Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase Composition: X-ray Diffraction (XRD)
2.2. Morphology and Microstructure: Scanning Electron Microscopy (SEM)
2.3. Elemental Composition: Dispersive-Energy Spectroscopy (EDS)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Zhao, X. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 2000, 35, 1293–1301. [Google Scholar] [CrossRef]
- Franz, S.; Falletta, E.; Arab, H.; Murgolo, S.; Bestetti, M.; Mascolo, G. Degradation of carbamazepine by photo (electro) catalysis on nanostructured TiO2 meshes: Transformation products and reaction pathways. Catalysts 2020, 10, 169. [Google Scholar] [CrossRef]
- Han, Z.; Chang, V.W.; Zhang, L.; Tse, M.S.; Tan, O.K.; Hildemann, L.M. Preparation of TiO2-coated polyester fiber filter by spray-coating and its photocatalytic degradation of gaseous formaldehyde. Aerosol Air Qual. Res. 2012, 12, 1327–1335. [Google Scholar] [CrossRef]
- Cotolan, N.; Rak, M.; Bele, M.; Cör, A.; Muresan, L.M.; Milošev, I. Sol-gel synthesis, characterization, and properties of TiO2 and Ag-TiO2 coatings on titanium substrate. Surf. Coat. Technol. 2016, 307, 790–799. [Google Scholar] [CrossRef]
- Lee, H.; Song, M.Y.; Jurng, J.; Park, Y.K. The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 2011, 214, 64–68. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.R.; Sayanna, R. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt. Mater. 2020, 108, 110401. [Google Scholar] [CrossRef]
- Dundar, I.; Krichevskaya, M.; Katerski, A.; Acik, I.O. TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification. R. Soc. Open Sci. 2019, 6, 181578. [Google Scholar] [CrossRef] [PubMed]
- Latif, N.T.; Rzaij, J.M. Concentration Effect of Mixed SnO2-ZnO on TiO2 Optical Properties Thin Films prepared by Chemical Spray Pyrolysis Technique. J. Univ. Anbar Pure Sci. 2020, 14, 43–49. [Google Scholar] [CrossRef]
- Sheng, G.; Qiao, L.; Mou, Y. Preparation of TiO2/hydroxyapatite composite and its photocatalytic degradation of methyl orange. J. Environ. Eng. 2011, 137, 611–616. [Google Scholar] [CrossRef]
- Sánchez-Hernández, A.K.; Martínez-Juárez, J.; Gervacio-Arciniega, J.J.; Silva-González, R.; Robles-Águila, M.J. Effect of ultrasound irradiation on the synthesis of hydroxyapatite/titanium oxide nanocomposites. Crystals 2020, 10, 959. [Google Scholar] [CrossRef]
- Méndez-Lozano, N.; Velázquez-Castillo, R.; Rivera-Muñoz, E.M.; Bucio-Galindo, L.; Mondragón-Galicia, G.; Manzano-Ramírez, A.; Apátiga-Castro, L.M. Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method. Ceram. Int. 2017, 43, 451–457. [Google Scholar] [CrossRef]
- Apátiga, L.M.; Castano, V.M. Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor. Thin Solid Films 2006, 496, 576–579. [Google Scholar] [CrossRef]
- Mendez-Lozano, N.; Apatiga-Castro, M.; Soto, K.M.; Manzano-Ramírez, A.; Zamora-Antunano, M.; Gonzalez-Gutierrez, C. Effect of temperature on crystallite size of hydroxyapatite powders obtained by wet precipitation process. J. Saudi Chem. Soc. 2022, 26, 101513. [Google Scholar] [CrossRef]
- Apátiga, L.M.; Rubio, E.; Rivera, E.; Castaño, V.M. Surface morphology of nanostructured anatase thin films prepared by pulsed liquid injection MOCVD. Surf. Coat. Technol. 2006, 201, 4136–4138. [Google Scholar] [CrossRef]
- Burdusel, A.C.; Neacsu, I.A.; Birca, A.C.; Chircov, C.; Grumezescu, A.M.; Holban, A.M.; Andronescu, E. Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration. J. Funct. Biomater. 2023, 14, 378. [Google Scholar] [CrossRef] [PubMed]
- Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-saving pathways for thermoelectric nanomaterial synthesis: Hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing. Adv. Sci. 2022, 9, 2106052. [Google Scholar] [CrossRef]
- Galenda, A.; Natile, M.M.; El Habra, N. Large-Scale MOCVD Deposition of Nanostructured TiO2 on Stainless Steel Woven: A Systematic Investigation of Photoactivity as a Function of Film Thickness. Nanomaterials 2022, 12, 992. [Google Scholar] [CrossRef] [PubMed]
- Cotrut, C.M.; Vladescu, A.; Dinu, M.; Vranceanu, D.M. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. Ceram. Int. 2018, 44, 669–677. [Google Scholar] [CrossRef]
- Miculescu, F.; Luță, C.; Constantinescu, A.E.; Maidaniuc, A.; Mocanu, A.C.; Miculescu, M.; Voicu, S.I.; Ciocan, L.T. Considerations and influencing parameters in EDS microanalysis of biogenic hydroxyapatite. J. Funct. Biomater. 2020, 11, 82. [Google Scholar] [CrossRef] [PubMed]
Substrate Temperature (°C) | Injectors Pressure (psi) | Argon Flow (L/min) | Injection Frequency (ms) |
---|---|---|---|
500 | 4.5 | 0.11 | 250 |
Element | TiO2 Coating | wt% |
---|---|---|
Carbon | * | 0.63 |
Oxygen | * | 41.96 |
Aluminum | * | 0.48 |
Titanium | * | 56.91 |
Calcium | 0 | |
Phosphorous | 0 |
Element | HAp Flakes | wt% |
---|---|---|
Carbon | * | 0.62 |
Oxygen | * | 2.32 |
Aluminum | 0.44 | |
Titanium | * | 0 |
Calcium | * | 60.40 |
Phosphorous | * | 36.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Lozano, N.; Pérez-Ramírez, E.E.; de la Luz-Asunción, M. Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition. Ceramics 2024, 7, 735-742. https://doi.org/10.3390/ceramics7020048
Méndez-Lozano N, Pérez-Ramírez EE, de la Luz-Asunción M. Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition. Ceramics. 2024; 7(2):735-742. https://doi.org/10.3390/ceramics7020048
Chicago/Turabian StyleMéndez-Lozano, Néstor, Eduardo E. Pérez-Ramírez, and Miguel de la Luz-Asunción. 2024. "Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition" Ceramics 7, no. 2: 735-742. https://doi.org/10.3390/ceramics7020048
APA StyleMéndez-Lozano, N., Pérez-Ramírez, E. E., & de la Luz-Asunción, M. (2024). Microwave-Assisted Hydrothermal Synthesis of Hydroxyapatite Flakes as Substrates for Titanium Dioxide Film Deposition. Ceramics, 7(2), 735-742. https://doi.org/10.3390/ceramics7020048