Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = mesoporous magnetic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5523 KB  
Article
Synthesis and Magnetic and Optical Properties of Novel Fe@ZSM-5 Composites
by Irina A. Zvereva, Denis A. Pankratov, Elena G. Zemstova, Vladimir K. Kudymov, Azamat Samadov, Sergey A. Kurnosenko, Sergey O. Kirichenko, Marina G. Shelyapina and Vitalii Petranovskii
Molecules 2026, 31(1), 89; https://doi.org/10.3390/molecules31010089 - 25 Dec 2025
Viewed by 338
Abstract
Alkaline treatment in 0.2 and 0.4 M NaOH solutions successfully generated controlled mesoporosity into ZSM-5 (Zeolite Socony Mobil-5) zeolite, resulting in average mesopore diameters of approximately 15 and 25 nm, respectively, while preserving the crystalline structure of the zeolite framework. Parent ZSM-5 and [...] Read more.
Alkaline treatment in 0.2 and 0.4 M NaOH solutions successfully generated controlled mesoporosity into ZSM-5 (Zeolite Socony Mobil-5) zeolite, resulting in average mesopore diameters of approximately 15 and 25 nm, respectively, while preserving the crystalline structure of the zeolite framework. Parent ZSM-5 and its mesoporous derivatives obtained by desilication were used to prepare (Fe species)@(zeolite matrix) composites. The synthesis was carried out by co-precipitating Fe2+/Fe3+ ions onto both parent and desilicated ZSM-5 matrices under oxygen-free conditions. Comprehensive characterization by X-ray diffraction, scanning electron microscopy, N2 adsorption, vibrating-sample magnetometry, 57Fe Mössbauer spectroscopy, and diffuse reflectance UV–Vis spectroscopy revealed that the degree of introduced mesoporosity dramatically influences the size, dispersion, phase composition, and oxidation state of the iron-containing nanospecies. On purely microporous ZSM-5, relatively large (~15 nm) partially oxidized magnetite nanoparticles are formed predominantly on the external surface, exhibiting superparamagnetism at room temperature (Mₛ = 11 emu/g) and a band gap of 2.12 eV. Increasing mesoporosity leads to progressively smaller and more highly dispersed iron(III) oxo/hydroxo clusters with significantly lower blocking temperatures and reduced magnetization (down to 0.7 emu/g for Fe@ZSM-5_0.4). All composites display strong visible-light absorption confirming their potential as magnetically separable visible-light-driven photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Synthesis and Application of Multifunctional Nanocomposites)
Show Figures

Graphical abstract

31 pages, 22151 KB  
Article
Calcium-Enriched Magnetic Core–Shell Mesoporous Nanoparticles for Potential Application in Bone Regeneration
by Despoina Kordonidou, Georgia K. Pouroutzidou, Nikoletta Florini, Ioannis Tsamesidis, Konstantina Kazeli, Dimitrios Gkiliopoulos, George Vourlias, Makis Angelakeris, Philomela Komninou, Panos Patsalas and Eleana Kontonasaki
Nanomaterials 2025, 15(24), 1904; https://doi.org/10.3390/nano15241904 - 18 Dec 2025
Viewed by 518
Abstract
Magnetite (Fe3O4) nanoparticles are biocompatible, non-toxic, and easily functionalized. Coating them with mesoporous silica (mSiO2) offers high surface area, pore volume, and tunable surface chemistry for drug loading. In this study, Fe3O4 magnetic nanoparticles [...] Read more.
Magnetite (Fe3O4) nanoparticles are biocompatible, non-toxic, and easily functionalized. Coating them with mesoporous silica (mSiO2) offers high surface area, pore volume, and tunable surface chemistry for drug loading. In this study, Fe3O4 magnetic nanoparticles were synthesized and coated with mSiO2 shells enriched with calcium ions (Ca2+), aiming to enhance bioactivity for bone regeneration and tissue engineering. Different synthesis routes were tested to optimize shell formation Their characterization confirmed the presence of a crystalline Fe3O4 core with partial conversion to maghemite (Fe2O3) post-coating. The silica shell was mostly amorphous and the optimized samples exhibited mesoporous structure (type IVb). Calcium incorporation slightly altered the magnetic properties without significantly affecting core crystallinity or particle size (11.68–13.56 nm). VSM analysis displayed symmetric hysteresis loops and decreased saturation magnetization after coating and Ca2+ addition. TEM showed spherical morphology with some agglomeration. MTT assays confirmed overall non-toxicity, except for mild cytotoxicity at high concentrations in the Ca2+-enriched sample synthesized by a modified Stöber method. Their capacity to induce human periodontal ligament cell osteogenic differentiation, further supports the potential of Fe3O4/mSiO2/Ca2+ core–shell nanoparticles as promising candidates for bone-related biomedical applications due to their favorable magnetic, structural, and biological properties. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

19 pages, 2482 KB  
Review
Application of Metal-Doped Nanomaterials in Cancer Diagnosis and Treatment
by Xinhao Jin and Qi Sun
J. Nanotheranostics 2025, 6(4), 35; https://doi.org/10.3390/jnt6040035 - 17 Dec 2025
Viewed by 334
Abstract
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic [...] Read more.
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic approach to oncology. This article explores the design and application of various metal-doped nanosystems, including gadolinium-doped selenium molybdenum nanosheets for magnetic resonance/photoacoustic dual-mode imaging and photothermal therapy, and metal-doped hollow mesoporous silica nanoparticles that leverage the tumor’s acidic microenvironment to release ions for catalytic generation of reactive oxygen species. Despite their promise, the limited enzyme-like activity of some nanozymes, insufficient endogenous hydrogen peroxide in tumors, and the tumor microenvironment’s defensive mechanisms, such as high glutathione levels, can restrict therapeutic efficacy. Looking forward, the outlook for the field is contingent upon advancing material engineering strategies. Future research should prioritize the development of intelligent, multifunctional nanoplatforms that can dynamically respond to and remodel the tumor microenvironment. Innovations in surface modification for enhanced targeting, alongside rigorous preclinical studies focused on safety and standardized manufacturing, are crucial for bridging the gap between laboratory research and clinical application, ultimately paving the way for personalized cancer medicine. Full article
(This article belongs to the Special Issue Feature Review Papers in Nanotheranostics)
Show Figures

Figure 1

16 pages, 2157 KB  
Article
Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions
by Mohamed Enneiymy, Cyril Vaulot, Loïc Vidal, Camelia Matei Ghimbeu, Claude Le Drian and Jean-Michel Becht
Catalysts 2025, 15(12), 1126; https://doi.org/10.3390/catal15121126 - 2 Dec 2025
Viewed by 465
Abstract
Easy and rapid preparations of magnetic Co- and Pd-containing mesoporous carbons (IM1, IM2 and DM) from green phenolic resins, amphiphilic templates and metallic salts via two synthetic routes are reported. Catalysts IM1 and IM2 are prepared via an indirect method [...] Read more.
Easy and rapid preparations of magnetic Co- and Pd-containing mesoporous carbons (IM1, IM2 and DM) from green phenolic resins, amphiphilic templates and metallic salts via two synthetic routes are reported. Catalysts IM1 and IM2 are prepared via an indirect method involving two steps, i.e., the preparation of Co-containing mesoporous carbons with different Co contents (2.5 and 12.5%) and the further introduction of Pd (2.3%) via impregnation using a solution of a Pd salt and a process of thermal reduction. The mesoporous carbon obtained contains two distinct crystalline metallic phases, i.e., Co particles of 5.0 nm (IM1) and Pd nanoparticles of ~1.3 nm (IM1), while the increase in Co content triggers higher Co particle sizes of 23 nm and Pd particle sizes of 1.3 and 6.8 nm (IM2). Differently, the catalyst DM is prepared via direct synthesis, in one step, including all precursors and both metal salts. This results in Pd50-Co50 nanoalloys of 6.5 nm uniformly dispersed in the carbon matrix. The reactivity and reusability of catalysts IM1, IM2 and DM were then ascertained in organic synthesis for hydrogenations of nitroarenes and enones. It turned out that no reactions were observed in the presence of the catalyst DM due to the presence of Co in Pd50-Co50, which deactivates the catalytic activity of Pd. Gratifyingly, catalysts IM1 and IM2 were very efficient for mild hydrogenations of both nitroarenes and enones using only 5 mequiv. of supported Pd in EtOH at room temperature. The smaller Pd particle sizes (1.3 nm) and the high surface-to-volume area are probably responsible for the high reactivity observed. Catalysts IM1 and IM2 can be recovered by application of an external magnetic field. However, a more efficient magnetic recovery of catalyst IM2 compared to IM1 was observed due to its higher Co content. Catalyst IM2 can be successfully reused at least seven times without a loss of efficiency. Finally, almost-Pd-free products can be obtained directly after reaction without any purification step, since the Pd leaching is very low (<0.1% of the initial amount), thus decreasing waste and increasing the reaction’s efficiency. Full article
(This article belongs to the Special Issue Catalyst Immobilization)
Show Figures

Graphical abstract

20 pages, 2686 KB  
Article
Quantitative Analysis of Diazepam Residues in Aquatic Products Using Magnetic Solid-Phase Extraction Combined with Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry
by Mengqiong Yang, Guangming Mei, Daoxiang Huang, Xiaojun Zhang and Pengfei He
Foods 2025, 14(23), 4087; https://doi.org/10.3390/foods14234087 - 28 Nov 2025
Viewed by 525
Abstract
A method combining magnetic solid-phase extraction (MSPE) with ultra-high performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of diazepam residues in aquatic products. A novel magnetic nanoparticle material, Fe3O4@SiO2@DVB-NVP, was synthesized and applied as [...] Read more.
A method combining magnetic solid-phase extraction (MSPE) with ultra-high performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of diazepam residues in aquatic products. A novel magnetic nanoparticle material, Fe3O4@SiO2@DVB-NVP, was synthesized and applied as an adsorbent for sample cleanup. The sample preparation procedure involved extraction with 1% ammonia–acetonitrile, followed by purification using the MSPE technique to efficiently remove matrix interferents. Chromatographic separation was achieved on an ACQUITY UPLC BEH C18 column with a gradient elution program using a mobile phase composed of 0.1% formic acid–2 mM ammonium acetate solution and methanol. Detection was performed under multiple-reaction monitoring (MRM) mode with positive electrospray ionization (ESI+). Quantification was carried out using the external standard method. The synthesized magnetic material was characterized using SEM, TEM, FTIR, XRD, BET, and VSM, confirming its mesoporous structure, strong adsorption capacity, and excellent magnetic responsiveness. The method demonstrated good linearity over the concentration range of 0.25–50 μg/L (r2 = 0.997). The limits of detection and quantification were 0.20 μg/kg and 0.50 μg/kg, respectively. Average recoveries from spiked blank matrices at three levels (0.5, 2.5, and 5.0 μg/kg) ranged from 89.3% to 119.7%, with relative standard deviations (RSDs) between 0.8% and 10.2%. The proposed method is highly selective, exhibits minimal matrix interference, and provides reliable quantitative performance, making it suitable for the qualitative and quantitative analysis of diazepam residues in aquatic products. Full article
Show Figures

Figure 1

21 pages, 4979 KB  
Article
Synthesis and Characterization of Multifunctional Mesoporous Silica Nanoparticles Containing Gold and Gadolinium as a Theranostic System
by André Felipe Oliveira, Isabela Barreto da Costa Januário Meireles, Maria Angela Barros Correia Menezes, Klaus Krambrock and Edésia Martins Barros de Sousa
J. Nanotheranostics 2025, 6(4), 26; https://doi.org/10.3390/jnt6040026 - 26 Sep 2025
Viewed by 1382
Abstract
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while [...] Read more.
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while gold nanoparticles (AuNPs) display remarkable optical features. Both types of nanoparticles have been widely researched for their individual roles in drug delivery, imaging, biosensing, and therapy. When combined with gadolinium (Gd), a common contrast agent, these nanostructures provide improved imaging due to gadolinium’s strong paramagnetic properties. This study focuses on incorporating gold nanoparticles and gadolinium into a silica matrix to develop a theranostic system. Various analytical techniques were used to characterize the nanocomposites, including infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), nitrogen adsorption, scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and neutron activation analysis (NAA). Techniques like XRF mapping, XANES, nitrogen adsorption, SEM, and VSM were crucial in confirming the presence of gadolinium and gold within the silica network. VSM and EPR analyses confirmed the attenuation of the saturation magnetization for all nanocomposites. This validates their potential for biomedical applications in diagnostics. Moreover, activating gold nanoparticles in a nuclear reactor generated a promising radioisotope for cancer treatment. These results indicate the potential of using a theranostic nanoplatform that employs mesoporous silica as a carrier, gold nanoparticles for radioisotopes, and gadolinium for imaging purposes. Full article
Show Figures

Figure 1

12 pages, 3641 KB  
Article
Metallic Lanthanum (III) Hybrid Magnetic Nanocellulose Composites for Enhanced DNA Capture via Rare-Earth Coordination Chemistry
by Jiayao Yang, Jie Fei, Hongpeng Wang and Ye Li
Inorganics 2025, 13(8), 257; https://doi.org/10.3390/inorganics13080257 - 1 Aug 2025
Viewed by 1017
Abstract
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen [...] Read more.
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen (P/N) ligand separation. The hybrid material employs the adaptable coordination geometry and strong affinity for oxygen of La3+ ions to show enhanced DNA-binding capacity via multi-site coordination with phosphate backbones and bases. This study utilized cellulose as a carrier, which was modified through carboxylation and amination processes employing deep eutectic solvents (DES) and polyethyleneimine. Magnetic nanoparticles and La(OH)3 were subsequently incorporated into the cellulose via in situ growth. NNC@Fe3O4@La(OH)3 showed a specific surface area of 36.2 m2·g−1 and a magnetic saturation intensity of 37 emu/g, facilitating the formation of ligands with accessible La3+ active sites, hence creating mesoporous interfaces that allow for fast separation. NNC@Fe3O4@La(OH)3 showed a significant affinity for DNA, with adsorption capacities reaching 243 mg/g, mostly due to the multistage coordination binding of La3+ to the phosphate groups and bases of DNA. Simultaneously, kinetic experiments indicated that the binding process adhered to a pseudo-secondary kinetic model, predominantly dependent on chemisorption. This study developed a unique rare-earth coordination-driven functional hybrid material, which is highly significant for constructing selective separation platforms for P/N-containing ligands. Full article
Show Figures

Graphical abstract

22 pages, 3291 KB  
Article
Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products
by Mengqiong Yang, Guangming Mei, Daoxiang Huang, Xiaojun Zhang, Pengfei He and Si Chen
Foods 2025, 14(14), 2421; https://doi.org/10.3390/foods14142421 - 9 Jul 2025
Cited by 1 | Viewed by 959
Abstract
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles [...] Read more.
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles via MDSPE before UPLC-MS/MS analysis. Separation was performed on a C18 column with gradient elution using 0.1% formic acid–2 mM ammonium acetate/methanol. Detection employed positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. Characterization confirmed Fe3O4@SiO2-PSA’s mesoporous structure with excellent adsorption capacity and magnetic properties. The method showed good linearity (0.1–10 μg/L, r > 0.99) with an LOD and LOQ of 0.20 μg/kg and 0.50 μg/kg, respectively. Recoveries at 0.5–15.0 µg/kg spiking levels were 74.9–109% (RSDs 1.24–11.6%). This approach provides rapid, accurate, and high-precision analysis of diazepam in aquatic products, meeting regulatory requirements. Full article
Show Figures

Figure 1

18 pages, 2180 KB  
Article
Novel Magnetically Recoverable Amino-Functionalized MIL-101(Fe) Composite with Enhanced Adsorption Capacity for Pb(II) and Cd(II) Ions
by Claudia Maria Simonescu, Daniela C. Culita, Gabriela Marinescu, Irina Atkinson, Virgil Marinescu, Ovidiu Oprea and Nicolae Stanica
Molecules 2025, 30(13), 2879; https://doi.org/10.3390/molecules30132879 - 7 Jul 2025
Cited by 3 | Viewed by 1740
Abstract
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This [...] Read more.
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This hybrid composite retains the high adsorption capacity of NH2-MIL-101(Fe) while benefiting from the easy magnetic separation enabled by Fe3O4 nanoparticles. The mesoporous silica forms a protective porous coating around the magnetic nanoparticles, significantly enhancing its chemical stability and preventing clumping. Beyond protection, the mesoporous silica layer provides a high-surface-area scaffold that promotes the uniform in situ growth of NH2-MIL-101(Fe). Functionalization of the silica surface with chloride groups enables strong electrostatic interactions between the magnetic component and metal organic framework (MOF), ensuring a homogeneous and stable hybrid structure. The new composite’s capacity to remove Pb(II) and Cd(II) ions from aqueous solutions was systematically investigated. The adsorption data showed a good fit with the Langmuir isotherm model for both ions, the maximum adsorption capacities calculated being 214.6 mg g−1 for Pb(II) and 181.6 mg g−1 Cd(II). Furthermore, the kinetic behavior of the adsorption process was accurately described by the pseudo-second-order model. These findings confirm the effectiveness of this composite for the removal of Pb(II) and Cd(II) ions from aqueous solutions, demonstrating its potential as an efficient material for environmental remediation. The combination of magnetic recovery, high adsorption capacity, and stability makes this novel composite a promising candidate for heavy metal removal applications in water treatment processes. Full article
Show Figures

Figure 1

33 pages, 4970 KB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 13 | Viewed by 6261
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

17 pages, 4722 KB  
Article
Kinetic and Methodological Insights into Hydrophilic Drug Release from Mesoporous Silica Nanocarriers
by Rodrigo Rozas, Andrea C. Ortiz, Sofía Peñaloza, Sebastián Lizama, Mario E. Flores, Javier Morales and Francisco Arriagada
Pharmaceutics 2025, 17(6), 694; https://doi.org/10.3390/pharmaceutics17060694 - 25 May 2025
Cited by 1 | Viewed by 1884
Abstract
Background/Objectives: The absence of standardized protocols for assessing in vitro drug release from nanocarriers poses significant challenges in nanoformulation development. This study evaluated three in vitro methods: sample and separate without medium replacement (independent batch), sample and separate with medium replacement, and a [...] Read more.
Background/Objectives: The absence of standardized protocols for assessing in vitro drug release from nanocarriers poses significant challenges in nanoformulation development. This study evaluated three in vitro methods: sample and separate without medium replacement (independent batch), sample and separate with medium replacement, and a dialysis bag method, to characterize the release of rhodamine B from mesoporous silica nanoparticles (MSNs). Methods: Each method was examined under varying agitation conditions (shaking versus stirring). MSNs were synthesized via the sol-gel method, exhibiting a hydrodynamic diameter of 202 nm, a zeta potential of −23.5 mV, and a surface area of 688 m2/g, with a drug loading efficiency of 32.4%. Results: Release profiles revealed that the independent batch method exhibited a rapid initial burst followed by a plateau after 4 h, attributed to surface saturation effects. Conversely, the sample and separate with medium replacement method sustained the release up to 60% over 48 h, maintaining sink conditions. The dialysis method showed agitation-dependent variability, with magnetic stirring using a longer stir bar enhancing release. Kinetic analyses indicated first-order kinetics with non-Fickian diffusion. Conclusions: Overall, the results indicate that both the selection of the in vitro method and the agitation technique play a crucial role in determining the apparent drug release kinetics from nanocarriers. These findings highlight the critical role of experimental design in interpreting nanocarrier release kinetics, advocating for tailored protocols to improve reproducibility and in vitro–in vivo correlations in nanoformulation. Full article
Show Figures

Figure 1

23 pages, 5336 KB  
Review
Advancements in the Research on the Preparation of Isoamyl Acetate Catalyzed by Immobilized Lipase
by Guoqiang Guan, Yuyang Zhang, Jingya Qian, Feng Wang, Liang Qu and Bin Zou
Materials 2025, 18(11), 2476; https://doi.org/10.3390/ma18112476 - 25 May 2025
Cited by 1 | Viewed by 2803
Abstract
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as [...] Read more.
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process. These approaches effectively improve mass transfer efficiency, activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research provides solid scientific rationale and technical support for the industrial production of flavor ester compounds. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 1643 KB  
Article
Flow Synthesis of Pharmaceutical Intermediate Catalyzed by Immobilized DERA: Comparison of Different Immobilization Techniques and Reactor Designs
by Dino Skendrović, Anita Šalić, Ivan Karlo Cingesar, Marta Pinčić and Ana Vrsalović Presečki
Molecules 2025, 30(11), 2276; https://doi.org/10.3390/molecules30112276 - 22 May 2025
Viewed by 1172
Abstract
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two [...] Read more.
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two types of flow millireactors, a fixed bed millireactor for MCF and a fluidized bed millireactor for MNP, were designed. Key performance indicators including conversion, selectivity, yield, and productivity were analyzed and compared with the batch reactor results. The MNP-based fluidized bed millisystem demonstrated superior conversion (97.78%) and yield (95.85%) under optimized conditions, outperforming both batch and MCF-based millisystems. This work highlights the importance of optimizing immobilization techniques and reactor configurations to enhance enzyme stability and catalytic efficiency in continuous biocatalytic processes, particularly for pharmaceutical applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

20 pages, 13042 KB  
Article
Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II)
by Qiang Zhao, Jiawei Yang, Jiayi Xia, Gaotian Zhao, Yida Yang, Zongwei Zhang, Jing Li, Fang Wei and Weiguo Song
Nanomaterials 2025, 15(8), 614; https://doi.org/10.3390/nano15080614 - 16 Apr 2025
Cited by 4 | Viewed by 1284
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions [...] Read more.
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalysis)
Show Figures

Graphical abstract

35 pages, 6526 KB  
Review
Interplay Between Diabetes, Obesity and Glioblastoma Multiforme, and the Role of Nanotechnology in Its Treatment
by Sourav De, Sabyasachi Banerjee, Gourab Dey, Subhasis Banerjee and S.K. Ashok Kumar
J. Nanotheranostics 2025, 6(1), 7; https://doi.org/10.3390/jnt6010007 - 27 Feb 2025
Viewed by 5316
Abstract
A very aggressive and deadly brain cancer, glioblastoma multiforme (GBM) poses formidable obstacles to effective therapy. Despite advancements in conventional therapies like surgery, chemotherapy, and radiation therapy, the prognosis for GBM patients remains poor, with limited survival outcomes. Nanotechnology is gaining popularity as [...] Read more.
A very aggressive and deadly brain cancer, glioblastoma multiforme (GBM) poses formidable obstacles to effective therapy. Despite advancements in conventional therapies like surgery, chemotherapy, and radiation therapy, the prognosis for GBM patients remains poor, with limited survival outcomes. Nanotechnology is gaining popularity as a promising platform for managing GBM, offering targeted drug delivery, improved therapeutic efficacy, and reduced systemic toxicity. This review offers a comprehensive analysis of the current therapeutic approach for GBM using nanotechnology-based interventions. This study explored various nanocarrier (NC) systems like polymeric nanoparticles, liposomes, dendrimers, polymeric micelles, and mesoporous silica nanoparticles for improved precision as well as efficacy in encapsulating and delivering therapeutic agents to GBM tumors. Methods for improving drug delivery into GBM cells are described in this study, including novel delivery modalities such as convection-enhanced delivery, intranasal administration, magnetic hyperthermia, peptide-guided nanoparticles, and immune liposomes. It also explores the influence of diabetes and obesity on GBM prognosis and survival rates, suggesting that managing glucose levels and using metformin may improve patient outcomes. The discussion focuses on the advancements in nanotechnology-enabled GBM therapy, highlighting the challenges and opportunities in implementing these promising technologies in clinical practice. The study highlights the potential of nanotechnology and metabolic modulation in transforming GBM treatment strategies. To further understand how these factors impact GBM patients and develop innovative nanotechnology-based treatments for GBM and diabetes mellitus, more study is necessary. Full article
Show Figures

Figure 1

Back to TopTop