Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = membrane mechanical deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 595 KiB  
Review
The Mechanical Properties of Erythrocytes Are Influenced by the Conformational State of Albumin
by Ivana Pajic-Lijakovic, Milan Milivojevic, Gregory Barshtein and Alexander Gural
Cells 2025, 14(15), 1139; https://doi.org/10.3390/cells14151139 - 24 Jul 2025
Viewed by 331
Abstract
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, [...] Read more.
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, membrane integrity, and resistance to hemolysis. However, the precise mechanisms by which albumin exerts these effects remain debated, with some studies indicating a stabilizing role and others suggesting the opposite. This review highlights that under high shear rates, albumin molecules may undergo unfolding due to normal stress differences. Such structural changes can significantly alter albumin’s interactions with the erythrocyte membrane, thereby affecting cell mechanical stability. We discuss two potential scenarios explaining how albumin influences erythrocyte mechanics under shear stress, considering both the viscoelastic properties of blood and those of the erythrocyte membrane. Based on theoretical analyses and experimental evidence from the literature, we propose that albumin’s effect on erythrocyte mechanical stability depends on (i) the transition between unfolded and folded states of the protein and (ii) the impact of shear stress on the erythrocyte membrane’s ζ-potential. Understanding these factors is essential for elucidating the complex relationship between albumin and erythrocyte mechanics in physiological and pathological conditions. Full article
(This article belongs to the Special Issue Cell Behavior Under Blood Flow)
Show Figures

Graphical abstract

19 pages, 3352 KiB  
Article
Inhibitory Effects and Underlying Mechanisms of a Selenium Compound Agent Against the Pathogenic Fungus Sclerotinia sclerotiorum Causing Sclerotinia Stem Rot in Brassica napus
by Xiaojuan Zhang, Yangzi Hou, Xiuqi Ma, Xiaomin Sun, Qiao Chen, Lele Wu and Chenlu Zhang
Agronomy 2025, 15(8), 1764; https://doi.org/10.3390/agronomy15081764 - 23 Jul 2025
Viewed by 221
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite [...] Read more.
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite and cuminic acid to screen for the optimal mixing ratio and investigate its inhibitory effects and mechanisms against S. sclerotiorum. The results demonstrated that synergistic effects were observed with a 1:3 combination ratio of sodium selenite to cuminic acid. After treatment with the selenium compound agent, ultrastructural observations revealed that the hyphae of S. sclerotiorum became severely shriveled, deformed, and twisted. The agent significantly reduced oxalic acid production and the activities of polymethylgalacturonide (PMG) and carboxymethylcellulose enzymes (Cx), while increasing the exocytosis of nucleic acids and proteins from the mycelium. Foliar application of the selenium compound agent significantly reduced lesion areas in rapeseed. Combined with the results of transcriptome sequencing, this study suggests that the compound agent effectively inhibits the growth of S. sclerotiorum by disrupting its membrane system, reducing the activity of cell wall-degrading enzymes, and suppressing protein synthesis, etc. This research provides a foundation for developing environmentally friendly and effective fungicides to control S. sclerotiorum. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Graphical abstract

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 281
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

15 pages, 1650 KiB  
Article
Physico-Chemical and Resistance Characteristics of Rosehip Seeds
by Alina-Daiana Ionescu, Gheorghe Voicu, Elena-Madalina Stefan, Gabriel-Alexandru Constantin, Paula Tudor and Gheorghe Militaru
Agriculture 2025, 15(14), 1539; https://doi.org/10.3390/agriculture15141539 - 17 Jul 2025
Viewed by 261
Abstract
Both the pulp and the seeds of rosehip are important for human health. Rosehip seeds are rich in polyunsaturated fats, which support a healthy skin membrane and protect it from inflammatory factors. In order to be used, the seeds require initial processing, mainly [...] Read more.
Both the pulp and the seeds of rosehip are important for human health. Rosehip seeds are rich in polyunsaturated fats, which support a healthy skin membrane and protect it from inflammatory factors. In order to be used, the seeds require initial processing, mainly by grinding. This paper first presents a brief review of the physicochemical properties and the content of bioactive compounds in rosehip (Rosa canina) and its seeds. Original research results on the compression behavior of rosehip seeds are presented below, together with the key values of the most important parameters derived from the analysis. For seeds with a thickness ranging from 1.80 to 3.55 mm, the compressive force at the onset of fracture was recorded to be between 94.4 and 156.0 N, while the force required for complete fracture ranged from 114.0 to 495.0 N (with about 12.5% of values considered outside a normal distribution). Additionally, for these forces, the deformation of the seeds ranged between 0.142 and 0.916 mm at the onset of fracture and between 0.248 and 1.878 mm at complete fracture. For these characteristics, the energy consumed ranged between 0.012 and 0.041 J at the onset of fracture and between 0.017 and 0.322 J at complete breaking. The elasticity of the seeds also ranged between 159.9 and 789.1 N/mm, considering the forces and deformations at the onset of fracture. The results of our study contribute to expanding the database on the mechanical characteristics of rosehip seeds, knowledge of which is essential for the initial processing operations used in the pharmaceutical industry aimed at oil extraction. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

11 pages, 1779 KiB  
Article
Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes
by Xuejuan Liu, Falin Tian, Tongtao Yue, Kai Yang and Xianren Zhang
Nanomaterials 2025, 15(12), 912; https://doi.org/10.3390/nano15120912 - 12 Jun 2025
Viewed by 330
Abstract
Membrane tubes, a class of soft biological confinement for ubiquitous transport intermediates, are essential for cell trafficking and intercellular communication. However, the confinement interaction and directional migration of diffusive nanoparticles (NPs) are widely dismissed as improbable due to the surrounding environment compressive force. [...] Read more.
Membrane tubes, a class of soft biological confinement for ubiquitous transport intermediates, are essential for cell trafficking and intercellular communication. However, the confinement interaction and directional migration of diffusive nanoparticles (NPs) are widely dismissed as improbable due to the surrounding environment compressive force. Here, combined with the mechanics analysis of nanoparticles (such as extracellular vesicles, EVs) to study their interaction in confinement, we perform dissipative particle dynamics (DPD) simulations to construct a model that is as large as possible to clarify the submissive behavior of NPs. Both molecular simulations and mechanical analysis revealed that the interactions between NPs are controlled by confinement deformation and the centroid distance of the NPs. When the centroid distance exceeds a threshold value, the degree of crowding variation becomes invalid for NPs motion. The above conclusions are further supported by the observed dynamics of multiple NPs under confinement. These findings provide new insights into the physical mechanism, revealing that the confinement squeeze generated by asymmetric deformation serves as the key factor governing the directional movement of the NPs. Therefore, the constraints acting on NPs differ between rigid confinement and soft confinement environments, with NPs maintaining relative stillness in rigid confinement. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

38 pages, 5974 KiB  
Review
Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing
by Miriam Lucariello, Maria Luisa Valicenti, Samuele Giannoni, Leonardo Donati, Ilaria Armentano, Francesco Morena and Sabata Martino
Biomolecules 2025, 15(6), 848; https://doi.org/10.3390/biom15060848 - 10 Jun 2025
Viewed by 1179
Abstract
Mechanical forces are increasingly recognised as fundamental regulators of cellular function, complementing classical biochemical cues to direct development, tissue homeostasis, and disease progression. Cells detect external and internal forces via mechanosensor proteins and adapt their cytoskeletal architecture, leading to changes in cell behaviour. [...] Read more.
Mechanical forces are increasingly recognised as fundamental regulators of cellular function, complementing classical biochemical cues to direct development, tissue homeostasis, and disease progression. Cells detect external and internal forces via mechanosensor proteins and adapt their cytoskeletal architecture, leading to changes in cell behaviour. Biomaterials and biodevices come to the aid of tailoring biomaterials’ properties in terms of chemical/physical properties and, by emulating dynamical forces, e.g., shear stress and cell swelling, they may enlighten mechanobiological processes. Additionally, emerging technologies expand the experimental toolkit for probing mechanobiological phenomena in complex, customisable settings. Central to these processes are mechanotransducer proteins and membrane–organelle networks that convert mechanical deformation into biochemical signals, orchestrating downstream transcriptional and post-translational modifications. This review highlights how through bridging material engineering and cellular mechanics, mechanobiology provides a unified framework to understand how physical forces shape tissues and drive pathologies. The continued integration of advanced biomaterials, dynamic biodevices, and multiscale analytical methods promises to uncover new mechanistic insights and inform the development of mechanotherapeutic strategies. Full article
(This article belongs to the Special Issue The Role of Mechanotransduction in Cellular Biology)
Show Figures

Graphical abstract

13 pages, 1158 KiB  
Review
The Mechanical Properties of Breast Cancer Cells and Their Surrounding Microenvironment
by Leila Jahangiri
Int. J. Mol. Sci. 2025, 26(11), 5183; https://doi.org/10.3390/ijms26115183 - 28 May 2025
Viewed by 599
Abstract
Breast cancer is a major health concern for women worldwide, and therefore, understanding various changes acquired by breast cancer cells is relevant to a better comprehension of the disease. One such change includes alterations to the mechanical properties of breast cancer cells. For [...] Read more.
Breast cancer is a major health concern for women worldwide, and therefore, understanding various changes acquired by breast cancer cells is relevant to a better comprehension of the disease. One such change includes alterations to the mechanical properties of breast cancer cells. For example, cells with high malignant potential show lower adhesion forces and higher cell deformability. Mechanical forces, including tensile and compressive forces of the cytoskeleton and the extracellular matrix such as integrin, collagen, and the basement membrane, can affect BC cells. These forces alter the properties of cancer cells, drive them towards invasiveness due to different motility and proliferative profiles, and change their microenvironment. This study will focus on the mechanical characteristics of breast cancer cells and the extracellular matrix. Furthermore, changes induced in breast cancer cells following exposure to mechanical forces will be reviewed. Genes that link phenotype to mechanical forces and the implications of these forces for diagnostics and treatment will be discussed. Full article
Show Figures

Figure 1

26 pages, 18959 KiB  
Review
A Review on the Progressive Collapse of Reinforced Concrete Flat Slab–Column Structures
by Xiao Li, Tengfang Dong, Chengquan Wang, Weiwei Zhang, Rongyang Liu and Jingjing Wang
Materials 2025, 18(9), 2056; https://doi.org/10.3390/ma18092056 - 30 Apr 2025
Viewed by 609
Abstract
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance [...] Read more.
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance of flat slab–column systems has been provided, categorizing the methodologies into experimental investigation, theoretical analysis, and numerical simulation. Experimental studies primarily utilize the Alternative Load Path methodology, incorporating both quasi-static and dynamic loading protocols to assess structural performance. Different column removal scenarios (e.g., corner, edge, and interior column failures) clarify the load redistribution patterns and the evolution of resistance mechanisms. Theoretical frameworks focus on tensile and compressive membrane actions, punching shear mechanism, and post-punching shear mechanism. Analytical models, incorporating strain-hardening effects and deformation compatibility constraints, show improved correlation with experimental results. Numerical simulations use multi-scale modeling strategies, integrating micro-level joint models with macro-level structural assemblies. Advanced finite element analysis techniques effectively replicate collapse behaviors under various column failure scenarios, validated by full-scale test data. This synthesis identifies key research priorities and technical challenges in collapse-resistant design, establishing theoretical foundations for future investigations of flat slab systems under multi-hazard coupling effects. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 5190 KiB  
Article
Boundary Flow-Induced Membrane Tubulation Under Turgor Pressures
by Hao Xue and Rui Ma
Membranes 2025, 15(4), 106; https://doi.org/10.3390/membranes15040106 - 1 Apr 2025
Viewed by 676
Abstract
During clathrin-mediated endocytosis in yeast cells, a small patch of flat membrane is deformed into a tubular shape. It is generally believed that the tubulation is powered by actin polymerization. However, studies based on quantitative measurement of the actin molecules suggest that they [...] Read more.
During clathrin-mediated endocytosis in yeast cells, a small patch of flat membrane is deformed into a tubular shape. It is generally believed that the tubulation is powered by actin polymerization. However, studies based on quantitative measurement of the actin molecules suggest that they are not sufficient to produce the forces to overcome the high turgor pressure inside of the cell. In this paper, we model the membrane as a viscous 2D fluid with elasticity and study the dynamic membrane deformation powered by a boundary lipid flow under osmotic pressure. We find that in the absence pressure, the lipid flow drives the membrane into a spherical shape or a parachute shape. The shapes over time exhibit self-similarity. The presence of pressure transforms the membrane into a tubular shape that elongates almost linearly with time and the self-similarity between shapes at different times is lost. Furthermore, the width of the tube is found to scale inversely to the cubic root of the pressure, and the tension across the membrane is negative and scales to the cubic root squared of the pressure. Our results demonstrate that boundary flow powered by myosin motors, as a new way to deform the membrane, could be a supplementary mechanism to actin polymerization to drive endocytosis in yeast cells. Full article
Show Figures

Figure 1

17 pages, 6340 KiB  
Article
Membrane Remodeling Driven by Shallow Helix Insertions via a Cooperative Mechanism
by Jie Hu and Yiben Fu
Membranes 2025, 15(4), 101; https://doi.org/10.3390/membranes15040101 - 1 Apr 2025
Viewed by 615
Abstract
Helix-membrane interactions are key to membrane deformation and play significant biological roles. However, systematic studies on the mechanisms behind these interactions are limited. This study uses a continuum membrane model to investigate how shallowly inserted helices interact with biological membranes, focusing on membrane [...] Read more.
Helix-membrane interactions are key to membrane deformation and play significant biological roles. However, systematic studies on the mechanisms behind these interactions are limited. This study uses a continuum membrane model to investigate how shallowly inserted helices interact with biological membranes, focusing on membrane deformation and the cooperative effects of multiple helices. Our findings show that even short helices (2 nm in length) can induce anisotropic membrane deformation. Longer helices and deeper insertions result in more significant deformations, and the spatial arrangement of helices affects the nature of these deformations. The perturbation area (PA) and perturbation extent (PE) are quantified to describe membrane deformation, revealing stronger cooperative effects in parallel insertions and more complex deformations in other arrangements. Additionally, membrane properties, such as lipid composition, influence the extent of deformation. In multi-helix systems, we observe local clustering behavior when perturbations are strong enough, with cooperativity varying based on helix length, insertion depth, and membrane composition. This study provides criteria for helix cooperativity, advancing our understanding of helix–membrane interactions and their biological significance in processes like membrane remodeling. Full article
Show Figures

Figure 1

20 pages, 6578 KiB  
Article
Hydrotalcite Supported on Polycaprolactone:Poly(methyl methacrylate) Fiber Membranes for Chlorogenic Acid Removal
by Andressa Cristina de Almeida Nascimento, João Otávio Donizette Malafatti, Maria Luiza Lopes Sierra e Silva, Ailton José Moreira, Adriana Coatrini Thomazi, Simone Quaranta and Elaine Cristina Paris
Water 2025, 17(7), 931; https://doi.org/10.3390/w17070931 - 22 Mar 2025
Viewed by 579
Abstract
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, [...] Read more.
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, adsorption remains a staple in the field. Therefore, this work aims to develop porous polycaprolactone: poly(methyl methacrylate) (PCL:PMMA) membranes as a support for hydrotalcite immobilization for the removal of chlorogenic acid polyphenol (CGA) from aqueous solutions. Due to the hydrophilic nature of hydrotalcite, the adsorbent was functionalized with hexadecyltrimethylammonium bromide (CTAB) to increase its affinity for CGA, resulting in a removal efficiency of approximately 96%. Composite fiber membranes were prepared by solution-blowing spinning with specific amounts of hydrotalcite added (i.e., 1 to 60 wt%). A 3:1 PCL:PMMA blend resulted in superior mechanical traction (0.8 MPa) and stress deformation (70%) compared to pure PCL (0.7 MPa and 37%) and PMMA (0.1 MPa and 5%) fibers. PCL:PMMA membranes with 60% LDH-CTAB exhibited CGA removal rates equal to 55% in the first cycle while maintaining the capacity to remove 30% of the polyphenol after five consecutive reuses. Removal rates up to 90% could also be achieved with an appropriate adsorbent dose (2 g L−1). Adsorption was found to follow pseudo-second-order kinetics and was adequately described by the Langmuir model, saturating LDH-CTAB active sites in four hours. PCL:PMMA:LDH-CTAB composites can be considered a potential alternative to support adsorbents for water remediation. Full article
Show Figures

Graphical abstract

15 pages, 3686 KiB  
Article
A Wearable Molecularly Imprinted Electrochemical Sensor for Cortisol Stable Monitoring in Sweat
by Yitao Chen, Zidong He, Yuanzhao Wu, Xinyu Bai, Yuancheng Li, Weiwei Yang, Yiwei Liu and Run-Wei Li
Biosensors 2025, 15(3), 194; https://doi.org/10.3390/bios15030194 - 18 Mar 2025
Cited by 2 | Viewed by 3654
Abstract
Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. [...] Read more.
Cortisol, a steroid hormone, is closely associated with human mental stress. The rapid, real-time, and continuous detection of cortisol using wearable devices offers a promising approach for individual mental health. These devices must exhibit high sensitivity and long-term stability to ensure reliable performance. This study developed a wearable electrochemical sensor based on molecularly imprinted polymer (MIP) technology for real-time and dynamic monitoring of cortisol in sweat. A flexible gold (Au) electrode with interfacial hydrophilic treatment was employed to construct a highly stable electrode. The integration of a silk fibroin/polyvinylidene fluoride (SF/PVDF) composite membrane facilitates directional sweat transport, while liquid metal bonding enhances electrode flexibility and mechanical anti-delamination capability. The sensor exhibits an ultrawide detection range (0.1 pM to 5 μM), high selectivity (over 100-fold against interferents such as glucose and lactic acid), and long-term stability (less than 3.76% signal attenuation over 120 cycles). Additionally, a gradient modulus design was implemented to mitigate mechanical deformation interference under wearable conditions. As a flexible wearable device for cortisol monitoring in human sweat, the sensor’s response closely aligns with the diurnal cortisol rhythm, offering a highly sensitive and interference-resistant wearable solution for mental health monitoring and advancing personalized dynamic assessment of stress-related disorders. Full article
Show Figures

Figure 1

19 pages, 10178 KiB  
Article
Optimization of Laser Welding Parameters and Fixed Stress Span Design to Minimize Deformation in Ultra-Thin Ferritic Stainless Steel
by Jinlong Su, Jingyi Li, Kaining Zhu, Fei Xing, Xiaoming Qiu and Jingwei Liang
Metals 2025, 15(3), 325; https://doi.org/10.3390/met15030325 - 17 Mar 2025
Cited by 1 | Viewed by 649
Abstract
Ultra-thin ferritic stainless steel, essential for applications such as proton exchange membrane fuel cells, presents challenges during pulsed laser welding due to thermal stresses causing deformation. This study explores the effects of welding parameters and clamp design on deformation through finite element simulations [...] Read more.
Ultra-thin ferritic stainless steel, essential for applications such as proton exchange membrane fuel cells, presents challenges during pulsed laser welding due to thermal stresses causing deformation. This study explores the effects of welding parameters and clamp design on deformation through finite element simulations and experiments. Key parameters, including laser power (500–700 W), welding speed (6–14 mm/s), and pulse frequency (6–14 Hz), were systematically varied. Results revealed a non-linear relationship between these parameters and weld quality, with the optimal combination identified as a laser power of 600 W, welding speed of 10 mm/s, and pulse frequency of 10 Hz. Additionally, the fixed stress span applied by clamps significantly influenced stress–strain and displacement fields. For instance, residual stress decreased from 267 MPa at a 5 mm span to 189 MPa at a 20 mm span. Displacement values increased from 4.746 × 10⁻3 mm at 5 mm to 8.111 × 10⁻3 mm at 20 mm, while strain initially decreased but rose slightly from 1.648 × 10⁻3 at 10 mm to 1.719 × 10⁻3 at 15 mm. The 5 mm stress span was found optimal, producing a smooth and defect-free weld surface. This study bridges gaps in understanding the deformation mechanics of ultra-thin ferritic stainless steel, offering practical guidelines for optimizing laser welding parameters and clamp designs to achieve superior weld quality. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

13 pages, 8327 KiB  
Article
Preparation of Polymerized High Internal Phase Emulsion Membranes with High Open-Cellular Extent and High Toughness via RAFT Polymerization
by Yulan Wu, Jie Huang, Zanru Guo, Qian Yang, Chunmiao Xia and Zhenan Zheng
Polymers 2025, 17(4), 515; https://doi.org/10.3390/polym17040515 - 17 Feb 2025
Cited by 4 | Viewed by 864
Abstract
Porous polymer membranes with highly interconnected open-cellular structure and high toughness are crucial for various application fields. Polymerized high internal phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages of high porosity and good connectivity. However, it is difficult to prepare [...] Read more.
Porous polymer membranes with highly interconnected open-cellular structure and high toughness are crucial for various application fields. Polymerized high internal phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages of high porosity and good connectivity. However, it is difficult to prepare membranes due to brittleness and easy pulverization. Copolymerizing acrylate soft monomers can effectively improve the toughness of polyHIPEs, but it is easy to cause emulsion instability and pore collapse. In this paper, stable HIPEs with a high content of butyl acrylate (41.7 mol% to 75 mol% based on monomers) can be obtained by using a composite emulsifier (30 wt.% based on monomers) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol·L−1 CaCl2 according to aqueous phase concentration. On this basis, polyHIPE membranes with high open-cellular extent and high toughness are firstly prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization. The addition of the RAFT agent significantly improves the mechanical properties of polyHIPE membranes without affecting open-cellular structure. The toughness of polyHIPE membranes prepared by RAFT polymerization is significantly enhanced compared with conventional free radical polymerization. When the molar ratio of butyl acrylate/styrene/divinylbenzene is 7/4/1, the polyHIPE membrane prepared by RAFT polymerization presents plastic deformation during the tensile test. The toughness modulus reaches 93.04 ± 12.28 kJ·m−3 while the open-cellular extent reaches 92.35%, and it also has excellent thermal stability. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 2652 KiB  
Article
Synergistic Anti-Helicobacter pylori Effects of Takifugu obscurus Skin Peptides and Lactobacillus plantarum: A Potential Gastric Health Dietary Supplement
by Lei Gu, Yiying Tang, Jieshuai Zhang, Ningping Tao, Xichang Wang, Liping Wang and Changhua Xu
Foods 2025, 14(3), 406; https://doi.org/10.3390/foods14030406 - 26 Jan 2025
Cited by 1 | Viewed by 1050
Abstract
Helicobacter pylori (H. pylori) infection is a widespread gastric infectious disease, posing significant challenges due to the increasing prevalence of antibiotic resistance. This study aimed to evaluate the synergistic antibacterial activity of Takifugu obscurus skin peptides (TSPs) and the cell-free supernatant [...] Read more.
Helicobacter pylori (H. pylori) infection is a widespread gastric infectious disease, posing significant challenges due to the increasing prevalence of antibiotic resistance. This study aimed to evaluate the synergistic antibacterial activity of Takifugu obscurus skin peptides (TSPs) and the cell-free supernatant of Lactobacillus plantarum WUH3 (LCFS) in developing a potential green and efficient dietary supplement therapy. Using enzymatic hydrolysis and ultrafiltration techniques, the most bioactive peptide fraction, TSPb (1–3 kDa), was identified. The effects of TSPb and LCFS—both individually and in combination—on H. pylori biofilm function, membrane morphology, and internal structure were systematically analyzed using urease activity, N-phenyl naphthylamine (NPN) uptake, nucleic acid leakage, scanning electron microscopy (SEM), and infrared (IR) spectroscopy. The results showed that both LCFS and TSPb significantly inhibited H. pylori urease activity, with inhibition rates of 53.60% and 54.21% at 24 h, respectively, and the highest inhibition rate of 74.64% was observed with their combined treatment. SEM, NPN fluorescence, and nucleic acid leakage analyses revealed distinct mechanisms of action for each treatment. LCFS treatment caused membrane surface loosening and morphological deformation, while TSPb induced the formation of localized membrane pores. IR spectroscopy further confirmed that the combined treatment led to a more severe disruption of the lipid and protein structure within the bacterium. Overall, compared to individual treatments, the combination of TSPb and LCFS exhibited enhanced intracellular penetration and a more significant effect on bacterial viability. This study successfully identified TSPb as a highly bioactive peptide and elucidated its potential synergistic antibacterial mechanism with LCFS. These findings provide scientific evidence for the development of functional antimicrobial foods and gastric health dietary supplements, offering a promising strategy for the prevention and management of H. pylori infections. Full article
Show Figures

Figure 1

Back to TopTop