Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieminen, M.; Putkonen, M.; Niinistö, L. Formation and stability of lanthanum oxide thin films deposited from β-diketonate precursor. Appl. Surf. Sci. 2001, 174, 155–165. [Google Scholar] [CrossRef]
- Vignolo, M.F.; Duhalde, S.; Bormioli, M.; Quintana, G.; Cervera, M.; Tocho, J. Structural and electrical properties of lanthanum oxide thin films deposited by laser ablation. Appl. Surf. Sci. 2002, 197–198, 522–526. [Google Scholar] [CrossRef]
- Kang, S.-W.; Rhee, S.-W. Deposition of La2O3 films by Direct Liquid Injection Metallorganic Chemical Vapor Deposition. J. Electrochem. Soc. 2002, 149, C345–C348. [Google Scholar] [CrossRef]
- Yang, C.; Fan, H.; Qiu, S.; Xi, Y.; Fu, Y. Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation. J. Non-Cryst. Solids 2009, 355, 33–37. [Google Scholar] [CrossRef]
- Zhang, X.; Tu, H.; Zhao, H.; Yang, M.; Wang, X.; Xiong, Y.; Yang, Z.; Du, J.; Wang, W.; Chen, D. Band structure and electronic characteristics of cubic La2O3 gate dielectrics epitaxially grown on InP substrates. Appl. Phys. Lett. 2011, 99, 132902. [Google Scholar] [CrossRef]
- Li, S.; Lin, Y.; Wu, Y.; Wu, Y.; Li, X.; Tian, W. Ni doping significantly improves dielectric properties of La2O3 films. J. Alloys Compd. 2020, 822, 153469. [Google Scholar] [CrossRef]
- Jun, J.-H.; Wang, C.-H.; Won, D.-J.; Choi, D.-J. Structural and electrical properties of a La2O3 thin film as a gate dielectric. J. Korean Phys. Soc. 2002, 41, 998–1002. [Google Scholar]
- Park, N.K.; Kang, D.K.; Kim, B.-H.; Jo, S.J.; Ha, J.S. Electrical properties of La2O3 thin films grown on TiN/Si substrates via atomic layer deposition. Appl. Surf. Sci. 2006, 252, 8506–8509. [Google Scholar] [CrossRef]
- Kim, H.J.; Jun, J.H.; Choi, D.J. Characteristics of La2O3 thin films deposited using metal organic chemical vapor deposition with different oxidant gas. Ceram. Int. 2008, 34, 953–956. [Google Scholar] [CrossRef]
- Scarel, G.; Debermardi, A.; Tsoutsou, D.; Spiga, S.; Capelli, S.C.; Lamagna, L.; Volkos, S.N.; Alia, M.; Fanciulli, M. Vibrational and electric properties of hexagonal La2O3 films. Appl. Phys. Lett. 2007, 91, 102901. [Google Scholar] [CrossRef]
- Li, X.L.; Tsoutsou, D.; Scarel, G.; Wiemer, C.; Capelli, S.C.; Volkos, S.N.; Lamagna, L.; Fanciulli, M. Chemical and structural properties of atomic layer deposited La2O3 films capped with a thin Al2O3 film. J. Vac. Sci. Technol. A 2009, 27, L1. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Zhao, L.; Fei, C.; Feng, X.; Chen, S.; Wang, Y. Structural properties characterized by the film thickness and annealing temperature for La2O3 films grown by atomic layer deposition. Nanoscale Res. Lett. 2017, 12, 233. [Google Scholar] [CrossRef]
- Armelao, L.; Pascolini, M.; Bottaro, G.; Bruno, G.; Giangregorio, M.M.; Losurdo, M.; Malandrino, G.; Lo Nigro, R.; Fragalà, M.E.; Tondello, E. Microstructural and optical properties modifications induced by plasma and annealing treatments of lanthanum oxide sol-gel thin films. J. Phys. Chem. C 2009, 113, 2911–2918. [Google Scholar] [CrossRef]
- Jbeli, R.; Boukhachem, A.; Ben Jamaa, L.; Mahdhi, N.; Saadallah, F.; Elhouichet, H.; Alleg, S.; Amlouk, M.; Ezzaouïa, H. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature. Spectrochim. Acta A 2017, 184, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Brachetti-Sibaja, S.B.; Rodil, S.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Rodríguez, E.; López-Oyama, A.B. Optical properties of nanocrystalline La2O3 dielectric films deposited by radio frequency magnetron sputtering. Thin Solid Films 2017, 636, 615–621. [Google Scholar] [CrossRef]
- Jbeli, R.; Mami, A.; Bilel, C.; Saadallah, F.; Bouaicha, M.; Amlouk, M. Growth and investigation of LaNiO3/La2O3 composites films for optoelectronic application. Optik 2021, 247, 168013. [Google Scholar] [CrossRef]
- Yu, L.; Han, Y.; Lin, R.; Ge, K.; Zhang, C.; Zhang, J.; Jia, G. Controllable synthesis and luminescence properties of one-dimensional La2O3 and La2O3:Ln3+ (Ln = Er, Eu, Tb) nanorods with different aspect rations. J. Lumin. 2021, 229, 117663. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, C.H.; Nam, T.; Lee, S.; Oh, I.-K.; Yang, J.Y.; Choi, D.W.; Yoo, C.; Kim, H.; Kim, W.-H.; et al. Hydrogen barrier performance of sputtered La2O3 films for InGaZnO thin-film transistor. J. Mater. Sci. 2019, 54, 11145–11156. [Google Scholar] [CrossRef]
- Ciontea, L.; Nasui, M.; Petrisor, T., Jr.; Mos, R.B.; Gabor, M.S.; Varga, R.A.; Petrisor, T. Synthesis, crystal structure and thermal decomposition of [La2(CH3CH2COO)6·(H2O)3]·3.5H2O precursor for high-κ La2O3 thin films deposition. Mater. Res. Bull. 2010, 45, 1203–1208. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T.; Kato, Y. Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. J. Solid State Chem. 2005, 178, 395–398. [Google Scholar] [CrossRef]
- Patil, S.R.; Barhate, V.N.; Patil, V.S.; Khushabu, S.A.; Mahajan, A.M. The effect of post-deposition annealing on the chemical, structural and electrical properties of Al/ZrO2/La2O3/ZrO2/Al high-k nanolaminated MIM capacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 11227–11235. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, J.; Luo, Y.; Li, J.; Ding, Y. Atomic layer deposition of La2O3 film with precursor La(thd)3-DMEA. Coatings 2023, 13, 870. [Google Scholar] [CrossRef]
- Patil, S.R.; Borokar, V.Y.; Rasadujjaman, M.; Zhang, Y.; Ding, S.J.; Mahajan, A.M. Investigation of PEALD ZrO2/La2O3-based high-k nanolaminates sandwiched between Al and Ti electrodes for MIM capacitors. J. Mater. Sci. Mater. Electron. 2023, 34, 1284. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Y.; Tian, Z.; Huang, W.; Wu, J.; Lin, H. Effect of doping La2O3 on the structure and properties of the titanium barium silicate glass. J. Non-Cryst. Solids 2018, 499, 17–24. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, D.; Ma, L.; Deng, C.; Li, L.; Chen, K.; Yang, X. Effect of La2O3 on crystallization of glass-ceramics. J. Non-Cryst. Solids 2020, 536, 120007. [Google Scholar] [CrossRef]
- Andriamasinoro, D.; Kieffer, R.; Kiennemann, A.; Rehspringer, J.L.; Poix, P.; Vallet, A.; Lavalley, J.C. Preparation and characterization of lanthana catalysts: Study of their activity in CO/H2 reactions. J. Mater. Sci. 1989, 24, 1757–1766. [Google Scholar] [CrossRef]
- Stoychev, D.; Valov, I.; Stefanov, P.; Atanasova, G.; Stoycheva, M.; Marinova, T. Electrochemical growth of thin La2O3 films on oxide and metal surfaces. Mater. Sci. Eng. C 2003, 23, 123–128. [Google Scholar] [CrossRef]
- Al-Najar, A.M.A.; Al-Doghachi, F.A.J.; Al-Riyahee, A.A.A.; Taufiq-Yap, Y.H. Effect of La2O3 as a promoter on the Pt,Pd,Ni/MgO catalyst in dry reforming of methane reaction. Catalysts 2020, 10, 750. [Google Scholar] [CrossRef]
- Boukha, Z.; Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R. Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction. Appl. Catal. B Environ. 2022, 314, 121500. [Google Scholar] [CrossRef]
- Andrievskaya, E.R.; Kornienko, O.A.; Sayir, A.; Vasylkiv, O.O.; Sakka, Y. Phase relation studies in the ZrO2–CeO2-La2O3 system at 1000 °C. J. Am. Ceram. Soc. 2011, 94, 1911–1919. [Google Scholar] [CrossRef]
- Korniienko, O.A.; Yushkevich, S.V.; Bykov, I.O.; Samelyuk, A.V.; Bataiev, Y.M.; Zamula, M.V. Phase equilibrium in binary La2O3-Dy2O3 and ternary CeO2- La2O3-Dy2O3 systems. J. Eur. Ceram. Soc. 2022, 42, 5820–5830. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.; Wei, B.; Chen, P. Preparation and performance of ultrafine grained WC-10Co alloys with added La2O3. Ceram. Int. 2019, 45, 3969–3976. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Tabie, V.; Yang, S.; Cai, C.; Xiao, Y.; Chen, H.; Liu, Q.; Zhang, X.; Li, C.; et al. Effect of La2O3 on resistance to high-temperature oxidation and corrosion of aluminized and aluminium-chrome coating. Mater. Res. Express 2019, 6, 1265b7. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Li, Y.; Zhang, Y.; Zhang, M.; Wu, B. Effect of La2O3 on the corrosion resistance of alumina ceramic. J. Mater. Res. Technol. 2020, 9, 6287–6296. [Google Scholar] [CrossRef]
- Kunlin, W.; Qingbo, Z.; Xingguo, W.; Yunming, Z. Rare-earth La2O3 modification of laser-clad coatings. J. Mater. Sci. 1998, 33, 3573–3577. [Google Scholar] [CrossRef]
- Liu, X.-B.; Yu, R.-L. Effect of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermetallic alloy. Mater. Chem. Phys. 2007, 101, 448–454. [Google Scholar] [CrossRef]
- Farahmand, P.; Liu, S.; Zhang, Z.; Kovacevic, R. Laser cladding assisted by induction heating of Ni-WC and La2O3. Ceram. Int. 2014, 40, 15421–15438. [Google Scholar] [CrossRef]
- Li, M.; Han, B.; Wang, Y.; Pu, K. Effect of La2O3 on the microstructure and properties of laser cladding Ni-based ceramic coating. Optik 2017, 130, 1032–1037. [Google Scholar] [CrossRef]
- Krishnan, V.P.R.; Subramanian, M. Electrodeposition of Ni-La2O3 composite on AA6061 alloy and its enhanced hardness, corrosion resistance and thermal stability. Surf. Coat. Technol. 2017, 324, 471–477. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, X.; Jin, G.; Cai, Z.; Dong, M. Thermal stability of Ni-B/La2O3 coatings by electro-brush plating technique. Surf. Coat. Technol. 2018, 349, 1042–1047. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Han, B.; Song, L.; Cui, G.; Yang, J.; Li, J. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment. Opt. Lasers Eng. 2020, 125, 105848. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chew, Y.; Bi, G.; Du, X.; Tian, H.; Chen, C. Microstructure and mechanical behaviour of the laser synthesized composites modified by mico/nano scale rare earth oxides. J. Alloys Compd. 2022, 895, 162641. [Google Scholar] [CrossRef]
- Cheng, X.; Che, Y.; Song, R.; Li, H.; Liu, B.; Zhou, H.; Yan, L. Study of mechanical character and corrosion properties of La2O3 nanoparticle reinforced Ni-W composite coatings. Coll. Surf. A Physicochem. Eng. Asp. 2022, 652, 129799. [Google Scholar] [CrossRef]
- Li, J.; Zou, M.; Chen, W.; Hu, X.; Zhou, J.; Jiang, X. Diffusion behavior and electrical performance of La2O3 doped Ni-Co films and their application as metallic interconnection of solid oxide fuel cells. Thin Solid Films 2023, 768, 139692. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Matsumoto, M.; Yamaguchi, N.; Matsubara, H. Low thermal conductivity and high temperature stability of ZrO2-Y2O3-La2O3 coatings produced by electron beam PVD. Scr. Mater. 2004, 50, 867–871. [Google Scholar] [CrossRef]
- CaO, X.Q.; Vassen, R.; Tietz, F.; Stoever, D. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides. J. Eur. Ceram. Soc. 2006, 26, 247–251. [Google Scholar] [CrossRef]
- Xu, Z.; He, L.; Zhong, X.; Mu, R.; He, S.; Cao, X. Thermal barrier coating of lanthanum-zirconium-cerium composite oxide made by electron beam-physical vapor deposition. J. Alloys Compd. 2009, 478, 168–172. [Google Scholar] [CrossRef]
- Rauf, A.; Yu, Q.; Jin, L.; Zhou, C. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scr. Mater. 2012, 66, 109–112. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, G.-J.; Zhang, Q.; Jang, N.; Zhang, M.; Zhang, Y.; Li, C.-X.; Li, C.-J. Gradient thermal cyclic behaviour of La2Zr2O7/YSZ DLC-TBCs with equivalent thermal insulation performance. J. Eur. Ceram. Soc. 2018, 38, 1888–1896. [Google Scholar] [CrossRef]
- Shen, Z.; He, L.; Xu, Z.; Mu, R.; Huang, G. LZC/YSZ double layer coatings: EB-PVD, microstructure and thermal cycling life. Surf. Coat. Technol. 2019, 367, 86–90. [Google Scholar] [CrossRef]
- Dong, T.-S.; Wang, R.; Di, Y.-L.; Wang, H.-D.; Li, G.-L.; Fu, B.-G. Mechanism of high temperature oxidation resistance improvement of double-layer thermal barrier coatings (TBCs) by La. Ceram. Int. 2019, 45, 9126–9135. [Google Scholar] [CrossRef]
- Feng, Y.; Dong, T.-S.; Li, G.-L.; Wang, R.; Zhao, X.-W.; Liu, Q. High temperature oxidation resistance of TGO growth mechanism of laser remelted thermal barrier coatings. J. Alloys. Compd. 2020, 828, 154266. [Google Scholar] [CrossRef]
- Taleghani, P.R.; Valefi, Z.; Ehsani, N. Evaluation of oxidation and thermal insulation capability of nanostructured La2(Zr0.7Ce0.3)2O7/YSZ functionally graded coatings. Ceram. Int. 2021, 47, 8915–8929. [Google Scholar] [CrossRef]
- Gao, L.; Guo, H.; Gong, S.; Xu, H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration. J. Eur. Ceram. Soc. 2014, 34, 2553–2561. [Google Scholar] [CrossRef]
- Kang, Y.X.; Bai, Y.; Fan, W.; Yuan, T.; Gao, Y.; Bao, C.G.; Li, B.Q. Thermal cycling performance of La2Ce2O7/50 vol.% YSZ composite thermal barrier coating with CMAS corrosion. J. Eur. Ceram. Soc. 2018, 38, 2851–2862. [Google Scholar] [CrossRef]
- Shreeram, B.; Rajendran, I.E.; Kumar, R. Tailoring of functionally graded mullite: La2O3 coatings by transferred arc plasma for thermal barrier coatings. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2484–2493. [Google Scholar] [CrossRef]
- Sha, X.; Lü, Z.; Huang, X.; Miao, J.; Ding, Z.; Xin, X.; Su, W. Study on La and Y co-doped ceria based electrolyte materials. J. Alloys Compd. 2007, 428, 59–64. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Y.; Gu, H.; Gao, L.; Chen, H.; Guo, L. La and Ca co-doped ceria-based electrolyte materials for IT-SOFC. Mater. Res. Bull. 2009, 44, 1717–1721. [Google Scholar] [CrossRef]
- Kahlaoui, M.; Inoubli, A.; Chefi, S.; Kouki, A.; Madani, A.; Chefi, C. Electrochemical and structural study of Ce0.8Sm0.2-xLaxO1.9 electrolyte materials for SOFC. Ceram. Int. 2013, 39, 6175–6182. [Google Scholar] [CrossRef]
- Jaiswal, N.; Upadhyay, S.; Kumar, D.; Parkash, O. Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. J. Power Sources 2013, 222, 230–236. [Google Scholar] [CrossRef]
- Venkataramana, K.; Madhuri, C.; Madhusudan, C.; Reddy, J.S.; Bhikshamaiah, G.; Reddy, C.V. Investigation of La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFC. Ceram. Int. 2018, 44, 6300–6310. [Google Scholar] [CrossRef]
- Liu, J.; Wu, K.; Tu, T.; Peng, K. Preparation and properties of lanthanum (La) and indium (In) co-doped ceria system for IT-SOFC. Ionics 2019, 25, 1747–1757. [Google Scholar] [CrossRef]
- Sammes, N.M.; Du, Y.; Bove, R. Design and fabrication of a 100 W anode supported micro-tubular SOFC stack. J. Power Sources 2005, 145, 428–434. [Google Scholar] [CrossRef]
- Li, G.; Gou, Y.; Qiao, Y.; Sun, W.; Wang, Z.; Sun, K. Recent progress of tubular solid oxide fuel cell: From materials to applications. J. Power Sources 2020, 477, 228693. [Google Scholar] [CrossRef]
- Sawka, A.; Kwatera, A. Deposition of Sm2O3-doped CeO2 layers using the MOCVD method. Ceram. Int. 2016, 42, 1446–1452. [Google Scholar] [CrossRef]
- Sawka, A.; Kwatera, A. Deposition of gadolinia-doped ceria layers by MOCVD at low temperatures. Ceram. Int. 2018, 44, 6257–6264. [Google Scholar] [CrossRef]
- Sawka, A.; Kwatera, A. Low temperature synthesis of Y2O3-doped CeO2 layers using MOCVD. Mater. Sci. Eng. B 2022, 276, 115580. [Google Scholar] [CrossRef]
- Kwatera, A. Thin CVD layers of carbon-doped silicon nitride on quartz glass. Ceram. Int. 1989, 15, 65–72. [Google Scholar] [CrossRef]
- Kwatera, A. Models of the processes at the substrate surface in the CVD method. Ceram. Int. 1991, 17, 11–23. [Google Scholar] [CrossRef]
- Sawka, A. MOCVD growth of gadolinium oxide layers on tubes. Ceram. Int. 2023, 49, 23835–23843. [Google Scholar] [CrossRef]
- Morosanu, C.-E. The preparation, characterization and applications of silicon nitride thin films. Thin Solid Films 1980, 65, 171–208. [Google Scholar] [CrossRef]
- Dryden, H.L. Review of published data on the effect of roughness on transition from laminar to turbulent flow. J. Aeronaut. Sci. 1953, 320, 477–482. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawka, A. Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique. Materials 2024, 17, 5539. https://doi.org/10.3390/ma17225539
Sawka A. Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique. Materials. 2024; 17(22):5539. https://doi.org/10.3390/ma17225539
Chicago/Turabian StyleSawka, Agata. 2024. "Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique" Materials 17, no. 22: 5539. https://doi.org/10.3390/ma17225539
APA StyleSawka, A. (2024). Nanocrystalline Lanthanum Oxide Layers on Tubes Synthesized Using the Metalorganic Chemical Vapor Deposition Technique. Materials, 17(22), 5539. https://doi.org/10.3390/ma17225539