveal that two poorly studied kinases, STK32C, a member of the AGC family, and STK40, a pseudokinase, can also inhibit the activity of YAP/TAZ. Thus, our studies expand the repertoire of known AMPK family members and reveal two new kinases that modulate the Hippo pathway and may play a role in YAP/TAZ driven breast cancers. Further analysis of other screen hits may similarly uncover new regulators that could be targeted for therapeutic interventions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 3119 KiB  
Article
Inorganic Polyphosphate Triggers NLRP3 Inflammasome and Promotes the Epithelial-to-Mesenchymal Transition and Migration of Colorectal Cancer Cells Through TRPM8 Receptor
by Valentina Arrè, Maria Principia Scavo, Rossella Donghia, Francesco Dituri, Camilla Mandorino, Marco Cassotta, Anna Ancona, Francesco Balestra, Leonardo Vincenti, Fabrizio Aquilino, Giuseppe Pettinato, Gianluigi Giannelli and Roberto Negro
Int. J. Mol. Sci. 2025, 26(16), 7743; https://doi.org/10.3390/ijms26167743 - 11 Aug 2025
Viewed by 323
Abstract
Inorganic polyphosphate (iPolyP) is a ubiquitous molecule composed of a variable number of orthophosphate units. Recent studies have highlighted its involvement in colorectal cancer (CRC) cell proliferation. However, further investigations are needed to elucidate its role in CRC cell progression and migration, as [...] Read more.
Inorganic polyphosphate (iPolyP) is a ubiquitous molecule composed of a variable number of orthophosphate units. Recent studies have highlighted its involvement in colorectal cancer (CRC) cell proliferation. However, further investigations are needed to elucidate its role in CRC cell progression and migration, as well as its influence on the tumor microenvironment. This study focuses on the inorganic polyphosphate (iPolyP)/transient receptor potential cation channel subfamily M member 8 (TRPM8) axis and its impact on CRC progression. To investigate these issues, western blotting, fixed and live cells immunofluorescence, 2D and 3D cell culture on CRC-patient derived tissues, ELISA, and wound healing assays were performed. Our results show that inorganic polyphosphate induces the expression of epithelial-to-mesenchymal transition (EMT) markers in CRC cells. Furthermore, the iPolyP/TRPM8 axis indirectly promotes tumor growth through activation of the Nucleotide-binding oligomerization domain, Leucine-rich Repeat and Pyrin domain-containing protein 3 (NLRP3) inflammasome in immune cells, leading to increased levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the tumor microenvironment (TME), thereby advancing CRC. These findings suggest that targeting the iPolyP/TRPM8 pathway may be a promising strategy to inhibit CRC progression and metastasis. Full article
(This article belongs to the Special Issue Colorectal Cancer: Molecular and Cellular Basis)
Show Figures

Figure 1

25 pages, 1677 KiB  
Review
The Multifaceted Role of Growth Differentiation Factor 15 (GDF15): A Narrative Review from Cancer Cachexia to Target Therapy
by Daria Maria Filippini, Donatella Romaniello, Francesca Carosi, Laura Fabbri, Andrea Carlini, Raffaele Giusti, Massimo Di Maio, Salvatore Alfieri, Mattia Lauriola, Maria Abbondanza Pantaleo, Lorena Arribas, Marc Oliva, Paolo Bossi and Laura Deborah Locati
Biomedicines 2025, 13(8), 1931; https://doi.org/10.3390/biomedicines13081931 - 8 Aug 2025
Viewed by 674
Abstract
Background: Growth Differentiation Factor 15 (GDF15) has emerged as a key biomarker and therapeutic target in oncology, with roles extending beyond cancer cachexia. Elevated GDF15 levels correlate with poor prognosis across several solid tumors, including colorectal, gastric, pancreatic, breast, lung, prostate, and head [...] Read more.
Background: Growth Differentiation Factor 15 (GDF15) has emerged as a key biomarker and therapeutic target in oncology, with roles extending beyond cancer cachexia. Elevated GDF15 levels correlate with poor prognosis across several solid tumors, including colorectal, gastric, pancreatic, breast, lung, prostate, and head and neck cancers. GDF15 modulates tumor progression through PI3K/AKT, MAPK/ERK, and SMAD2/3 signaling, thereby promoting epithelial-to-mesenchymal transition, metastasis, immune evasion, and chemoresistance via Nrf2 stabilization and oxidative stress regulation. Methods: We performed a narrative review of the literature focusing on the role of GDF15 in solid tumors, with a particular emphasis on head and neck cancers. Results: In head and neck squamous cell carcinoma (HNSCC), GDF15 overexpression is linked to aggressive phenotypes, radioresistance, poor response to induction chemotherapy, and failure of immune checkpoint inhibitors (ICIs). Similar associations are observed in colorectal, pancreatic, and prostate cancer, where GDF15 contributes to metastasis and therapy resistance. Targeting the GDF15-GFRAL axis appears therapeutically promising: the monoclonal antibody ponsegromab improved cachexia-related outcomes in the PROACC-1 trial, while visugromab combined with nivolumab enhanced immune response in ICI-refractory tumors. Conclusions: Further investigation is warranted to delineate the role of GDF15 across malignancies, refine patient selection, and evaluate combinatorial approaches with existing treatments. Full article
(This article belongs to the Special Issue Head and Neck Tumors, 4th Edition)
Show Figures

Figure 1

14 pages, 2763 KiB  
Review
Molecular Crosstalk Between RUNX2 and HIF-1α in Osteosarcoma: Implications for Angiogenesis, Metastasis, and Therapy Resistance
by Anuja Gajanan Magar, Vivek Kumar Morya and Kyu-Cheol Noh
Int. J. Mol. Sci. 2025, 26(15), 7642; https://doi.org/10.3390/ijms26157642 - 7 Aug 2025
Viewed by 364
Abstract
Runt-related transcription factor-2 (RUNX2) is an integral player in osteogenesis and is highly expressed in osteosarcoma. Emerging evidence suggests that aberrant RUNX2 expression is a key factor in osteosarcoma oncogenesis. Patients with advanced stages of osteosarcoma overexpressing RUNX2 are more likely to have [...] Read more.
Runt-related transcription factor-2 (RUNX2) is an integral player in osteogenesis and is highly expressed in osteosarcoma. Emerging evidence suggests that aberrant RUNX2 expression is a key factor in osteosarcoma oncogenesis. Patients with advanced stages of osteosarcoma overexpressing RUNX2 are more likely to have high tumour grades, metastasis, and lower overall or progression-free survival rates. Thus, RUNX2 is considered a potential candidate for targeted therapy of osteosarcoma. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor involved in the regulation of cellular reprogramming in response to hypoxia. Overexpression of HIF-1α decreases overall survival, disease-free survival, and chemotherapy response and promotes tumour stage and metastasis. Hence, our review focused on highlighting the intricate network between RUNX2 and HIF-1α, which support each other or may work synergistically to develop resistance to therapy and osteosarcoma progression. An in-depth understanding of these two important tumour progression markers is required. Therefore, this review focuses on the role of RUNX2 and HIF-1α in the alteration of the tumour microenvironment, which further promotes angiogenesis, metastasis, and resistance to therapy in osteosarcoma. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Graphical abstract

28 pages, 1748 KiB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 - 7 Aug 2025
Viewed by 528
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

27 pages, 2559 KiB  
Review
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
by Debalina Bose, Adetayo Olorunlana, Rania Abdel-Latif, Ademola C. Famurewa and Eman M. Othman
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Viewed by 1088
Abstract
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty [...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge. Full article
Show Figures

Graphical abstract

28 pages, 1675 KiB  
Review
Mechanism of RCD and the Role of Different Death Signaling Pathways in Cancer
by Jianming Zhou, Ruotong Huang, Maidinai Aimaiti, Qingyu Zhou, Xiang Wu, Jiajun Zhu, Xiangyi Ma, Ke Qian, Qi Zhou, Lianlong Hu, Xiaoyi Yang, Yiting Tang, Yong Lin and Shuying Chen
Biomedicines 2025, 13(8), 1880; https://doi.org/10.3390/biomedicines13081880 - 2 Aug 2025
Viewed by 497
Abstract
Cancer remains a significant global health challenge, with China being particularly affected because of its large population. Regulated cell death (RCD) mechanisms, including autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, play complex roles in cancer development and progression. This review explores the dual roles [...] Read more.
Cancer remains a significant global health challenge, with China being particularly affected because of its large population. Regulated cell death (RCD) mechanisms, including autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, play complex roles in cancer development and progression. This review explores the dual roles of autophagy and apoptosis in cancer, highlighting their tumor-suppressive and tumor-promoting functions. Autophagy can maintain genomic stability, induce apoptosis, and suppress protumor inflammation, but it may also support tumor cell survival and drug resistance. Apoptosis, while primarily tumor-suppressive, can paradoxically promote cancer progression in certain contexts. Other RCD mechanisms, such as necroptosis, pyroptosis, and ferroptosis, also exhibit dual roles in cancer, influencing tumor growth, metastasis, and immune responses. Understanding these mechanisms is crucial for developing targeted cancer therapies. This review provides insights into the intricate interplay between RCD mechanisms and cancer, emphasizing the need for context-dependent therapeutic strategies. Full article
(This article belongs to the Special Issue Autophagy, Apoptosis and Cancer: 2025 Update)
Show Figures

Figure 1

Back to TopTop