Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = metal-organic chemical vapor deposition (MOCVD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2710 KiB  
Review
Recent Advances in Chemical Vapor Deposition of Hexagonal Boron Nitride on Insulating Substrates
by Hua Xu, Kai Li, Zuoquan Tan, Jiaqi Jia, Le Wang and Shanshan Chen
Nanomaterials 2025, 15(14), 1059; https://doi.org/10.3390/nano15141059 - 8 Jul 2025
Viewed by 622
Abstract
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including [...] Read more.
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including metal–organic CVD (MOCVD), low-pressure CVD (LPCVD), atmospheric-pressure CVD (APCVD), and plasma-enhanced CVD (PECVD). Key challenges, including precursor selection, high-temperature processing, achieving single-crystalline films, and maintaining phase purity, are critically analyzed. Special emphasis is placed on comparative performance metrics across different growth methodologies. Furthermore, crucial research directions for future development in this field are outlined. This review aims to serve as a reference for advancing h-BN synthesis toward practical applications in next-generation electronic and optoelectronic devices. Full article
Show Figures

Figure 1

12 pages, 2688 KiB  
Communication
Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD
by Xiaochen Ma, Yuanheng Li, Xuan Liu, Deqiang Chen, Yong Le and Biao Zhang
Materials 2025, 18(13), 3073; https://doi.org/10.3390/ma18133073 - 28 Jun 2025
Viewed by 431
Abstract
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O [...] Read more.
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O3 (0001) by metal–organic chemical vapor deposition (MOCVD). The effects of W doping on the structural, morphology, and photoelectrical properties of the obtained films were studied. The results showed that all W-doped films were n-type semiconductors. The XRD measurement result exhibited that the increase in the W doping concentration leads to the changes in the preferred growth crystal plane of the films from δ-Ta2O5 (101¯1) to (0001). The 1.5% W-doped film possessed the best crystal quality and conductivity. The Hall measurement showed that the minimum resistivity of the film was 2.68 × 104 Ω∙cm, and the maximum carrier concentration was 7.39 × 1014 cm3. With the increase in the W concentration, the surface roughness of the film increases, while the optical bandgap decreases. The optical band gap of the 1.5% W-doped film was 3.92 eV. The W doping mechanisms were discussed. Full article
Show Figures

Figure 1

13 pages, 4511 KiB  
Article
Crystallographic Engineering of CrN Buffer Layers for GaN Thin Film Epitaxy
by Kyu-Yeon Shim, Seongho Kang, Min-Joo Ahn, Yukyeong Cha, Eojin-Gyere Ham, Dohoon Kim and Dongjin Byun
Materials 2025, 18(8), 1817; https://doi.org/10.3390/ma18081817 - 16 Apr 2025
Viewed by 539
Abstract
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this [...] Read more.
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this study explored the crystallographic structures, properties, and influences of chromium nitride (CrN) buffer layers sputtered under various conditions. The crystallographic orientation of CrN played a crucial role in determining the GaN film quality. For example, even when the crystallinity of the CrN (111) plane was relatively low, a single-phase CrN (111) buffer layer could provide a more favorable template for GaN epitaxy compared to cases where both the CrN (111) and Cr2N (110) phases coexisted. The significance of a low-temperature (LT) GaN nucleation layer deposited onto the CrN buffer layers was assessed using atomic force microscopy and contact angle measurements. The X-ray phi scan results confirmed the six-fold symmetry of the grown GaN, further emphasizing the contribution of an LT-GaN nucleation layer. These findings offer insights into the underlying mechanisms governing GaN thin film growth and provide guidance for the optimization of the buffer layer conditions to achieve high-quality GaN epitaxial films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 7712 KiB  
Article
Impact of KOH Wet Treatment on the Electrical and Optical Characteristics of GaN-Based Red μLEDs
by Shuhan Zhang, Yun Zhang, Hongyu Qin, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(4), 288; https://doi.org/10.3390/cryst15040288 - 22 Mar 2025
Viewed by 465
Abstract
Micro-size light-emitting diodes (μLEDs) are high-brightness, low-power optoelectronic devices with significant potential in display technology, lighting, and biomedical applications. AlGaInP-based red LEDs experience severe size-dependent effects when scaled to the micron level, and addressing the fabrication challenges of GaN-based red μLED arrays is [...] Read more.
Micro-size light-emitting diodes (μLEDs) are high-brightness, low-power optoelectronic devices with significant potential in display technology, lighting, and biomedical applications. AlGaInP-based red LEDs experience severe size-dependent effects when scaled to the micron level, and addressing the fabrication challenges of GaN-based red μLED arrays is crucial for achieving homogeneous integration. This study investigates the employment of KOH wet treatments to alleviate efficiency degradation caused by sidewall leakage currents. GaN-based red μLED arrays with pixel sizes ranging from 5 × 5 µm2 to 20 × 20 µm2 were grown using metal-organic chemical vapor deposition (MOCVD), and then fabricated via rapid thermal annealing, mesa etching, sidewall wet treatment, electrode deposition, sidewall passivation, chemical-mechanical polishing, and via processes. The arrays, with pixel densities ranging from 668 PPI (Pixel Per Inch) to 1336 PPI, consist of 10,000 to 40,000 emitting pixels, and their optoelectronic properties were systematically evaluated. The arrays with varying pixel sizes fabricated in this study were subjected to three distinct processing conditions: without KOH treatment, 3 min of KOH treatment, and 5 min of KOH treatment. Electrical characterization reveals that the 5-min KOH treatment significantly reduces leakage current, enhancing the electrical performance, as compared to the samples without KOH treatment or 3-min treatment. In terms of optical properties, while the arrays without any KOH treatment failed to emit light, the ones with 3- and 5-min KOH treatment exhibit excellent optical uniformity and negligible blue shift. Most arrays treated for 5 min demonstrate superior light output power (LOP) and optoelectronic efficiency, with the 5 µm pixel arrays exhibiting unexpectedly high performance. The results suggest that extending the KOH wet treatment time effectively mitigates sidewall defects, reduces non-radiative recombination, and enhances surface roughness, thereby minimizing optical losses. These findings provide valuable insights for optimizing the fabrication of high-performance GaN-based red μLEDs and contribute to the development of stable, high-quality small-pixel μLEDs for advanced display and lighting applications. Full article
Show Figures

Figure 1

20 pages, 15890 KiB  
Article
Development and Research of the MOCVD Cleaning Robot
by Yibo Ren and Zengwen Dong
Machines 2025, 13(3), 202; https://doi.org/10.3390/machines13030202 - 28 Feb 2025
Viewed by 740
Abstract
With the wide application of the gallium nitride (GaN) preparation method based on Metal–Organic Chemical Vapor Deposition (MOCVD), the automation of MOCVD equipment has become a research hotspot. This paper explores the automation scheme of MOCVD reaction chamber cleaning to improve productivity and [...] Read more.
With the wide application of the gallium nitride (GaN) preparation method based on Metal–Organic Chemical Vapor Deposition (MOCVD), the automation of MOCVD equipment has become a research hotspot. This paper explores the automation scheme of MOCVD reaction chamber cleaning to improve productivity and reduce labor costs. Firstly, this paper establishes the kinematic solution model of a MOCVD cleaning robot and designs the cleaning robot path planning control algorithm. Considering the error between the initial position of the robot end-effector and the desired initial position in practical applications, this paper further designs a fault-tolerant motion planning algorithm for the initial position error. The simulation results show that the method can effectively reduce the initial position error and make it converge exponentially to zero. Finally, this paper builds the robot control system of the cleaning system and verifies the cleaning effect through tests. The test results show that the system can meet the actual use requirements and realize the reaction chamber cleaning automation goal. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

19 pages, 7308 KiB  
Article
New Insights Reached via Graded-Interfaces Modeling: How High-Power, High-Efficiency Mid-Infrared QCLs Work
by Dan Botez, Suraj Suri, Huilong Gao, Thomas Grange, Jeremy D. Kirch, Luke J. Mawst and Robert A. Marsland
Photonics 2025, 12(2), 93; https://doi.org/10.3390/photonics12020093 - 21 Jan 2025
Viewed by 1191
Abstract
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level [...] Read more.
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level QCL operation primarily involves two steps: injection into the ul level and photon-assisted diagonal transition. Furthermore, under certain conditions, a prior-stage low-energy state, extending deep into the next stage, is the ul level, thus making such devices injectionless QCLs and leading to stronger PICT action due to quicker gain recovery. Thermalization within a miniband ensures population inversion between a state therein and a state in the next miniband. Using graded-interfaces modeling, step-tapered active-region (STA) QCLs possessing PICT action have been designed for carrier-leakage suppression. A preliminary 4.6 µm emitting STA design of a metal–organic chemical-vapor deposition (MOCVD)-grown QCL led to an experimental 19.1% front-facet, peak wall-plug efficiency (WPE). Pure, diffraction-limited beam operation is obtained at 1.3 W CW power. A low-leakage 4.7 µm emitting design provides a projected 24.5% WPE value, considering MOCVD-growth, graded-interface interface-roughness (IFR) parameters, and waveguide loss (αw). The normalized leakage-current density, Jleak/Jth, is 17.5% vs. 28% for the record-WPE 4.9 µm emitting QCL. Then, when considering the IFR parameters and αw values of optimized-crystal-growth QCLs, Jleak/Jth decreases to 13.5%, and the front-facet WPE value reaches 33%, thus approaching the ~41% fundamental limit. The potential of graded-interfaces modeling to become the design tool for achieving room-temperature operation of terahertz QCLs is discussed. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Mosaic Structure of GaN Film Grown on Sapphire Substrate by AP-MOCVD: Impact of Thermal Annealing on the Tilt and Twist Angles
by J. Laifi, M. F. Hasaneen, H. Bouazizi, Fatimah Hafiz Alsahli, T. A. Lafford and A. Bchetnia
Crystals 2025, 15(1), 97; https://doi.org/10.3390/cryst15010097 - 20 Jan 2025
Viewed by 1290
Abstract
A GaN layer with a thickness of 2 µm was grown on a sapphire substrate using atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD). Subsequently, the layer was annealed under a nitrogen atmosphere at temperatures ranging from 1000 °C to 1120 °C. High-resolution X-ray [...] Read more.
A GaN layer with a thickness of 2 µm was grown on a sapphire substrate using atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD). Subsequently, the layer was annealed under a nitrogen atmosphere at temperatures ranging from 1000 °C to 1120 °C. High-resolution X-ray diffraction (HRXRD) analysis reveals the impact of thermal annealing on the mosaic structure of the GaN, specifically the tilt and twist variations in four planes: (00.2), (10.3), (10.2), and (10.1). Interestingly, the observed trends suggest a differential effect of annealing on screw and edge dislocation densities. The annealing process reduces the edge and screw dislocation density. Lower values (Dscrew = 1.2 × 108 cm−2; Dedge = 1.6 × 109 cm−2) were obtained for the sample annealed at 1050 °C. Notably, both tilt and twist angles exhibited a minimum at 1050 °C (tilt = 252 arcsecs, and twist = 558 arcsecs), indicating improved crystal quality at this specific temperature. Photoluminescence (PL) spectroscopy further complemented the structural analysis. The intensity and broadening of the yellow band (YL) in the PL spectra progressively increased with the increasing annealing temperature, suggesting the presence of additional defect states. The near band edge PL emission (3.35 and 3.41 eV) variation upon thermal annealing was correlated with the mosaic structure evolution. Full article
Show Figures

Figure 1

15 pages, 3369 KiB  
Article
Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique
by Agata Sawka
Materials 2024, 17(22), 5539; https://doi.org/10.3390/ma17225539 - 13 Nov 2024
Viewed by 777
Abstract
Lanthanum oxide (La2O3) layers are widely used in electronics, optics, and optoelectronics due to their properties. Lanthanum oxide is also used as a dopant, modifying and improving the properties of other materials in the form of layers, as well [...] Read more.
Lanthanum oxide (La2O3) layers are widely used in electronics, optics, and optoelectronics due to their properties. Lanthanum oxide is also used as a dopant, modifying and improving the properties of other materials in the form of layers, as well as having a large volume. In this work, lanthanum oxide layers were obtained using MOCVD (Metalorganic Chemical Vapor Deposition) on the inner walls of tubular substrates at 600–750 °C. The basic reactant was La(tmhd)3 (tris(2,2,6,6-tetramethyl-3,5-heptanedionato)lanthanum(III)). The evaporation temperature of La(tmhd)3 amounted to 170–200 °C. Pure argon (99.9999%) and air were used as the carrier gases. The air was also intended to remove the carbon from the synthesized layers. Tubes of quartz glass were used as the substrates. La2O3 layers were found to be growing on their inner surfaces. The value of the extended Grx/Rex2 criterion, where Gr—Grashof’s number, Re—Reynolds’ number, x—the distance from the gas inflow point, was below 0.01. The microstructure of the deposited layers of lanthanum oxide was investigated using an electron scanning microscope (SEM). Their chemical composition was analyzed via energy-dispersive X-ray (EDS) analysis. Their phase composition was tested via X-ray diffraction. The transmittance of the layers of lanthanum oxide was determined with the use of UV-Vis spectroscopy. The obtained layers of lanthanum oxide were characterized by a nanocrystalline microstructure and stable cubic structure. They also exhibited good transparency in both ultraviolet (UV) and visible (Vis) light. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

19 pages, 9100 KiB  
Article
Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
by Zhe Chuan Feng, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein and Ian Ferguson
Nanomaterials 2024, 14(21), 1769; https://doi.org/10.3390/nano14211769 - 4 Nov 2024
Viewed by 1435
Abstract
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on [...] Read more.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high) modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy (19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers in the field. Full article
Show Figures

Figure 1

15 pages, 4446 KiB  
Article
Impact of the Interruption Duration on Photoluminescence Properties of MOCVD-Grown GaAsP/InAlGaAs Quantum Well Structures
by Bin Wang, Yugang Zeng, Xuezhe Yu, Weijie Gao, Wei Chen, Haoyu Shen, Li Qin, Yongqiang Ning and Lijun Wang
Nanomaterials 2024, 14(18), 1469; https://doi.org/10.3390/nano14181469 - 10 Sep 2024
Viewed by 1342
Abstract
The growth interruption technology is introduced to the growth of GaAsP/InAlGaAs quantum well (QW) structure using metal–organic chemical vapor deposition (MOCVD). The effect of growth interruption time (GIT) on the crystalline quality and optical properties are investigated. The two distinctive emission peaks are [...] Read more.
The growth interruption technology is introduced to the growth of GaAsP/InAlGaAs quantum well (QW) structure using metal–organic chemical vapor deposition (MOCVD). The effect of growth interruption time (GIT) on the crystalline quality and optical properties are investigated. The two distinctive emission peaks are the transition recombination between the electron level of conduction band and the light and heavy hole level of valence band in the photoluminescence (PL) at room temperature. The PL peaks present a redshift and merge together with the increasing GIT, which is attributed to the QW energy level shift caused by the increase in arsenic concentrations in GaAsP QW, the diversified thickness of QW and the variations of indium components in the InAlGaAs barrier layer. The Gaussian deconvolution parameters in temperature-dependent PL (TDPL) show that the GaAsP/InAlGaAs QW with a GIT of 6 s has a 565.74 meV activation energy, enhancing the carrier confinement in QW and the PL intensity, while the 6 s-GIT GaAsP QW has the increasing interface roughness and the non-radiative centers at the InGaAsP intermediate layer, leading to a spectral broadening. The QW with 10 s-GIT exhibits a small full width at half maximum (FWHM) with the various temperature, indicating reduced interface roughness and excellent crystal quality. An increase in GIT may be suitable for optimizing the optical properties of GaAsP/InAlGaAs QW. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

62 pages, 16763 KiB  
Review
Epitaxial Growth of Ga2O3: A Review
by Imteaz Rahaman, Hunter D. Ellis, Cheng Chang, Dinusha Herath Mudiyanselage, Mingfei Xu, Bingcheng Da, Houqiang Fu, Yuji Zhao and Kai Fu
Materials 2024, 17(17), 4261; https://doi.org/10.3390/ma17174261 - 28 Aug 2024
Cited by 6 | Viewed by 5409
Abstract
Beta-phase gallium oxide (β-Ga2O3) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power [...] Read more.
Beta-phase gallium oxide (β-Ga2O3) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power electronics and deep ultraviolet optoelectronics. Key advantages of β-Ga2O3 include the availability of large-size single-crystal bulk native substrates produced from melt and the precise control of n-type doping during both bulk growth and thin-film epitaxy. A comprehensive understanding of the fundamental growth processes, control parameters, and underlying mechanisms is essential to enable scalable manufacturing of high-performance epitaxial structures. This review highlights recent advancements in the epitaxial growth of β-Ga2O3 through various techniques, including Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVPE), Mist Chemical Vapor Deposition (Mist CVD), Pulsed Laser Deposition (PLD), and Low-Pressure Chemical Vapor Deposition (LPCVD). This review concentrates on the progress of Ga2O3 growth in achieving high growth rates, low defect densities, excellent crystalline quality, and high carrier mobilities through different approaches. It aims to advance the development of device-grade epitaxial Ga2O3 thin films and serves as a crucial resource for researchers and engineers focused on UWBG semiconductors and the future of power electronics. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

8 pages, 1825 KiB  
Communication
Structure and Optoelectronic Properties of Perovskite-like (PEA)2PbBr3Cl on AlN/Sapphire Substrate Heterostructure
by Yu-Hsien Lin, Jing-Suei Ni and Lung-Chien Chen
Appl. Sci. 2024, 14(14), 6096; https://doi.org/10.3390/app14146096 - 12 Jul 2024
Cited by 2 | Viewed by 1364
Abstract
This study presents the structure and optoelectronic properties of a perovskite-like (PEA)2PbBr3Cl material on an AlN/sapphire substrate heterostructure prepared using spin coating. The AlN/sapphire substrate comprised a 2 μm thick AlN epilayer on a sapphire wafer deposited via metal–organic [...] Read more.
This study presents the structure and optoelectronic properties of a perovskite-like (PEA)2PbBr3Cl material on an AlN/sapphire substrate heterostructure prepared using spin coating. The AlN/sapphire substrate comprised a 2 μm thick AlN epilayer on a sapphire wafer deposited via metal–organic chemical vapor deposition (MOCVD). The peak position of (PEA)2PbBr3Cl photoluminescence (PL) on the AlN/sapphire substrate heterostructure was 372 nm. The emission wavelength ranges of traditional lead halide perovskite light-emitting diodes are typically 410 to 780 nm, corresponding to the range of purple to deep red as the ratio of halide in the perovskite material changes. This indicates the potential for application as a UV perovskite light-emitting diode. In this study, we investigated the contact characteristics between Ag metal and the (PEA)2PbBr3Cl layer on an AlN/sapphire substrate heterostructure, which improved after annealing in an air environment due to the tunneling effect of the thermionic-field emission (TFE) mechanism. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

12 pages, 3869 KiB  
Article
Defect Analysis in a Long-Wave Infrared HgCdTe Auger-Suppressed Photodiode
by Małgorzata Kopytko, Kinga Majkowycz, Krzysztof Murawski, Jan Sobieski, Waldemar Gawron and Piotr Martyniuk
Sensors 2024, 24(11), 3566; https://doi.org/10.3390/s24113566 - 1 Jun 2024
Cited by 1 | Viewed by 1280
Abstract
Deep defects in the long-wave infrared (LWIR) HgCdTe heterostructure photodiode were measured via deep-level transient spectroscopy (DLTS) and photoluminescence (PL). The n+-P+-π-N+ photodiode structure was grown by following the metal–organic chemical vapor deposition (MOCVD) technique on a GaAs [...] Read more.
Deep defects in the long-wave infrared (LWIR) HgCdTe heterostructure photodiode were measured via deep-level transient spectroscopy (DLTS) and photoluminescence (PL). The n+-P+-π-N+ photodiode structure was grown by following the metal–organic chemical vapor deposition (MOCVD) technique on a GaAs substrate. DLTS has revealed two defects: one electron trap with an activation energy value of 252 meV below the conduction band edge, located in the low n-type-doped transient layer at the π-N+ interface, and a second hole trap with an activation energy value of 89 meV above the valence band edge, located in the π absorber. The latter was interpreted as an isolated point defect, most probably associated with mercury vacancies (VHg). Numerical calculations applied to the experimental data showed that this VHg hole trap is the main cause of increased dark currents in the LWIR photodiode. The determined specific parameters of this trap were the capture cross-section for the holes of σp = 10−16–4 × 10−15 cm2 and the trap concentration of NT = 3–4 × 1014 cm−3. PL measurements confirmed that the trap lies approximately 83–89 meV above the valence band edge and its location. Full article
Show Figures

Figure 1

8 pages, 3462 KiB  
Communication
Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition
by Néstor Méndez-Lozano, Eduardo E. Pérez-Ramírez and Miguel de la Luz-Asunción
Ceramics 2024, 7(2), 735-742; https://doi.org/10.3390/ceramics7020048 - 28 May 2024
Cited by 1 | Viewed by 1441
Abstract
This article describes the synthesis of hydroxyapatite (HAp) flakes through a microwave-assisted hydrothermal method. These flakes suggest possible applications as a substrate for depositing titanium dioxide (TiO2) films using chemical vapor deposition with metal–organic precursors (MOCVD). The results reveal the formation [...] Read more.
This article describes the synthesis of hydroxyapatite (HAp) flakes through a microwave-assisted hydrothermal method. These flakes suggest possible applications as a substrate for depositing titanium dioxide (TiO2) films using chemical vapor deposition with metal–organic precursors (MOCVD). The results reveal the formation of crystalline hydroxyapatite characterized by a uniform morphology. Additionally, we demonstrated the successful deposition of TiO2 coatings on the hydroxyapatite flakes, resulting in a distinctive faceted prism morphology. Our findings affirm the effective synthesis of the HAp/TiO2 composite material. To further explore the material’s practical applications, we recommend assessing the photocatalytic activity of these composite membranes in future research. Full article
Show Figures

Figure 1

10 pages, 2462 KiB  
Communication
Impact of Residual Compositional Inhomogeneities on the MCT Material Properties for IR Detectors
by Jan Sobieski, Małgorzata Kopytko, Kacper Matuszelański, Waldemar Gawron, Józef Piotrowski and Piotr Martyniuk
Sensors 2024, 24(9), 2837; https://doi.org/10.3390/s24092837 - 29 Apr 2024
Viewed by 1209
Abstract
HgCdTe is a well-known material for state-of-the-art infrared photodetectors. The interd-iffused multilayer process (IMP) is used for Metal–Organic Chemical Vapor Deposition (MOCVD) of HgCdTe heterostructures, enabling precise control of composition. In this method, alternating HgTe and CdTe layers are deposited, and they homogenize [...] Read more.
HgCdTe is a well-known material for state-of-the-art infrared photodetectors. The interd-iffused multilayer process (IMP) is used for Metal–Organic Chemical Vapor Deposition (MOCVD) of HgCdTe heterostructures, enabling precise control of composition. In this method, alternating HgTe and CdTe layers are deposited, and they homogenize during growth due to interdiffusion, resulting in a near-uniform material. However, the relatively low (350 °C) IMP MOCVD growth temperature may result in significant residual compositional inhomogeneities. In this work, we have investigated the residual inhomogeneities in the IMP-grown HgCdTe layers and their influence on material properties. Significant IMP growth-related oscillations of composition have been revealed in as-grown epilayers with the use of a high-resolution Secondary Ion Mass Spectroscopy (SIMS). The oscillations can be minimized with post-growth annealing of the layers at a temperature exceeding that of growth. The electric and photoelectric characterizations showed a significant reduction in the background doping and an increase in the recombination time, which resulted in dramatic improvement of the spectral responsivity of photoconductors. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop