Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparations of Catalysts IM1, IM2 and DM
2.2. Characterizations of Catalysts IM1, IM2 and DM
2.2.1. X-Ray Diffraction (XRD)
2.2.2. TEM Analyses
2.2.3. Nitrogen Adsorption/Desorption Isotherms
2.3. Reductions of Nitroarenes
2.4. Reductions of Enones
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparations of Catalysts
3.3. Characterizations of Catalysts
3.4. Reduction of Nitroarenes
3.5. Reduction of Enones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rappoport, Z. The Chemistry of Anilines; Wiley: Chichester, UK, 2007. [Google Scholar]
- Downing, R.S.; Kunkeler, P.J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136. [Google Scholar] [CrossRef]
- Béchamp, A. De l’action des protosels de fer sur la nitronaphtaline et la nitrobenzine. Nouv. Méthode Mation Bases Org. Artif. Zinin. Ann. Chim. Phys. 1894, 42, 186–196. [Google Scholar]
- Schlummer, B.; Scholz, U. Palladium-catalyzed C–N and C–O coupling—A practical guide from an industrial vantage point. Adv. Synth. Catal. 2004, 346, 1599–1626. [Google Scholar] [CrossRef]
- Aubin, Y.; Fischmeister, C.; Thomas, C.M.; Renaud, J.-L. Direct amination of aryl halides with ammonia. Chem. Soc. Rev. 2010, 39, 4130–4145. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. General copper-catalyzed transformations of functional groups from arylboronic acids in water. Chem. Eur. J. 2011, 17, 5652–5660. [Google Scholar] [CrossRef]
- Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3D non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680. [Google Scholar] [CrossRef]
- Verma, P.K.; Bala, M.; Thakur, K.; Sharma, U.; Kumar, N.; Singh, B. Iron and palladium(II) phthalocyanines as recyclable catalysts for reduction of nitroarenes. Catal. Lett. 2014, 144, 1258–1267. [Google Scholar] [CrossRef]
- Kumar, A.; Purkait, K.; Dey, S.K.; Sarkar, A.; Mukherjee, A. A hydroquinone based palladium catalyst for room temperature nitro reduction in water. RSC Adv. 2014, 4, 35233–35237. [Google Scholar] [CrossRef]
- Rahaim, R.J.; Maleczka, R.E. Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett. 2005, 7, 5087–5090. [Google Scholar] [CrossRef]
- Xu, D.; Wang, F.; Yu, G.; Zhao, H.; Yang, J.; Yuan, M.; Zhang, X.; Dong, Z. Aminal-based hypercrosslinked poly-mer modified with small palladium nanoparticles for efficiently catalytic reduction of nitroarenes. ChemCatChem 2018, 10, 4569–4577. [Google Scholar] [CrossRef]
- Ding, Z.-C.; Li, C.-Y.; Chen, J.-J.; Zeng, J.-H.; Tang, H.-T.; Ding, Y.-J.; Zhan, Z.-P. Palladium/phosphorus-doped Po-rous Organic Polymer as Recyclable Chemoselective and Efficient Hydrogenation Catalyst under Ambient condi-tions. Adv. Synth. Catal. 2017, 359, 2280–2287. [Google Scholar] [CrossRef]
- Jayakumar, S.; Modak, A.; Guo, M.; Li, H.; Hu, X.; Yang, Q. Ultrasmall platinum stabilized on tri-phenylphosphine-modified silica for chemoselective hydrogenation. Chem. Eur. J. 2017, 23, 7791–7797. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacherjee, D.; Das, P. Supported rhodium nanoparticles catalyzed reduction of nitroarenes, aryl carbonyls and aryl/benzyl sulfoxides using ethanol/methanol as in-situ hydrogen source. Adv. Synth. Catal. 2018, 360, 2131–2137. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Keshavarzi, N.; Moghaddam, F.M.; Hosseini, S.H. Magnetic nanocomposite of cross-linked mela-mine groups decorated with large amounts of gold NPs: Reduction of nitro compounds and Suzuki–Miyaura coupling reactions in aqueous media. ChemistrySelect 2018, 3, 2716–2722. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Yang, Y.-W. Conjugated macrocycle polymer nanoparticles with alternating pillarenes and porphyrins as struts and cyclic nodes. Small 2019, 15, 1805509. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.C.; Jiménez, V.A.; Campos, C.H.; Alderetec, J.B.; Dinamarca, R.; Bustamente, T.M.; Pawelec, B. Gold catalysts supported on TiO2-nanotubes for the selective hydrogenation of p-substituted nitrobenzenes. Mol. Catal. 2018, 447, 21–27. [Google Scholar]
- Wang, Y.; Biradar, A.V.; Asefa, T. Assembling nanostructures for effective catalysis: Supported palladium nano-particle multicores coated by a hollow and nanoporous zirconia shell. ChemSusChem 2012, 5, 132–139. [Google Scholar] [CrossRef]
- Li, L.; Zhao, H.; Wang, J.; Wang, R. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers. ACS Nano 2014, 8, 5352–5364. [Google Scholar] [CrossRef]
- Baran, N.Y. Highly efficient and reusable Pd nanoparticles decorated on a novel Schiff base polymer for reduction of nitroarenes and Suzuki coupling reaction. J. Organomet. Chem. 2024, 1008, 123047. [Google Scholar] [CrossRef]
- Sadjadi, S.; Akbari, M.; Monflier, E.; Heravi, M.M.; Leger, B. Pd nanoparticles immobilized on halloysite decorated with a cyclodextrin-modified melamine-based polymer: A promising heterogeneous catalyst for hydrogenation of nitroarenes. New J. Chem. 2018, 42, 15733–15742. [Google Scholar] [CrossRef]
- Kim, E.; Jeong, H.S.; Kim, B.M. Efficient chemoselective reduction of nitro compounds and olefins using Pd–Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes. Catal. Commun. 2014, 45, 25–29. [Google Scholar] [CrossRef]
- Seethapathy, V.; Sudarsan, P.; Pandey, A.K.; Pandiyan, A.; Kumar, T.H.V.; Sanjeevi, K.; Sundramoorthy, A.K.; Moorthy, S.B.K. Synergistic effect of bimetallic Cu:Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol. New J. Chem. 2019, 43, 3180–3187. [Google Scholar] [CrossRef]
- Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent applications of magnetically recoverable nanocatalysts in C–C and C–X coupling reactions. ChemCatChem 2015, 7, 1736–1789. [Google Scholar] [CrossRef]
- Norouzi, M.; Elhamifar, D.; Kargar, S. Magnetic yolk shell structured periodic mesoporous organosilica supported palladium as a powerful and highly recoverable nanocatalyst for the reduction of nitrobenzenes. Sci. Rep. 2024, 14, 16262. [Google Scholar] [CrossRef]
- Purohit, G.; Rawat, D.S.; Reiser, O. Palladium nanocatalysts encapsulated on porous silica @ magnetic carbon-coated cobalt nanoparticles for sustainable hydrogenation of nitroarenes, alkenes and alkynes. ChemCatChem 2020, 12, 569–575. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Y.; Fan, M.; Sun, X.; Wang, W.D.; Dong, Z. Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. J. Colloid. Interface Sci. 2019, 554, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Feng, A.; Wang, C.; Dong, S.; Chi, C.; Jia, X.; Zhang, L.; Li, Y. Graphene oxide/carbon nanotubes–Fe3O4 supported Pd nanoparticles for hydrogenation of nitroarenes and C–H activation. RSC Adv. 2016, 6, 16911–16916. [Google Scholar] [CrossRef]
- Fronczak, M.; Kasprzak, A.; Bystrzejewski, M. Carbon-encapsulated iron nanoparticles with deposited Pd: A high-performance catalyst for hydrogenation of nitro compounds. J. Environ. Chem. Eng. 2021, 9, 104673. [Google Scholar] [CrossRef]
- Hasan, K.; Shehadi, I.A.; Joseph, R.G.; Patole, S.P.; Elgamouz, A. β-Cyclodextrin-functionalized Fe3O4-supported Pd-nanocatalyst for the reduction of nitroarenes in water at mild conditions. ACS Omega 2023, 8, 23901–23912. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R. Catalytic Hydrogenation for Biomass Valorization; Royal Society of Chemistry: Cambridge, UK, 2015. [Google Scholar]
- Malkar, R.S.; Yadav, G.D. Selectivity engineering in one pot synthesis of raspberry ketone: Crossed aldol condensation of p-hydroxybenzaldehyde and acetone and hydrogenation over novel Ni/Zn-La mixed oxide. ChemistrySelect 2019, 4, 2140–2152. [Google Scholar] [CrossRef]
- Keinan, E.; Greenspoon, N. Enones, Part 2; John Wiley & Sons: Chichester, UK, 1989; pp. 923–1022. [Google Scholar]
- Keinan, E.; Greenspoon, N. Highly chemoselective palladium-catalyzed conjugate reduction of α, β-unsaturated carbonyl compounds with silicon hydrides and zinc chloride cocatalyst. J. Am. Chem. Soc. 1986, 108, 7314–7325. [Google Scholar] [CrossRef]
- Viviano, M.; Glasnov, T.N.; Reichart, B.; Tekautz, G.; Kappe, C.O. A scalable two-step continuous flow synthesis of nNabumetone and related 4-aryl-2-butanone. Org. Process Res. Dev. 2011, 15, 858–870. [Google Scholar] [CrossRef]
- Evangelisti, C.; Panziera, N.; Vitulli, M.; Pertici, P.; Balzano, F.; Uccello-Barretta, G.; Salvadori, P. Palladium nanoparticles supported on aminopropyl-silica: Recyclable catalysts for nitroarene hydrogenation. Appl. Catal. A General. 2008, 339, 84–92. [Google Scholar] [CrossRef]
- Garg, G.; Foltran, S.; Favier, I.; Pla, D.; Medina-González, Y.; Gómez, M. Palladium nanoparticles stabilized by novel choline-based ionic liquids in glycerol applied in hydrogenation reactions. Catal. Today 2020, 346, 69–75. [Google Scholar] [CrossRef]
- Nasir Baig, R.B.; Varma, R.S. Magnetic carbon-supported palladium nanoparticles: An efficient and sustainable catalyst for hydrogenation reactions. ACS Sustain. Chem. Eng. 2014, 2, 2155–2158. [Google Scholar] [CrossRef]
- Szabó, L.; Thielemans, W.; Seo, J.W.; Buysschaert, F.; Dionysiou, D.D.; Vandeginste, V. A tutorial mini-review on nanoporous carbons from biosourced compounds: Ordered hierarchical nanoarchitectures through benign methodologies. RSC Sustain. 2023, 1, 1354–1368. [Google Scholar] [CrossRef]
- Peter, C.; Derible, A.; Becht, J.-M.; Kiener, J.; Le Drian, C.; Parmentier, J.; Fierro, V.; Girleanu, M.; Ersen, O. Bio-sourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: Application to Suzuki reactions. J. Mater. Chem. A 2015, 3, 12297–12306. [Google Scholar] [CrossRef]
- Enneiymy, M.; Le Drian, C.; Matei Ghimbeu, C.; Becht, J.-M. Reusable magnetic PdxCoy nanoalloys confined in mesoporous carbons for green Suzuki–Miyaura reactions. RSC Adv. 2018, 8, 17176–17182. [Google Scholar] [CrossRef]
- Enneiymy, M.; Le Drian, C.; Matei Ghimbeu, C.; Becht, J.-M. Mesoporous carbon supported ultrasmall palladium particles as a highly active catalyst for Suzuki–Miyaura reaction. Appl. Organomet. Chem. 2019, 33, e5104. [Google Scholar] [CrossRef]
- Enneiymy, M.; Fioux, P.; Le Drian, C.; Matei Ghimbeu, C.; Becht, J.-M. Palladium nanoparticles embedded in mesoporous carbons as efficient, green and reusable catalysts for mild hydrogenations of nitroarenes. RSC Adv. 2020, 10, 36741–36750. [Google Scholar] [CrossRef] [PubMed]
- Enneiymy, M.; Le Drian, C.; Becht, J.-M. Green reusable Pd nanoparticles embedded in phytochemical resins for mild hydrogenations of nitroarenes. New J. Chem. 2019, 43, 17383–17390. [Google Scholar] [CrossRef]
- Schätz, A.; Long, T.R.; Grass, R.N.; Stark, W.J.; Hanson, P.R.; Reiser, O. Immobilization on a nanomagnetic Co/C surface using ROM polymerization: Generation of a hybrid material as support for a recyclable palladium catalyst. Adv. Funct. Mater. 2010, 20, 4323–4328. [Google Scholar] [CrossRef] [PubMed]
- Matei Ghimbeu, C.; Puscasu, A.; Martinez de Yuso, A.; Zlotea, C.; Oumellal, Y.; Latroche, M.; Vix-Guterl, C. One-pot synthesis of tailored Pd–Co nanoalloy particles confined in mesoporous carbon. Microporous Mesoporous Mater. 2016, 223, 79–88. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Liu, X.; Soo Park, S.; Ha, C.-S.; Zhao, D. Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 2011, 49, 545–555. [Google Scholar] [CrossRef]
- Qiu, P.; Zhang, X.; Ai, Y.; Luo, W.; Li, W.; Zhao, D. Modular assembly of metal nanoparticles/mesoporous carbon two-dimensional nanosheets. NPG Asia Mater. 2023, 15, 35. [Google Scholar] [CrossRef]
- Matei Ghimbeu, C.; Sopronyi, M.; Sima, F.; Delmotte, L.; Vaulot, C.; Zlotea, C.; Paul-Boncour, V.; Le Meins, J.-M. One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles. Nanoscale 2015, 7, 10111–10122. [Google Scholar] [CrossRef]
- Zhao, F.; Bhanage, B.M.; Shirai, M.; Arai, M. Heck Reactions of Iodobenzene and Methyl Acrylate with Conventional Supported Palladium Catalysts in the Presence of Organic and/and Inorganic Bases without Ligands. Chem. Eur. 2000, 6, 843–848. [Google Scholar] [CrossRef]
- Rodriguez Mejia, Y.; Bogireddy, N.K.R. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv. 2022, 12, 18661–18675. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Li, F.; Wu, S.; Xia, C.; Sun, W. Magnetically separable and versatile Pd/Fe3O4 catalyst for efficient Suzuki cross-coupling reaction and selective hydrogenation of nitroarenes. Chin. J. Chem. 2011, 29, 525–529. [Google Scholar] [CrossRef]
- Baran, T. Biosynthesis of highly retrievable magnetic palladium nanoparticles stabilized on bio-composite for production of various biaryl compounds and catalytic reduction of 4-nitrophenol. Catal. Lett. 2019, 149, 1721–1729. [Google Scholar] [CrossRef]
- Movahed, S.K.; Lehi, N.F.; Dabiri, M. Palladium nanoparticles supported on core-shell and yolk-shell Fe3O4@nitrogen doped carbon cubes as a highly efficient, magnetically separable catalyst for the reduction of ni-troarenes and the oxidation of alcohols. J. Catal. 2018, 364, 69–79. [Google Scholar] [CrossRef]
- Guin, D.; Baruwati, B.; Manorama, S.V. Pd on amine-terminated ferrite nanoparticles: A complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett. 2007, 9, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Zlotea, C.; Matei Ghimbeu, C.; Oumellal, Y.; Crivello, J.-C.; Vix-Guterl, C.; Latroche, M. Hydrogen sorption properties of Pd–Co nanoalloys embedded into mesoporous carbons. Nanoscale 2015, 7, 15469–15477. [Google Scholar] [CrossRef]
- Kasahara, I.; Tachi, I.; Tsuda, E.; Hata, N.; Taguchi, S.; Goto, K. Sensitive and selective extraction-spectrophotometric determination of trace amounts of palladium(II) as a mixed complex with 2-(5-methyl-2-pyridylazo)-5-diethylaminophenol and bromide. Analyst 1989, 114, 1479–1482. [Google Scholar] [CrossRef]
- Derible, A.; Diebold, C.; Dentzer, J.; Gadiou, R.; Becht, J.-M.; Drian, C.L. A Palladium Catalyst Supported on Carbon-Coated Cobalt Nanoparticles—Preparation of Palladium-Free Biaryls by Suzuki–Miyaura Reactions in Ethanol. Eur. J. Org. Chem. 2014, 34, 7699. [Google Scholar] [CrossRef]







| Material | SBET m2g−1 | VT cm3g−1 | Vmicro cm3g−1 | Vmeso cm3g−1 |
|---|---|---|---|---|
| IMCo1 | 843 | 0.71 | 0.38 | 0.33 |
| IM1 | 749 | 0.81 | 0.31 | 0.50 |
| IMCo2 | 752 | 0.55 | 0.30 | 0.23 |
| IM2 | 705 | 0.50 | 0.29 | 0.21 |
| DM | 817 | 0.56 | 0.37 | 0.19 |
![]() | ||||
|---|---|---|---|---|
| Entry (a) | Catalyst | Pd (Mequiv.) | Reaction Time (h) | Yield % (b) |
| 1 | IM1 | 5 | 1.5 | 99 |
| 2 | IM2 | 5 | 1.5 | 99 |
| 3 | IM2 | 2.5 | 1.5 | 65 |
| 4 | IM2 | 2.5 | 2.5 | 99 |
| 5 | IM2 | 1 | 18 | 99 |
| 6 | DM | 5 | 2 | No reaction |
| 7 | Pd/C | 5 | 2 | 60 |
| 8 | Pd Encat NP30 | 5 | 2 | 26 |
| 9 | Pd(PPh3)4 | 5 | 2 | No reaction |
| Entry | Catalyst | Synthesis—Number of Steps | Reducing Agent, Solvent | Pd (Mequiv.) | TOF (h−1) |
|---|---|---|---|---|---|
| 1 | IM2 (this work) | 2 | H2, EtOH | 5 | 50–133 |
| 2 | Fe3O4@PDA@POP@Pd [28] | 4 | H2, EtOH | 4.7 | 35–106 |
| 3 | Pd@Co/C-SiO2-NH2 [27] | 3 | H2, isopropanol | 1.6 | 250–417 |
| 4 | GO/CNT- Fe3O4@Pd [29] | 5 | H2, EtOH | 10 | 2–34 |
| 5 | Pd/Fe3O4 [53] | 2 | H2, EtOH | 10 | 20–133 |
| 6 | Pd NPs@Pct-CMC/Fe3O4 [54] | 5 | NaBH4, EtOH | 50 | 0.09 |
| 7 | Fe3O4@N-C@Pd Y-S [55] | 4 | NaBH4, EtOH-H2O | 10 | 42–1960 |
| 8 | Pd/ox-CEINs [30] | 4 | CO2NH4, EtOH | 10 | 70–208 |
![]() | ||||
|---|---|---|---|---|
| Entry (a) | Catalyst | Pd (Mequiv.) | Reaction Time (h) | Yield % (b) |
| 1 | IM1 | 5 | 1.5 | 99 |
| 2 | IM2 | 5 | 1.5 | 99 |
| 3 | IM2 | 2.5 | 1.5 | 60 |
| 4 | IM2 | 2.5 | 2.5 | 99 |
| 5 | IM2 | 1 | 1.5 | 15 |
| 6 | IM2 | 1 | 18 | 99 |
| 7 | DM | 5 | 24 | No reaction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enneiymy, M.; Vaulot, C.; Vidal, L.; Matei Ghimbeu, C.; Le Drian, C.; Becht, J.-M. Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions. Catalysts 2025, 15, 1126. https://doi.org/10.3390/catal15121126
Enneiymy M, Vaulot C, Vidal L, Matei Ghimbeu C, Le Drian C, Becht J-M. Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions. Catalysts. 2025; 15(12):1126. https://doi.org/10.3390/catal15121126
Chicago/Turabian StyleEnneiymy, Mohamed, Cyril Vaulot, Loïc Vidal, Camelia Matei Ghimbeu, Claude Le Drian, and Jean-Michel Becht. 2025. "Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions" Catalysts 15, no. 12: 1126. https://doi.org/10.3390/catal15121126
APA StyleEnneiymy, M., Vaulot, C., Vidal, L., Matei Ghimbeu, C., Le Drian, C., & Becht, J.-M. (2025). Bimetallic Pd- and Co-Containing Mesoporous Carbons as Efficient Reusable Nanocatalysts for Hydrogenations of Nitroarenes and Enones Under Mild and Green Conditions. Catalysts, 15(12), 1126. https://doi.org/10.3390/catal15121126



