Innovative Sorbents for the Removal of Micropollutants from Water
Abstract
:1. Introduction
2. Traditional Modified Sorbents
2.1. Activated Carbon
2.2. Composites with Clays
2.3. Biochar Modified with Transition Metals
3. New or Innovated Types of Sorbents
3.1. Carbon-Based Sorbents
3.1.1. Carbon and Metal-Based Nanotubes
3.1.2. Graphene/Graphene Oxide
3.1.3. Fullerenes
3.2. MOF—Metal Organic Framework
3.3. Aerogels as Innovative Sorbents
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ampC | Antibiotic Resistance Gene of β-Lactam |
BDC | 1,4-benzenedicarboxylate |
BDMHDA | benzyldimethylhexadecylammonium |
CNTs | Carbon nanotubes |
DDAB | Didodecyldimethylammonium bromide |
DMF | dimethylformamide |
ecfX | Antibiotic Resistance Gene |
ermB | Antibiotic Resistance Gene of Macrolide |
GO | Graphene oxide |
HDTMA | hexadecyltrimethylammonium bromide |
HPVP | poly-4-vinylpyridine-co-styrene |
MOF | Metal organic framework |
NZVI | Nano-zero valent iron |
ODTMA | octadecyltrimethylammonium |
PET | Polyethyleneglycol terephthalate |
PFAS | polyfluoroalkyl substances |
PFOA | perfluorooctanoic acid |
POE | Portulaca oleracea L. extract |
POPs | Persistent Organic Pollutants |
rGO | Reduced graphene oxide |
SA | Silica Aerogel |
Sul2 | Antibiotic Resistance Gene of Sulfanilamide |
tetA | Antibiotic Resistance Gene of Tetracycline |
WWTPs | Wastewater treatment plants |
References
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants—A Critical Review. Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Di Marcantonio, C.; Chiavola, A.; Dossi, S.; Cecchini, G.; Leoni, S.; Frugis, A.; Spizzirri, M.; Boni, M.R. Occurrence, Seasonal Variations and Removal of Organic Micropollutants in 76 Wastewater Treatment Plants. Process Saf. Environ. Prot. 2020, 141, 61–72. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Speth, T. PFAS Treatment in drinking water and wastewater. US EPA Office of Research and Development. In Proceedings of the PFAS Science Webinars for EPA Region 1 and State & Tribal Partners, Web Conference, 16 September 2020. [Google Scholar]
- Solcova, O.; Dlaskova, M.; Kastanek, F. Challenges and Advances in Tertiary Waste Water Treatment for Municipal Treatment Plants. Processes 2024, 12, 2084. [Google Scholar] [CrossRef]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An Overview of the Modification Methods of Activated Carbon for Its Water Treatment Applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Giwa, A.S.; Ndungutse, J.M.; Li, Y.; Mabi, A.; Liu, X.; Vakili, M.; Memon, A.G.; Ai, L.; Chenfeng, Z.; Sheng, M. Modification of Biochar with Fe 3 O 4 and Humic Acid-Salt for Removal of Mercury from Aqueous Solutions: A Review. Environ. Pollut. Bioavailab. 2022, 34, 352–364. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef]
- Jabbari, V.; Veleta, J.M.; Zarei-Chaleshtori, M.; Gardea-Torresdey, J.; Villagrán, D. Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity towards Organic Pollutants. Chem. Eng. J. 2016, 304, 774–783. [Google Scholar] [CrossRef]
- Koga, H.; Kitaoka, T. Activated Carbon Water Purification Filter Prepared by Wet Molding with a DualPolyelectrolyte Retention System. Sen’i Gakkaishi 2011, 67, 81–85. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Sreńscek-Nazzal, J. An Innovative and Environmentally Friendly Bioorganic Synthesis of Activated Carbon Based on Olive Stones and Its Potential Application for CO2 Capture. Sustain. Mater. Technol. 2023, 38, e00717. [Google Scholar] [CrossRef]
- Suhas; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; Singh, R.; Singh, L.P.; Chaudhary, M. An Innovative Approach to Develop Microporous Activated Carbons in Oxidising Atmosphere. J. Clean. Prod. 2017, 156, 549–555. [Google Scholar] [CrossRef]
- Pam, A.A. Innovative Activated Carbon Based on Deep Eutectic Solvents (DES) and H3PO4. C 2019, 5, 43. [Google Scholar] [CrossRef]
- Tian, H.; Pan, J.; Zhu, D.; Guo, Z.; Yang, C.; Xue, Y.; Li, S.; Wang, Y. Innovative One-Step Preparation of Activated Carbon from Low-Rank Coals Activated with Oxidized Pellets. J. Clean. Prod. 2021, 313, 127877. [Google Scholar] [CrossRef]
- Koo-amornpattana, W.; Phadungbut, P.; Kunthakudee, N.; Jonglertjunya, W.; Ratchahat, S.; Hunsom, M. Innovative Metal Oxides (CaO, SrO, MgO) Impregnated Waste-Derived Activated Carbon for Biohydrogen Purification. Sci. Rep. 2023, 13, 4705. [Google Scholar] [CrossRef]
- Ajayi, O.; Bowaje, M.; Ojo, A.; Ogunnaiya, B.; Idowu, E.; Oni, S.; Ajayi, O.; Dosunmu, B. A Review on Natural Clay Application for Removal of Pharmaceutical Residue in Wastewater. Prog. Chem. Biochem. Res. 2023, 6, 71–87. [Google Scholar]
- Mahouachi, L.; Rastogi, T.; Palm, W.-U.; Ghorbel-Abid, I.; Ben Hassen Chehimi, D.; Kümmerer, K. Natural Clay as a Sorbent to Remove Pharmaceutical Micropollutants from Wastewater. Chemosphere 2020, 258, 127213. [Google Scholar] [CrossRef]
- Viegas, R.M.A.; Melo, M.L.; Brandão Lima, L.C.; Garcia, R.R.P.; Filho, E.C.S.; Osajima, J.A.; Chiavone-Filho, O. Carbamazepine Adsorption with a Series of Organoclays: Removal and Toxicity Analyses. Appl. Water Sci. 2024, 14, 133. [Google Scholar] [CrossRef]
- Lelario, F.; Gardi, I.; Mishael, Y.; Dolev, N.; Undabeytia, T.; Nir, S.; Scrano, L.; Bufo, S.A. Pairing Micropollutants and Clay-Composite Sorbents for Efficient Water Treatment: Filtration and Modeling at a Pilot Scale. Appl. Clay Sci. 2017, 137, 225–232. [Google Scholar] [CrossRef]
- Khan, S.; Ajmal, S.; Hussain, T.; Rahman, M.U. Clay-Based Materials for Enhanced Water Treatment: Adsorption Mechanisms, Challenges, and Future Directions. J. Umm Al Qura Univ. Appl. Sci. 2023, 9, 1–16. [Google Scholar] [CrossRef]
- Kovalchuk, I. Clay-Based Sorbents for Environmental Protection from Inorganic Pollutants. Environ. Sci. Proc. 2023, 25, 34. [Google Scholar] [CrossRef]
- de Farias, M.B.; Spaolonzi, M.P.; da Silva, T.L.; da Silva, M.G.C.; Vieira, M.G.A. Natural and Synthetic Clay-Based Materials Applied for the Removal of Emerging Pollutants from Aqueous Medium. In Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2022; pp. 359–392. [Google Scholar] [CrossRef]
- Munir, M.; Nazar, M.F.; Zafar, M.N.; Zubair, M.; Ashfaq, M.; Hosseini-Bandegharaei, A.; Khan, S.U.-D.; Ahmad, A. Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega 2020, 5, 16711–16721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Mu, B.; Zhang, T.; Dong, C.; Zhu, Y.; Zong, L.; Wang, A. Synthesis of Biochar/Clay Mineral Nanocomposites Using Oil Shale Semi-Coke Waste for Removal of Organic Pollutants. Biochar 2023, 5, 7. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef]
- Atugoda, T.; Ashiq, A.; Keerthanan, S.; Wijekoon, P.; Ramanayaka, S.; Vithanage, M. Biochar Amalgamation with Clay: Enhanced Performance for Environmental Remediation. Adv. Chem. Pollut. Environ. Manag. Prot. 2021, 7, 1–37. [Google Scholar] [CrossRef]
- da Silva Neto, L.D.; de Sá, Í.M.G.L.; Gabriel, R.; dos Santos Lins, P.V.; Freire, J.T.; Meili, L. Application of Clay-Biochar Composites as Adsorbents for Water Treatment. In Clay Composites; Springer: Singapore, 2023; pp. 113–142. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.C.; Zhao, Z.; Liu, D.; Ren, J.; Luo, Y. Synthesis and Characterization of Clay-Biochars Produced with Facile Low-Temperature One-Step in the Presence of Air for Adsorbing Methylene Blue from Aqueous Solution. Front. Environ. Sci. 2023, 11, 1137284. [Google Scholar] [CrossRef]
- Rallet, D.; Paltahe, A.; Tsamo, C.; Loura, B. Synthesis of Clay-Biochar Composite for Glyphosate Removal from Aqueous Solution. Heliyon 2022, 8, e09112. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Qin, Y.; Li, G.; Gao, Y.; Zhang, L.; Ok, Y.S.; An, T. Persistent Free Radicals in Carbon-Based Materials on Transformation of Refractory Organic Contaminants (ROCs) in Water: A Critical Review. Water Res. 2018, 137, 130–143. [Google Scholar] [CrossRef]
- Li, X.; Cheng, H. Mn-Modified Biochars for Efficient Adsorption and Degradation of Cephalexin: Insight into the Enhanced Redox Reactivity. Water Res. 2023, 243, 120368. [Google Scholar] [CrossRef]
- Xu, Z.; Xiang, Y.; Zhou, H.; Yang, J.; He, Y.; Zhu, Z.; Zhou, Y. Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Levofloxacin: Effects and Mechanisms. Environ. Pollut. 2021, 272, 115968. [Google Scholar] [CrossRef]
- Niu, Z.; Feng, W.; Huang, H.; Wang, B.; Chen, L.; Miao, Y.; Su, S. Green Synthesis of a Novel Mn–Zn Ferrite/Biochar Composite from Waste Batteries and Pine Sawdust for Pb2+ Removal. Chemosphere 2020, 252, 126529. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Li, Y.; Zeng, W.; Yang, G.; Zeng, J.; Nie, J.; Zhou, Y. Synergistic Adsorption and Oxidation of Trivalent Antimony from Groundwater Using Biochar Supported Magnesium Ferrite: Performances and Mechanisms. Environ. Pollut. 2023, 323, 121318. [Google Scholar] [CrossRef]
- Gul, E.; Alrawashdeh, K.A.B.; Masek, O.; Skreiberg, Ø.; Corona, A.; Zampilli, M.; Wang, L.; Samaras, P.; Yang, Q.; Zhou, H.; et al. Production and Use of Biochar from Lignin and Lignin-Rich Residues (Such as Digestate and Olive Stones) for Wastewater Treatment. J. Anal. Appl. Pyrolysis 2021, 158, 105263. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Kumar, A.; Lai, C.W.; Naushad, M.; Shehnaz; Iqbal, J.; Stadler, F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorpt. Sci. Technol. 2022, 2022, 4184809. [Google Scholar] [CrossRef]
- Aslam, M.M.-A.; Kuo, H.-W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Cukierman, A.L.; Nunell, G.V.; Bonelli, P.R. Removal of Emerging Pollutants from Water through Adsorption onto Carbon-Based Materials. In Emerging and Nanomaterial Contaminants in Wastewater: Advanced Treatment Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–213. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Hoang, T.V.; Malwade, K.; Kanel, S.R.; Harper, W.F.; Struckhoff, G. Application of Carbon Nanotubes for Removal of Emerging Contaminants of Concern in Engineered Water and Wastewater Treatment Systems. Nanotechnol. Environ. Eng. 2019, 4, 12. [Google Scholar] [CrossRef]
- Taleb, A.; Naif Al-sharif, M.; Ali Al-mutair, M.; Almasoudi, S.; Madkhali, O.; Muzibur Rahman, M. Modification and Application of Carbon Nanotubes for the Removal of Emerging Contaminants from Wastewater: A Review. In Carbon Nanotubes—Recent Advances, New Perspectives and Potential Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Multi-Walled Carbon Nanotube. Available online: https://commons.wikimedia.org/wiki/File:Multi-walled_Carbon_Nanotube.png (accessed on 19 December 2024).
- Synthesis of Carbon Nanotube. Available online: https://en.wikipedia.org/wiki/Synthesis_of_carbon_nanotubes (accessed on 19 December 2024).
- Timesnano. Available online: http://www.timesnano.com/en/article.php?prt=1,21 (accessed on 19 December 2024).
- Spaolonzi, M.P.; Duarte, E.D.V.; Oliveira, M.G.; Costa, H.P.S.; Ribeiro, M.C.B.; Silva, T.L.; Silva, M.G.C.; Vieira, M.G.A. Green-Functionalized Carbon Nanotubes as Adsorbents for the Removal of Emerging Contaminants from Aqueous Media. J. Clean. Prod. 2022, 373, 133961. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Orona-Návar, C.; García-Morales, R.; Rubio-Govea, R.; Mahlknecht, J.; Hernandez-Aranda, R.I.; Ramírez, J.G.; Nigam, K.D.P.; Ornelas-Soto, N. Adsorptive Removal of Emerging Pollutants from Groundwater by Using Modified Titanate Nanotubes. J. Environ. Chem. Eng. 2018, 6, 5332–5340. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X. Adsorption of Graphene for the Removal of Inorganic Pollutants in Water Purification: A Review. Adsorption 2014, 20, 713–727. [Google Scholar] [CrossRef]
- Li, X.; Tao, Y.; Li, F.; Huang, M. Efficient Preparation and Characterization of Functional Graphene with Versatile Applicability. J. Harbin Inst. Technol. 2016, 23, 1–29. [Google Scholar]
- Jia, Y.; Guo, L.; Lu, W.; Guo, Y.; Lin, J.; Zhu, K.; Chen, L.; Huang, Q.; Huang, J.; Li, Z.; et al. Fabrication and Characterization of Graphene Derived from SiC. Sci. China Phys. Mech. Astron. 2013, 56, 2386–2394. [Google Scholar] [CrossRef]
- Munuera, J.; Britnell, L.; Santoro, C.; Cuéllar-Franca, R.; Casiraghi, C. A Review on Sustainable Production of Graphene and Related Life Cycle Assessment. 2D Mater. 2021, 9, 012002. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, C.; Chen, Y.; Nie, Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials 2022, 12, 2336. [Google Scholar] [CrossRef]
- Graphen. Available online: https://cs.wikipedia.org/wiki/Grafen (accessed on 19 December 2024).
- Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a New Sorbent in Analytical Chemistry. Trends Anal. Chem. 2013, 51, 33–43. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (RGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Graphite Oxide. Available online: https://en.wikipedia.org/wiki/Graphite_oxide#/media/File:Graphite_oxide.svg (accessed on 19 December 2024).
- Anegbe, B.; Ifijen, I.H.; Maliki, M.; Uwidia, I.E.; Aigbodion, A.I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024, 36, 15. [Google Scholar] [CrossRef]
- Li, G.; Du, R.; Cao, Z.; Li, C.; Xue, J.; Ma, X.; Wang, S. Research Progress in Graphene-Based Adsorbents for Wastewater Treatment: Preparation, Adsorption Properties and Mechanisms for Inorganic and Organic Pollutants. C 2024, 10, 78. [Google Scholar] [CrossRef]
- Lü, M.; Li, J.; Yang, X.; Zhang, C.; Yang, J.; Hu, H.; Wang, X. Applications of Graphene-Based Materials in Environmental Protection and Detection. Chin. Sci. Bull. 2013, 58, 2698–2710. [Google Scholar] [CrossRef]
- MSE Suppliers. Is Graphene Hydrophilic or Hydrophobic? Available online: https://www.msesupplies.com/blogs/news/is-graphene-hydrophilic-or-hydrophobic (accessed on 7 January 2025).
- Kulakova, I.I.; Lisichkin, G.V. Prospects for Using Graphene Nanomaterials: Sorbents, Membranes, and Gas Sensors. Russ. J. Appl. Chem. 2021, 94, 1177–1188. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Han, L.; Wang, J.; Zhu, L.; Zeng, H. Graphene-Based Materials for Adsorptive Removal of Pollutants from Water and Underlying Interaction Mechanism. Adv. Colloid Interface Sci. 2021, 289, 102360. [Google Scholar] [CrossRef]
- Machado, A.B.; Schmitt, P.; Maraschin, T.G.; Osorio, D.M.M.; Basso, N.R.D.S.; Berlese, D.B. Adsorption Capacity of Pollutants from Water by Graphene and Graphene-Based Materials: A Bibliographic Review. Contrib. Cienc. Sociales 2024, 17, e4707. [Google Scholar] [CrossRef]
- Baig, N.; Ihsanullah; Sajid, M.; Saleh, T.A. Graphene-Based Adsorbents for the Removal of Toxic Organic Pollutants: A Review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef]
- Rosli, F.A.; Ahmad, H.; Jumbri, K.; Abdullah, A.H.; Kamaruzaman, S.; Fathihah Abdullah, N.A. Efficient Removal of Pharmaceuticals from Water Using Graphene Nanoplatelets as Adsorbent. R. Soc. Open Sci. 2021, 8, 201076. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene Oxide and Its Application as an Adsorbent for Wastewater Treatment. J. Chem. Technol. Biotechnol. 2013, 89, 196–205. [Google Scholar] [CrossRef]
- Nanografi. Available online: https://nanografi.com/about-us-references/ (accessed on 6 January 2025).
- Bytesnikova, Z.; Richtera, L.; Smerkova, K.; Adam, V. Graphene Oxide as a Tool for Antibiotic-Resistant Gene Removal: A Review. Environ. Sci. Pollut. Res. 2019, 26, 20148–20163. [Google Scholar] [CrossRef]
- Yu, W.; Zhan, S.; Shen, Z.; Zhou, Q.; Yang, D. Efficient Removal Mechanism for Antibiotic Resistance Genes from Aquatic Environments by Graphene Oxide Nanosheet. Chem. Eng. J. 2017, 313, 836–846. [Google Scholar] [CrossRef]
- Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Drosou, C.; Bertakis, Y.; Christofilos, D.; Armatas, G.S.; Sygellou, L.; Schwartz, T.; Xekoukoulotakis, N.P.; et al. Removal of Antibiotics, Antibiotic-Resistant Bacteria and Their Associated Genes by Graphene-Based TiO2 Composite Photocatalysts under Solar Radiation in Urban Wastewaters. Appl. Catal. B Environ. 2018, 224, 810–824. [Google Scholar] [CrossRef]
- Pant, A.; Jain, R.; Ahammad, S.Z.; Ali, S.W. Removal of Antibiotic Resistance Genes from Wastewater Using Diethylaminoethyl Cellulose as a Promising Adsorbent. J. Water Process Eng. 2023, 55, 104109. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Ham, S.; Qiao, R. Graphene Oxide and Its Derivatives as Adsorbents for PFOA Molecules. J. Phys. Chem. B 2023, 127, 9620–9629. [Google Scholar] [CrossRef]
- Tunioli, F.; Marforio, T.D.; Favaretto, L.; Mantovani, S.; Pintus, A.; Bianchi, A.; Kovtun, A.; Agnes, M.; Palermo, V.; Calvaresi, M.; et al. Chemical Tailoring of Β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water. Chem. A Eur. J. 2023, 29, e202301854. [Google Scholar] [CrossRef]
- Gupta, V.K.; Saleh, T.A. Sorption of Pollutants by Porous Carbon, Carbon Nanotubes and Fullerene- An Overview. Environ. Sci. Pollut. Res. 2013, 20, 2828–2843. [Google Scholar] [CrossRef]
- Fullerene. Available online: https://cs.wikipedia.org/wiki/Fullereny (accessed on 7 January 2025).
- Elessawy, N.A.; El-Sayed, E.M.; Ali, S.; Elkady, M.F.; Elnouby, M.; Hamad, H.A. One-Pot Green Synthesis of Magnetic Fullerene Nanocomposite for Adsorption Characteristics. J. Water Process Eng. 2020, 34, 101047. [Google Scholar] [CrossRef]
- Alomar, M.; Khan, A.A. Porphyrin like Porous Fullerene Functionalized with Ga as an Effective Adsorbent for the Removal of Methylene Blue from Wastewater Effluent. Surf. Interfaces 2024, 52, 104883. [Google Scholar] [CrossRef]
- Kausar, A. Fullerene in Water Remediation Nanocomposite Membranes—Cutting Edge Advancements. Charact. Appl. Nanomater. 2024, 7, 4945. [Google Scholar] [CrossRef]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019, 14, 341. [Google Scholar] [CrossRef]
- Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Iii, T.G.; et al. Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593. [Google Scholar] [CrossRef] [PubMed]
- Ossila. MOF Ligands. Available online: https://www.ossila.com/collections/mof-ligands (accessed on 6 January 2025).
- Kumar, M.; Kulkarni, N.V. Metal-Organic Frameworks (MOFs). Available online: https://www.amrita.edu/news/metal-organic-frameworks-mofs/ (accessed on 6 January 2025).
- Kaye, S.S.; Dailly, A.; Yaghi, O.M.; Long, J.R. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-Benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Wang, M.; Wang, X.; Cui, H.; Wei, J.; Li, X. The Role of Metal-Organic Frameworks in Removing Emerging Contaminants in Wastewater. J. Clean. Prod. 2023, 429, 139526. [Google Scholar] [CrossRef]
- Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016, 138, 6204–6216. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Keser Demir, N.; Chen, J.P.; Li, K. Applications of Water Stable Metal–Organic Frameworks. Chem. Soc. Rev. 2016, 45, 5107–5134. [Google Scholar] [CrossRef]
- Ramezanalizadeh, H.; Manteghi, F. Synthesis of a Novel MOF/CuWO4 Heterostructure for Efficient Photocatalytic Degradation and Removal of Water Pollutants. J. Clean. Prod. 2018, 172, 2655–2666. [Google Scholar] [CrossRef]
- Beydaghdari, M.; Saboor, F.H.; Babapoor, A.; Asgari, M. Recent Progress in Adsorptive Removal of Water Pollutants by Metal-Organic Frameworks. Chemnanomat 2022, 8, e202100400. [Google Scholar] [CrossRef]
- Darabdhara, J.; Ahmaruzzaman, M. Recent Developments in MOF and MOF Based Composite as Potential Adsorbents for Removal of Aqueous Environmental Contaminants. Chemosphere 2022, 304, 135261. [Google Scholar] [CrossRef]
- Zadehahmadi, F.; Eden, N.T.; Mahdavi, H.; Konstas, K.; Mardel, J.I.; Shaibani, M.; Banerjee, P.C.; Hill, M.R. Removal of Metals from Water Using MOF-Based Composite Adsorbents. Environ. Sci. Water Res. Technol. 2023, 9, 1305–1330. [Google Scholar] [CrossRef]
- Yan, C.; Jin, J.; Wang, J.; Zhang, F.; Tian, Y.; Liu, C.; Zhang, F.; Cao, L.; Zhou, Y.; Han, Q. Metal–Organic Frameworks (MOFs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. Coord. Chem. Rev. 2022, 468, 214595. [Google Scholar] [CrossRef]
- Wei, Z.; Su, Q.; Lin, Q.; Wang, X.; Long, S.; Zhang, G.; Yang, J. Multifunctional Oxidized Poly (Arylene Sulfide Sulfone)/UiO-66 Nanofibrous Membrane with Efficient Adsorption/Separation Ability in Harsh Environment. Chem. Eng. J. 2022, 430, 133021. [Google Scholar] [CrossRef]
- Martell Mendoza, M.; Alberto Méndez Cuesta, C.; Angel Zavala Sánchez, M.; Cuauhtemoc Pérez Montiel, E.; Mata Berbudez, A.; Pérez González, C. Metal Organic Frameworks Used as Antibiotic Removal Agents in Water. In Wastewater Treatment—Past and Future Perspectives; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L.; et al. A Review of Metal Organic Framework (MOFs)-Based Materials for Antibiotics Removal via Adsorption and Photocatalysis. Chemosphere 2021, 272, 129501. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Ge, F.; Ren, S.; Gao, X.; Zheng, H. A Water-Stable Cd-MOF and Corresponding MOF@melamine Foam Composite for Detection and Removal of Antibiotics, Explosives, and Anions. Sep. Purif. Technol. 2022, 286, 120433. [Google Scholar] [CrossRef]
- Xu, Z.; Wen, Y.; Tian, L.; Li, G. Efficient and Selective Adsorption of Nitroaromatic Explosives by Zr-MOF. Inorg. Chem. Commun. 2017, 77, 11–13. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, C.; Xia, W.; Liang, Y.; Zeng, Y.; Zhao, X.; Xiong, W.; Cheng, M.; Wang, Z. Recent Advances in Metal–Organic Framework-Based Materials for Removal of Fluoride in Water: Performance, Mechanism, and Potential Practical Application. Chem. Eng. J. 2022, 446, 137299. [Google Scholar] [CrossRef]
- Lal, S.; Singh, P.; Singhal, A.; Kumar, S.; Singh Gahlot, A.P.; Gandhi, N.; Kumari, P. Advances in Metal–Organic Frameworks for Water Remediation Applications. RSC Adv. 2024, 14, 3413–3446. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Abedpour, H.; Moghaddas, J.S.; Borhani, M.N.; Borhani, T.N. Separation of Toxic Contaminants from Water by Silica Aerogel-Based Adsorbents: A Comprehensive Review. J. Water Process Eng. 2023, 53, 103676. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Štandeker, S.; Novak, Z.; Knez, Ž. Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels. J. Colloid Interface Sci. 2007, 310, 362–368. [Google Scholar] [CrossRef]
- Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. [Google Scholar] [CrossRef] [PubMed]
- Sekwele, K.G.; Tichapondwa, S.M.; Mhike, W. Cellulose, Graphene and Graphene-Cellulose Composite Aerogels and Their Application in Water Treatment: A Review. Discov. Mater. 2024, 4, 23. [Google Scholar] [CrossRef]
- Aylaz, G.; Okan, M.; Duman, M.; Aydin, H.M. Study on Cost-Efficient Carbon Aerogel to Remove Antibiotics from Water Resources. ACS Omega 2020, 5, 16635–16644. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kamaruddin, M.A.; HPS, A.K.; Yahya, E.B.; Muhammad, S.; Rizal, S.; Ahmad, M.I.; Surya, I.; Abdullah, C.K. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023, 9, 416. [Google Scholar] [CrossRef]
- Boccia, A.C.; Neagu, M.; Pulvirenti, A. Bio-Based Aerogels for the Removal of Heavy Metal Ions and Oils from Water: Novel Solutions for Environmental Remediation. Gels 2023, 10, 32. [Google Scholar] [CrossRef]
- Lv, T.; Wu, F.; Zhang, Z.; Liu, Z.; Zhao, Y.; Yu, L.; Zhang, J.; Yu, C.; Zhao, C.; Xing, G. TiVCT X MXene/Graphene Nanosheet-Based Aerogels for Removal of Organic Contaminants from Wastewater. ACS Appl. Nano Mater. 2024, 7, 7312–7326. [Google Scholar] [CrossRef]
- Niu, X.; Si, J.; Chen, B.; Wang, Q.; Zeng, S.; Cui, Z. Preparation of Bioaerogel from Iron-Rich Microalgae for the Removal of Water Pollutants. Processes 2024, 12, 1313. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Garg, S.; Singh, S.; Shehata, N.; Sharma, H.; Samuel, J.; A Khan, N.; Ramamurthy, P.C.; Singh, J.; Mubashir, M.; Bokhari, A.; et al. Aerogels in Wastewater Treatment: A Review. J. Taiwan Inst. Chem. Eng. 2023, 166, 105299. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Lopes, D.; Girão, A.V.; Silva, R.F.; Malfait, W.J.; Durães, L. Carbon Nanostructures—Silica Aerogel Composites for Adsorption of Organic Pollutants. Toxics 2023, 11, 232. [Google Scholar] [CrossRef]
- Sharma, S.K.; Ranjani, P.; Mamane, H.; Kumar, R. Preparation of Graphene Oxide-Doped Silica Aerogel Using Supercritical Method for Efficient Removal of Emerging Pollutants from Wastewater. Sci. Rep. 2023, 13, 16448. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Torres, R.B.; Vareda, J.P.; Lopes, D.; Ferreira, M.; Valente, V.; Girão, A.V.; Valente, A.J.M.; Durães, L. Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants. Molecules 2019, 24, 3701. [Google Scholar] [CrossRef] [PubMed]
- Gorgolis, G.; Kotsidi, M.; Paterakis, G.; Koutroumanis, N.; Tsakonas, C.; Galiotis, C. Graphene Aerogels as Efficient Adsorbers of Water Pollutants and Their Effect of Drying Methods. Sci. Rep. 2024, 14, 8029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solcova, O.; Dlaskova, M.; Kastanek, F. Innovative Sorbents for the Removal of Micropollutants from Water. Molecules 2025, 30, 1444. https://doi.org/10.3390/molecules30071444
Solcova O, Dlaskova M, Kastanek F. Innovative Sorbents for the Removal of Micropollutants from Water. Molecules. 2025; 30(7):1444. https://doi.org/10.3390/molecules30071444
Chicago/Turabian StyleSolcova, Olga, Martina Dlaskova, and Frantisek Kastanek. 2025. "Innovative Sorbents for the Removal of Micropollutants from Water" Molecules 30, no. 7: 1444. https://doi.org/10.3390/molecules30071444
APA StyleSolcova, O., Dlaskova, M., & Kastanek, F. (2025). Innovative Sorbents for the Removal of Micropollutants from Water. Molecules, 30(7), 1444. https://doi.org/10.3390/molecules30071444