Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = metal aerogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3624 KiB  
Article
Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes
by Tomás Soteras, Ignacio Manuel Argento Arruñada, Leila María Saleh Medina, Natalie Malikova, Koro de la Caba, Pedro Guerrero, Norma Beatriz D’Accorso and R. Martín Negri
Polymers 2025, 17(15), 2008; https://doi.org/10.3390/polym17152008 - 23 Jul 2025
Viewed by 384
Abstract
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels [...] Read more.
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels of chitosan–pectin–lactic acid is reported. The presence of pectin was critical to loading the MOFs efficiently and homogeneously, while the incorporation of lactic acid induced a large increase in the Young’s modulus and provided structural preservation in aqueous solutions. The presence of MOFs enhanced the removal of two dyes, methyl orange (MO) and methylene blue (MB), under batch and flow conditions, with removal efficiencies of methyl orange of about 85% and 90% when loaded with ZIF-8 and MIL-100(Fe), respectively. Bentonite, celite 545, and two ionenes were loaded for comparison. Factors beyond charge-to-charge electrostatic interactions influenced the removal, since no correlations were obtained between the electrical charges of dyes, fillers, and polymers. The kinetic data were analyzed by adapting the Langmuir kinetic model, incorporating absorption and desorption processes, which allowed the recovery of the respective rate constants. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

37 pages, 2969 KiB  
Review
Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
by Liying Li, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li and Jian Xiong
Gels 2025, 11(7), 548; https://doi.org/10.3390/gels11070548 - 15 Jul 2025
Viewed by 610
Abstract
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical [...] Read more.
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical systems as its primary focus, analyzing fundamental charge-storage mechanisms and establishing structure–property–application relationships critical to energy storage performance. We critically assess synthesis methodologies, emphasizing how stage-specific parameters govern structural/functional traits, and detail multifunctional modification strategies (e.g., heteroatom doping, composite engineering) that enhance electrochemical behavior through pore architecture optimization, surface chemistry tuning, and charge-transfer kinetics acceleration. Electrochemical applications are extensively explored, including the following: 1. Energy storage: supercapacitors (dual EDLC/pseudocapacitive mechanisms) and battery hybrids. 2. Electrocatalysis: HER, OER, ORR, and CO2 reduction reaction (CO2RR). 3. Electrochemical processing: capacitive deionization (CDI) and electrosorption. Beyond this core scope, we briefly acknowledge CA versatility in ancillary domains: environmental remediation (heavy metal removal, oil/water separation), flame retardancy, microwave absorption, and CO2 capture. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

14 pages, 2683 KiB  
Article
Study on the Adsorption Behavior of a Cellulose Nanofibril/Tannic Acid/Polyvinyl Alcohol Aerogel for Cu(II), Cd(II), and Pb(II) Heavy Metal Ions
by Xuejin Zhang, Yulong Tian, Huanhuan Chen, Ying Liu, Shuaichuang Han, Minmin Chang, Jingshun Zhuang and Qingzhi Ma
Nanomaterials 2025, 15(14), 1063; https://doi.org/10.3390/nano15141063 - 9 Jul 2025
Viewed by 332
Abstract
Nanocellulose-based composite aerogels have the advantages of high porosity, biodegradability, and biocompatibility, with wide applications in many fields, such as adsorption, separation, energy storage, and heat insulation. In this study, a nanocellulose-based composite aerogel (NCA) was prepared using the one-pot method with cellulose [...] Read more.
Nanocellulose-based composite aerogels have the advantages of high porosity, biodegradability, and biocompatibility, with wide applications in many fields, such as adsorption, separation, energy storage, and heat insulation. In this study, a nanocellulose-based composite aerogel (NCA) was prepared using the one-pot method with cellulose nanofibrils (CNFs), tannic acid (TA), and polyvinyl alcohol (PVA) as raw materials. The adsorption behaviors of Pb2+, Cd2+, and Cu2+ were also studied. FT-IR analysis confirmed that TA successfully solidified on the nanocellulose, while SEM analysis revealed that the prepared NCA exhibited significantly higher porosity compared with the cellulose nanofibril-only aerogel. The results of the adsorption experiment demonstrated that the adsorption behavior of heavy metal ions using the prepared NCA followed pseudo-second-order kinetics. The adsorption isotherms fit well with the Langmuir adsorption model, indicating that the process of aerogels adsorbing heavy metal ions is that of monolayer adsorption. Under conditions of pH 6 and an initial heavy metal ion concentration of 100 mg/L, the maximum adsorption capacity calculated for the prepared NCA was up to 196.850 mg/g, 181.488 mg/g, and 151.515 mg/g for Cu2+, Cd2+, and Pb2+, respectively. Furthermore, the prepared NCA exhibited excellent reusability, with more than 90% efficiency retained after three cycles. NCAs have the potential to become an efficient material for absorbing heavy metal ions in water. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 1570 KiB  
Article
Overcoming Scaling Challenges in Sol–Gel Synthesis: A Microwave-Assisted Approach for Iron-Based Energy Materials
by Judith González-Lavín, Ana Arenillas and Natalia Rey-Raap
Microwave 2025, 1(2), 6; https://doi.org/10.3390/microwave1020006 - 30 Jun 2025
Viewed by 319
Abstract
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal [...] Read more.
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal aerogels, specifically iron-based aerogels, is studied using a microwave-assisted sol–gel methodology in an open-system multimode device as a potential route to scale-up production. Different approaches were tested to evaluate the best way to increase yield per batch, with different vessel shapes and volumes. It is shown that the shape and size of the vessel can be determinant in the interaction with microwaves and, thus, in the heating process, influencing the sol–gel reactions and the characteristics and homogeneity of the obtained nanomaterials. It has been found that a wide vessel is preferable to a tall and narrow one since the heating process is more homogeneous in the former and the sol–gel and cross-linking reactions take place earlier, which improves the mechanical properties of the final nanomaterial. For mass production of nanomaterials, the interaction of the reagents with the microwave field must be considered, and this depends not only on their nature but also on their volume, shape, and arrangement inside the cavity. Full article
Show Figures

Graphical abstract

62 pages, 13651 KiB  
Review
Engineering Gel-Based Precursors into Advanced ORR Catalysts for Zn–Air Batteries and Fuel Cells: Insights into Hydrogels, Aerogels, Xerogels, Metal–Organic Gels, and Metal Aerogels
by Shaik Gouse Peera and Myunghwan Byun
Gels 2025, 11(7), 479; https://doi.org/10.3390/gels11070479 - 21 Jun 2025
Viewed by 436
Abstract
Efficient electrocatalysts for the oxygen reduction reaction (ORR) are essential for numerous energy storage and conversion systems, including zinc–air batteries and fuel cells. Cutting-edge Pt/C catalysts remain the most efficient ORR catalysts to date; however, their high cost and inadequate stability impede their [...] Read more.
Efficient electrocatalysts for the oxygen reduction reaction (ORR) are essential for numerous energy storage and conversion systems, including zinc–air batteries and fuel cells. Cutting-edge Pt/C catalysts remain the most efficient ORR catalysts to date; however, their high cost and inadequate stability impede their use in commercial devices. Recently, transition metal-based electrocatalysts are being pursued as ideal alternatives for cost-effective and efficient materials with a promising future. This review provides an in-depth analysis of the principles, synthesis, and electrocatalytic assessment of noble metal and transition metal-based catalysts derived from diverse gel precursors, including hydrogels, aerogels, xerogels, metal–organic gels, and metal aerogels. Electrocatalysts derived from gel precursors have garnered significant interest due to their superior physicochemical properties, including an exceptionally high surface area, adjustable porosity, adaptability, and scalability. Catalysts obtained from gel precursors offer numerous advantages over conventional catalyst synthesis methods, including the complete utilization of precursors, precise control over surface area and porosity, and uniform distribution of ORR active sites. Among the various types, metal aerogels are distinguished as the superior catalysts, exceeding the Department of Energy’s (DoE) 2025 targets for the mass and specific activities of ORR catalysts. In contrast, hydrogel- and aerogel-derived catalysts excel in terms of ORR activity, specific surface area, and the potential to incorporate high loadings of single-atom catalysts composed of transition metals. Ultimately, we unequivocally categorized the electrocatalysts into high-, moderate-, and low-performance tiers, identifying the most promising catalyst candidate within each gel classification. Concluding insights, future outlooks, and recommendations were provided for the advancement of cost-effective, scalable electrocatalysts derived from gels for fuel cells and zinc–air batteries. Full article
(This article belongs to the Special Issue Gels for Flexible Electronics and Energy Devices (2nd Edition))
Show Figures

Graphical abstract

26 pages, 2299 KiB  
Review
Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives
by Alexa-Maria Croitoru, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Dan Eduard Mihaiescu, Marius Rădulescu and Alexandru Mihai Grumezescu
Nanomaterials 2025, 15(12), 901; https://doi.org/10.3390/nano15120901 - 11 Jun 2025
Viewed by 720
Abstract
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically [...] Read more.
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically evaluates the recent advancements in aerogel-based materials, highlighting their challenges, limitations, and practical applications in large-scale experiments. The influence of key parameters such as adsorbent dosage, solution pH, ionic strength, and temperature is also discussed. Integrating nanotechnology and advanced manufacturing methods, a new generation of high-performance adsorbents with increased sorption capacity and reusability could be developed. Additionally, pilot studies and field trials are highlighted in this review, showing aerogels’ practical and real-world applications. Although various gaps in the production process that limit aerogel implementation in the market still exist, the research progress in the field shows that novel aerogels could be used in real wastewater treatment in the future. This review underscores the need for future research to develop advanced aerogel-based materials using green and sustainable synthesis methods that can lead to full-scale application. Full article
Show Figures

Figure 1

18 pages, 2086 KiB  
Article
Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels
by Evangelia Sigala, Artemisia Zoi, Grigorios Raptopoulos, Elias Sakellis, Aikaterini Sakellari, Sotirios Karavoltsos and Patrina Paraskevopoulou
Gels 2025, 11(6), 437; https://doi.org/10.3390/gels11060437 - 6 Jun 2025
Viewed by 1159
Abstract
The removal of mercury(II) from aquatic environments using polyurea-crosslinked calcium alginate (X-alginate) aerogels was investigated through batch-type experiments, focusing on low mercury concentrations (50–180 μg·L−1), similar to those found in actual contaminated environments. Within this concentration range, the metal retention was [...] Read more.
The removal of mercury(II) from aquatic environments using polyurea-crosslinked calcium alginate (X-alginate) aerogels was investigated through batch-type experiments, focusing on low mercury concentrations (50–180 μg·L−1), similar to those found in actual contaminated environments. Within this concentration range, the metal retention was very high, ranging from 85% to quantitative (adsorbent dosage: 0.6 g L−1). The adsorption process followed the Langmuir isotherm model with a sorption capacity of 4.4 mmol kg−1 (883 mg kg−1) at pH 3.3. Post-adsorption analysis with EDS confirmed the presence of mercury in the adsorbent and the replacement of calcium in the aerogel matrix. Additionally, coordination/interaction with other functional groups on the adsorbent surface may occur. The adsorption kinetics were best described by the pseudo-first-order model, indicating a diffusion-controlled mechanism and relatively weak interactions. The adsorbent was regenerated via washing with a Na2EDTA solution and reused at least three times without substantial loss of sorption capacity. Furthermore, X-alginate aerogels were tested for mercury removal from an industrial wastewater sample (pH 7.75) containing 61 μg·L−1 mercury (and competing ions), achieving 71% metal retention. These findings, along with the stability of X-alginate aerogels in natural waters and wastewaters, highlight their potential for sustainable mercury removal applications. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

15 pages, 3628 KiB  
Article
Nitrogen-Doped Biochar Aerogel as Efficient Peroxymonosulfate Activator for Organic Pollutant Removal
by Lingshuai Kong, Mingshuo Zhu and Jinhua Zhan
Nanomaterials 2025, 15(11), 865; https://doi.org/10.3390/nano15110865 - 4 Jun 2025
Viewed by 493
Abstract
Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) [...] Read more.
Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) derived from poplar wood powder as an eco-friendly and easily recoverable PMS activator. The NBA catalyst, optimized by tuning the calcination temperature to achieve a specific surface area of 297.5 m2 g−1, achieved 97% bisphenol A (BPA) removal within 60 min with a catalyst dosage of 0.3 g/L and 1.0 mM PMS under mild conditions. The material exhibited broad pH adaptability (pH 3.5–9), recyclability (>94% efficiency after thermal treatment), and versatility in degrading seven pollutants (BPA, phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, rhodamine 6G, and levofloxacin) through synergistic radical (•OH, SO4•−, O2•−) and non-radical (1O2) pathways. X-ray photoelectron spectroscopy (XPS) analyses revealed that nitrogen doping enhanced PMS activation by optimizing electronic structures. This study highlights the potential of waste biomass-derived carbon aerogels as eco-friendly, efficient, and reusable catalysts for advanced oxidation processes in wastewater treatment. Full article
Show Figures

Graphical abstract

14 pages, 2930 KiB  
Article
Bi-Interfacial Electron Modulation in Co9S8/FeCoS2 Heterostructures Anchored on Bamboo-Derived Carbon Quasi-Aerogel for High-Performance Hydrogen Evolution
by Wenjing He, Jianliang Cao, Xinliang Zhou, Ning Zhang, Yuzhu Qi, Jin Li, Naiteng Wu and Xianming Liu
Gels 2025, 11(6), 390; https://doi.org/10.3390/gels11060390 - 25 May 2025
Viewed by 360
Abstract
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal [...] Read more.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct Co9S8/FeCoS2 heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (Co9S8/FeCoS2/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm−2, a Tafel slope of 68.87 mV dec−1, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

22 pages, 5233 KiB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 1072
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

13 pages, 3563 KiB  
Article
Porous Zn Nano-Wafer Aerogels for Asymmetric Supercapacitors: Synthesis, Structural Engineering, and Performance
by Ramya Ramkumar, Ganesh Koyyada, Md Riad Al Rabbi Abir, Thirumala Rao Gurugubelli, Woo Kyoung Kim and Jae Hong Kim
Processes 2025, 13(5), 1461; https://doi.org/10.3390/pr13051461 - 10 May 2025
Cited by 1 | Viewed by 460
Abstract
Transition metal oxide aerogels (AGLs) have attracted considerable attention in recent years due to their exceptional properties, including high surface area, significant porosity, and ultralow density. In this study, we report the first-time synthesis of zinc oxide nano-wafers and zinc aerogels for application [...] Read more.
Transition metal oxide aerogels (AGLs) have attracted considerable attention in recent years due to their exceptional properties, including high surface area, significant porosity, and ultralow density. In this study, we report the first-time synthesis of zinc oxide nano-wafers and zinc aerogels for application as supercapacitor electrodes. The aerogels were synthesized via a novel one-pot hydrolysis method using NaBH4 as a reducing agent and subsequently annealed at 200 °C (ZnAGL(200)) and 450 °C (ZnAGL(450)) to investigate the influence of temperature on their electrochemical properties. Structural and morphological characterizations were conducted using XRD, FTIR, BET, XPS, SEM, and TEM analyses. Among the fabricated electrodes, the aerogel annealed at 200 °C (ZnAGL(200)) exhibited superior energy storage performance, attributed to its amorphous, continuous network structure, which enhanced its surface area and reduced its density compared to both the as-synthesized (ZnAGL(RT)) and 450 °C-annealed (ZnAGL(450)) counterparts. A two-electrode device demonstrated excellent cycling stability over 10,000 cycles, achieving an energy density of 7.97 Wh/kg and a power density of 15 kW/kg. These findings highlight the potential of zinc aerogels as materials for next-generation lightweight energy storage systems, with promising applications in industrial, mechanical, and aerospace technologies. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Graphical abstract

13 pages, 2893 KiB  
Article
Fabrication of Wood-Derived Carbon Aerogel/Mg(OH)2 Bio-Composite and Its High Performance for Adsorption and Separation of Cadmium Ions
by Ran An, Jinyue Liu, Haomiao Ma, Yuqing Yan, Yuanru Guo, Qingjiang Pan and Shujun Li
C 2025, 11(2), 32; https://doi.org/10.3390/c11020032 - 6 May 2025
Viewed by 1084
Abstract
To address the need for reducing carbon emissions and enhancing the sustainable utilization of non-fossil resources, a one-step calcination strategy has been developed to fabricate hierarchical carbon aerogels from balsa wood. The resulting wood-derived carbon aerogels (WCA) were functionalized with Mg(OH)2 to [...] Read more.
To address the need for reducing carbon emissions and enhancing the sustainable utilization of non-fossil resources, a one-step calcination strategy has been developed to fabricate hierarchical carbon aerogels from balsa wood. The resulting wood-derived carbon aerogels (WCA) were functionalized with Mg(OH)2 to boost their environmental remediation potential. Comprehensive characterization using XRD, FT-IR, XPS, and SEM confirmed that the optimized WCA/Mg(OH)2 composite (WCAMg) retained a three-dimensional hierarchical porous structure, and Mg(OH)2 nanosheets were attached to it. The adsorption performance of WCAMg composites towards Cd2+ was systematically investigated through controlled experiments, which focused on three critical variables (Mg(OH)2 loading content, initial Cd2+ concentration and solution ionic strength). The functionalized WCAMg demonstrated a maximum Cd2+ adsorption capacity of 351.1 mg g−1—a tenfold improvement over pristine WCA. Combined with exceptional adsorption efficiency, this biomass-derived composite offers an eco-friendly, cost-effective solution for heavy metal ion remediation. Its scalable fabrication from renewable resources aligns with sustainable water treatment objectives, presenting the advantage of pollution mitigation. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Graphical abstract

20 pages, 13042 KiB  
Article
Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II)
by Qiang Zhao, Jiawei Yang, Jiayi Xia, Gaotian Zhao, Yida Yang, Zongwei Zhang, Jing Li, Fang Wei and Weiguo Song
Nanomaterials 2025, 15(8), 614; https://doi.org/10.3390/nano15080614 - 16 Apr 2025
Viewed by 542
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions [...] Read more.
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalysis)
Show Figures

Graphical abstract

21 pages, 1500 KiB  
Review
Innovative Sorbents for the Removal of Micropollutants from Water
by Olga Solcova, Martina Dlaskova and Frantisek Kastanek
Molecules 2025, 30(7), 1444; https://doi.org/10.3390/molecules30071444 - 24 Mar 2025
Viewed by 627
Abstract
This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, [...] Read more.
This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, graphene, metal organic frameworks, and aerogels. These materials have great potential for the removal of heavy metals from water, particularly due to their large surface area, nanoscale size, and availability of various functionalities; moreover, they can easily be chemically modified and recycled. This paper not only highlights the advantages and ever-improving physicochemical properties of these new types of materials but also critically points out their shortcomings and suggests possible future directions. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Adsorbents for Pollutant Removal)
Show Figures

Figure 1

20 pages, 8566 KiB  
Article
Simultaneous Removal of Heavy Metals and Dyes on Sodium Alginate/Polyvinyl Alcohol/κ-Carrageenan Aerogel Beads
by Taesoon Jang, Soyeong Yoon, Jin-Hyuk Choi, Narae Kim and Jeong-Ann Park
Gels 2025, 11(3), 211; https://doi.org/10.3390/gels11030211 - 16 Mar 2025
Cited by 1 | Viewed by 2963
Abstract
Industrial textile wastewater containing both heavy metals and dyes has been massively produced. In this study, semi-interpenetrating polymer network structures of sodium alginate (SA)/polyvinyl alcohol (PVA)/κ-carrageenan (CG) aerogel beads were synthesized for their simultaneous reduction. The SA/PVA/CG aerogel beads were synthesized through a [...] Read more.
Industrial textile wastewater containing both heavy metals and dyes has been massively produced. In this study, semi-interpenetrating polymer network structures of sodium alginate (SA)/polyvinyl alcohol (PVA)/κ-carrageenan (CG) aerogel beads were synthesized for their simultaneous reduction. The SA/PVA/CG aerogel beads were synthesized through a cost-effective and environmentally friendly method using naturally abundant biopolymers without toxic cross-linkers. The SA/PVA/CG aerogel beads were spheres with a size of 3.8 ± 0.1 mm, exhibiting total pore areas of 15.2 m2/g and porous structures (pore size distribution: 0.04–242.7 μm; porosity: 93.97%) with abundant hydrogen bonding, high water absorption capacity, and chemical resistance. The adsorption capacity and mechanisms of the SA/PVA/CG aerogel beads were investigated through kinetic and isotherm experiments for heavy metals (Cu(II), Pb(II)), cationic dye (methylene blue, MB), and anionic dye (acid blue 25, AB)) in both single and binary systems. The maximum adsorption capacities of the SA/PVA/CG aerogel beads based on the Langmuir model of Cu(II), Pb(II), and MB were 85.17, 265.98, and 1324.30 mg/g, respectively. Pb(II) showed higher adsorption affinity than Cu(II) based on ionic properties, such as electronegativity and hydration radius. The adsorption of Cu(II), Pb(II), and MB on the SA/PVA/CG aerogel beads was spontaneous, with heavy metals and MB exhibiting endothermic and exothermic natures, respectively. Full article
(This article belongs to the Special Issue Eco-Friendly Gels for Adsorption)
Show Figures

Figure 1

Back to TopTop