Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing
Abstract
1. Feeling the Force: How to Mimic External Stimuli
2. Biomaterials and Biodevices May Mimic ECM Topographical and Mechanical Properties
2.1. Biomaterials
2.1.1. Hydrogels
2.1.2. Film
2.1.3. Scaffolds
2.1.4. Smart Biomaterials
2.1.5. Physical/Chemical Properties of Biomaterials
2.2. Micro- and Nanocomposites
2.3. Biodevices
Biodevices | Description | Advantages | Disadvantages | Applications | References |
---|---|---|---|---|---|
Microfluidics | A technique that employs submillimetre-scale fluidic channels to precisely regulate the dynamic cellular microenvironment. | Mimics physiologic and pathophysiologic conditions with high spatial and temporal resolution. | May not fully capture the complexity of in vivo environments. | - Microscale Tissue Engineering: utilising microfluidics to simulate hepatic sinusoids. | [170] |
- Bone Tissue Engineering: generation of microdroplets based on alginate, collagen, and chitosan to simulate the ECM and enable osteogenesis. | [171] | ||||
- Simulation of Tumour Microenvironment: microfluidic devices to generate compressed tumour spheroids to assess tumour cell migration, invasion, and immune response under biomechanical stimuli. | [172] | ||||
- Characterisation of cells: using microfluidics with a constriction channel and planar electrodes to study mechanical and electrical characteristics of normal and hybridoma cells label-free. | [173] | ||||
Organ-on-a-Chip | A bioengineered device that exploits advanced microfluidic systems to simulate organ functions, enabling the modelling of physiological processes at the tissue and organ levels. The simplest system is made by a single microfluidic channel; more complex designs feature two or more microchannels housing different cell lines. | Mimics tissue-specific dynamic microenvironment emulating human physiological processes; is less expensive than animal models. | Less experimental longevity than animal models; less throughput and scalability than 2D cell culture. | - Modelling of Musculoskeletal (MSK) tissues in vitro: using organ-on-a-chip to reproduce the microenvironment of MSK to study musculoskeletal disorders and evaluation of the toxicity of drugs and nanotherapy. | [174] |
- Tumour Modelling: biomaterials-organ-on-chip system to emulate the mechanistic events of the tumour metastatic cascade. | [175] | ||||
- Study of Viral Infection: microvessel-on-a-chip preparation to establish the effects of NS1 protein of the dengue virus on the cell mechanics. | [176] | ||||
- Heart-on-a-Chip: use of organ-on-a-chip with cardiac cells to model cardiovascular diseases and study potential toxic effects of drugs on the cardiac tissue. | [177] |
2.3.1. Microfluidics
2.3.2. Organs-on-Chips
2.4. Other Systems Supporting Mechanobiological Applications
2.4.1. 3D Printing
2.4.2. Microgravity Systems
2.4.3. Advanced Mechanobiology Platforms: BioMEMS, Microindentation, Micropipette and Bioreactors
2.4.4. Computational Modelling in Mechanobiology
3. Mechanotransducer Proteins as Design Targets for Biomaterials
4. Inside the Tension: How Organelles Sense and Respond to Force
4.1. Subcellular Organelles as Targets and Mediators of Mechanobiology
4.2. Mechanobiological Cues from Biomaterials Regulate Cell Metabolism
Modulation of Autophagy by Mechanical Stimuli
5. Challenges and Future Directions in Mechanobiology
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mierke, C.T. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, J.; Chen, C.; Tang, R.; Xu, J.; Shi, S.; Yu, X. Deciphering Mechanical Cues in the Microenvironment: From Non-Malignant Settings to Tumor Progression. Biomark. Res. 2025, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, J.; Jiang, K.; Fernandez, J.; Lim, C.T. Extracellular Matrix Mechanobiology in Cancer Cell Migration. Acta Biomater. 2023, 163, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.A.; Donato, D.M.; Balcioglu, H.E.; Schmidt, T.; Danen, E.H.J.; Koenderink, G.H. A Guide to Mechanobiology: Where Biology and Physics Meet. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2015, 1853, 3043–3052. [Google Scholar] [CrossRef]
- Martino, S. Mechanobiology in Cells and Tissues. Int. J. Mol. Sci. 2023, 24, 8564. [Google Scholar] [CrossRef]
- Cao, R.; Tian, H.; Tian, Y.; Fu, X. A Hierarchical Mechanotransduction System: From Macro to Micro. Adv. Sci. 2024, 11, 2302327. [Google Scholar] [CrossRef]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular Mechanotransduction in Health and Diseases: From Molecular Mechanism to Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 282. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Tortorella, I.; Bazzucchi, M.; Porcellati, S.; Emiliani, C.; Martino, S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int. J. Mol. Sci. 2019, 20, 5337. [Google Scholar] [CrossRef]
- Venkateshwarlu, A.; Akshayveer; Singh, S.; Melnik, R. Piezoelectricity and Flexoelectricity in Biological Cells: The Role of Cell Structure and Organelles. Biomech. Model. Mechanobiol. 2025, 24, 47–76. [Google Scholar] [CrossRef]
- Mandal, A.; Chatterjee, K. The 3D/4D Printing of Polymeric Scaffolds for Bone Tissue Engineering. In Emerging Materials and Technologies for Bone Repair and Regeneration; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-00-330731-0. [Google Scholar]
- Maurer, M.; Lammerding, J. The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease. Annu. Rev. Biomed. Eng. 2019, 21, 443–468. [Google Scholar] [CrossRef]
- Tortorella, I.; Argentati, C.; Emiliani, C.; Morena, F.; Martino, S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022, 11, 3093. [Google Scholar] [CrossRef] [PubMed]
- Fedorchak, G.R.; Kaminski, A.; Lammerding, J. Cellular Mechanosensing: Getting to the Nucleus of It All. Prog. Biophys. Mol. Biol. 2014, 115, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jung, W.-H.; Pittman, M.; Chen, J.; Chen, Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J. Biomech. Eng. 2020, 142, 100804. [Google Scholar] [CrossRef] [PubMed]
- Pyrshev, K.; Atamanchuk, A.; Kordysh, M.; Zaika, O.; Pochynyuk, O. Piezo1 Activity Is Regulated Independently in Principal and Intercalated Cells of the Renal Collecting Duct. Physiology 2024, 39, 254. [Google Scholar] [CrossRef]
- Lateef, O.M.; Foote, C.A.; Ramirez-Perez, F.I.; Augenreich, M.A.; Power, G.; Padilla, J.; Martinez-Lemus, L.A. Vascular Smooth Muscle Cell Mechanical Stretch Modulates Tissue Transglutaminase Activity and Cytoskeletal Dynamics. Physiology 2024, 39, 735. [Google Scholar] [CrossRef]
- Donati, L.; Valicenti, M.L.; Giannoni, S.; Morena, F.; Martino, S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int. J. Mol. Sci. 2024, 25, 10386. [Google Scholar] [CrossRef]
- Morival, J.; Hazelwood, A.; Lammerding, J. Feeling the Force from within—New Tools and Insights into Nuclear Mechanotransduction. J. Cell Sci. 2025, 138, JCS263615. [Google Scholar] [CrossRef]
- Li, K.; Jan, Y.N. Experimental Tools and Emerging Principles of Organellar Mechanotransduction. Trends Cell Biol. 2025, 11. [Google Scholar] [CrossRef]
- Henretta, S.; Lammerding, J. Nuclear Envelope Proteins, Mechanotransduction, and Their Contribution to Breast Cancer Progression. npj Biol. Phys. Mech. 2025, 2, 14. [Google Scholar] [CrossRef]
- Panciera, T.; Azzolin, L.; Cordenonsi, M.; Piccolo, S. Mechanobiology of YAP and TAZ in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 758–770. [Google Scholar] [CrossRef]
- Liu, B.; Peng, Z.; Zhang, H.; Zhang, N.; Liu, Z.; Xia, Z.; Huang, S.; Luo, P.; Cheng, Q. Regulation of Cellular Senescence in Tumor Progression and Therapeutic Targeting: Mechanisms and Pathways. Mol. Cancer 2025, 24, 106. [Google Scholar] [CrossRef] [PubMed]
- Goult, B.T.; von Essen, M.; Hytönen, V.P. The Mechanical Cell—The Role of Force Dependencies in Synchronising Protein Interaction Networks. J. Cell Sci. 2022, 135, jcs259769. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Kong, F.; Ju, L.A.; Zhu, C. Force-Regulated Spontaneous Conformational Changes of Integrins A5β1 and αVβ3. ACS Nano 2024, 18, 299–313. [Google Scholar] [CrossRef]
- Harb, S.V.; Kolanthai, E.; Pinto, L.A.; Beatrice, C.A.G.; de O T Bezerra, E.; Backes, E.H.; Costa, L.C.; Seal, S.; Pessan, L.A. Additive Manufacturing of Bioactive and Biodegradable Poly (Lactic Acid)-Tricalcium Phosphate Scaffolds Modified with Zinc Oxide for Guided Bone Tissue Repair. Biomed. Mater. 2024, 19, 055018. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, H.; Wang, Z.; Yi, Y.; Zou, S.; Liu, H.; Han, X.; Rong, X. 3D Printing Hierarchical Porous Nanofibrous Scaffold for Bone Regeneration. Small 2025, 21, e2405406. [Google Scholar] [CrossRef]
- Hoffman-Kim, D.; Mitchel, J.A.; Bellamkonda, R.V. Topography, Cell Response, and Nerve Regeneration. Annu. Rev. Biomed. Eng. 2010, 12, 203–231. [Google Scholar] [CrossRef]
- Qin, Y.-X.; Zhao, J. Mechanobiology in Cellular, Molecular, and Tissue Adaptation. Mechanobiol. Med. 2023, 1, 100022. [Google Scholar] [CrossRef]
- Le Roux, A.-L.; Quiroga, X.; Walani, N.; Arroyo, M.; Roca-Cusachs, P. The Plasma Membrane as a Mechanochemical Transducer. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180221. [Google Scholar] [CrossRef]
- Hardman, K.; Goldman, A.; Pliotas, C. Membrane Force Reception: Mechanosensation in G Protein-Coupled Receptors and Tools to Address It. Curr. Opin. Physiol. 2023, 35, 100689. [Google Scholar] [CrossRef]
- Saraswathibhatla, A.; Indana, D.; Chaudhuri, O. Cell–Extracellular Matrix Mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 2023, 24, 495–516. [Google Scholar] [CrossRef]
- Pfisterer, K.; Mildner, M.; Parsons, M. Editorial: Extracellular Matrix Modifications in Development and Disease. Front. Cell Dev. Biol. 2025, 13, 1562296. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Geliang, H.; Bin, X.; Wang, W. Effects of Hydrogel Stiffness and Viscoelasticity on Organoid Culture: A Comprehensive Review. Mol. Med. 2025, 31, 83. [Google Scholar] [CrossRef] [PubMed]
- Courbot, O.; Elosegui-Artola, A. The Role of Extracellular Matrix Viscoelasticity in Development and Disease. NPJ Biol. Phys. Mech. 2025, 2, 10. [Google Scholar] [CrossRef]
- Aragona, M.; Panciera, T.; Manfrin, A.; Giulitti, S.; Michielin, F.; Elvassore, N.; Dupont, S.; Piccolo, S. A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors. Cell 2013, 154, 1047–1059. [Google Scholar] [CrossRef]
- Le, H.A.; Mayor, R. Neighboring Cells as Living Substrates for Guiding Collective Cell Migration during Development. Cold Spring Harb. Perspect. Biol. 2025, 17, a041741. [Google Scholar] [CrossRef]
- Da Silva André, G.; Labouesse, C. Mechanobiology of 3D Cell Confinement and Extracellular Crowding. Biophys. Rev. 2024, 16, 833–849. [Google Scholar] [CrossRef]
- Cronin, N.M.; DeMali, K.A. Dynamics of the Actin Cytoskeleton at Adhesion Complexes. Biology 2022, 11, 52. [Google Scholar] [CrossRef]
- Kureel, S.K.; Maroto, R.; Davis, K.; Sheetz, M. Cellular Mechanical Memory: A Potential Tool for Mesenchymal Stem Cell-Based Therapy. Stem Cell Res. Ther. 2025, 16, 159. [Google Scholar] [CrossRef]
- Na, J.; Shi, Q.; Yang, Z.; Liu, Y.; Chen, X.; Wang, Z.; Zheng, L.; Fan, Y. Mechanical Memory Based on Chromatin and Metabolism Remodeling Promotes Proliferation and Smooth Muscle Differentiation in Mesenchymal Stem Cells. FASEB J. 2024, 38, e23538. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Lee, J.W.N.; Zhou, J.; Rangaraj, V.; Marlena, J.; Holle, A.W. Confined Migration Drives Stem Cell Differentiation. Adv. Sci. 2025, 12, 2415407. [Google Scholar] [CrossRef]
- Kamm, D.R.; Shaji, A.; Bohnert, K.L.; Keener, J.D.; Pathak, A.; Meyer, G.A. Adipose Stromal Cells in the Human Rotator Cuff Are Resistant to Fibrotic Microenvironmental Cues. J. Physiol. 2025, 1–21. [Google Scholar] [CrossRef]
- Yang, C.; Tibbitt, M.W.; Basta, L.; Anseth, K.S. Mechanical Memory and Dosing Influence Stem Cell Fate. Nat. Mater. 2014, 13, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ni, S.; Han, S.; Crawford, R.; Lu, S.; Wei, F.; Chang, J.; Wu, C.; Xiao, Y. Nanoporous Microstructures Mediate Osteogenesis by Modulating the Osteo-Immune Response of Macrophages. Nanoscale 2017, 9, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, N.O.; Fangueiro, J.F.; Reis, R.L.; Neves, N.M. Replication of Natural Surface Topographies to Generate Advanced Cell Culture Substrates. Bioact. Mater. 2023, 28, 337–347. [Google Scholar] [CrossRef]
- Mao, Y.; Wickström, S.A. Mechanical State Transitions in the Regulation of Tissue Form and Function. Nat. Rev. Mol. Cell Biol. 2024, 25, 654–670. [Google Scholar] [CrossRef]
- Melo-Fonseca, F.; Carvalho, O.; Gasik, M.; Miranda, G.; Silva, F.S. Mechanical Stimulation Devices for Mechanobiology Studies: A Market, Literature, and Patents Review. Bio-Des. Manuf. 2023, 6, 340–371. [Google Scholar] [CrossRef]
- Galie, P.A.; Janmey, P.A. Interplay between Extracellular Matrix Mechanics and Cell Function in Mechanobiology. Curr. Opin. Biomed. Eng. 2025, 34, 100589. [Google Scholar] [CrossRef]
- Karling, T.; Weavers, H. Immune Cells Adapt to Confined Environments In Vivo to Optimise Nuclear Plasticity for Migration. EMBO Rep. 2025, 26, 1238–1268. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Wu, J.; Chen, Y.; Zhu, Y.; Li, G.; Xie, G.; Tang, G.; Xie, M. A Review of 3D Bioprinting for Organoids. In Medical Review; De Gruyter Brill: Berlin, Germany, 2025. [Google Scholar] [CrossRef]
- Liu, Q.; Ying, G.; Hu, C.; Du, L.; Zhang, H.; Wang, Z.; Yue, H.; Yetisen, A.K.; Wang, G.; Shen, Y.; et al. Engineering In Vitro Vascular Microsystems. Microsyst. Nanoeng. 2025, 11, 100. [Google Scholar] [CrossRef]
- Tortorella, I.; Argentati, C.; Emiliani, C.; Martino, S.; Morena, F. The Role of Physical Cues in the Development of Stem Cell-Derived Organoids. Eur. Biophys. J. 2022, 51, 105–117. [Google Scholar] [CrossRef]
- Ho, T.T.-P.; Tran, H.A.; Doan, V.K.; Maitz, J.; Li, Z.; Wise, S.G.; Lim, K.S.; Rnjak-Kovacina, J. Natural Polymer-Based Materials for Wound Healing Applications. Adv. NanoBiomed Res. 2024, 4, 2300131. [Google Scholar] [CrossRef]
- Grilli, F.; Albanesi, E.; Pelacho, B.; Prosper, F.; Decuzzi, P.; Di Mascolo, D. Microstructured Polymeric Fabrics Modulating the Paracrine Activity of Adipose-Derived Stem Cells. Int. J. Mol. Sci. 2023, 24, 10123. [Google Scholar] [CrossRef] [PubMed]
- Gelmi, A.; Schutt, C.E. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv. Healthc. Mater. 2021, 10, 2001125. [Google Scholar] [CrossRef] [PubMed]
- Ansari, Z.; Kalantar, M.; Soriente, A.; Fasolino, I.; Kharaziha, M.; Ambrosio, L.; Raucci, M.G. In-Situ Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite Coatings to Improve the Bioactive Properties of Ti6Al4V Substrates. Materials 2020, 13, 3772. [Google Scholar] [CrossRef]
- Raucci, M.G.; Guarino, V.; Ambrosio, L. Biomimetic Strategies for Bone Repair and Regeneration. J. Funct. Biomater. 2012, 3, 688–705. [Google Scholar] [CrossRef]
- Govindarajan, D.; Saravanan, S.; Sudhakar, S.; Vimalraj, S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS Omega 2024, 9, 67–80. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, M.; Niu, B.; Xu, X.; Xia, W.; Deng, C. Mg-Sr-Ca Containing Bioactive Glass Nanoparticles Hydrogel Modified Mineralized Collagen Scaffold for Bone Repair. J. Biomater. Appl. 2024, 39, 117–128. [Google Scholar] [CrossRef]
- Brochu, B.M.; Sturm, S.R.; Kawase De Queiroz Goncalves, J.A.; Mirsky, N.A.; Sandino, A.I.; Panthaki, K.Z.; Panthaki, K.Z.; Nayak, V.V.; Daunert, S.; Witek, L.; et al. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics 2024, 9, 690. [Google Scholar] [CrossRef]
- Tanvir, M.A.H.; Khaleque, M.A.; Kim, G.-H.; Yoo, W.-Y.; Kim, Y.-Y. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics 2024, 9, 230. [Google Scholar] [CrossRef]
- Lian, T.; Wang, Y.; Zheng, P. Research Progress in Medical Biomaterials for Bone Infections. J. Funct. Biomater. 2025, 16, 189. [Google Scholar] [CrossRef]
- Heboyan, A.; Bennardo, F. New Biomaterials for Modern Dentistry. BMC Oral. Health 2023, 23, 817. [Google Scholar] [CrossRef] [PubMed]
- Pranathi, V.; Koduganti, R.R.; Muthyala, S.; Kanchanapally, S.P.; Muthyala, N.; Shingade, V. Evaluation of Biomaterials in Periodontal Regeneration: A Literature Review. Cureus 2024, 16, e75618. [Google Scholar] [CrossRef] [PubMed]
- Souto-Lopes, M.; Grenho, L.; Manrique, Y.; Dias, M.M.; Lopes, J.C.B.; Fernandes, M.H.; Monteiro, F.J.; Salgado, C.L. Bone Regeneration Driven by a Nano-Hydroxyapatite/Chitosan Composite Bioaerogel for Periodontal Regeneration. Front. Bioeng. Biotechnol. 2024, 12, 1355950. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, N.; Pilli, J.; McWilliams, J.; Norris, S.; Bhattacharjee, A. Tannic Acid-Loaded Antibacterial Hydroxyapatite-Zirconia Composite for Dental Applications. Crystals 2025, 15, 396. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Guidotti, G.; Soccio, M.; Lotti, N.; Martino, S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023, 12, 1746. [Google Scholar] [CrossRef]
- Morena, F.; Argentati, C.; Soccio, M.; Bicchi, I.; Luzi, F.; Torre, L.; Munari, A.; Emiliani, C.; Gigli, M.; Lotti, N.; et al. Unpatterned Bioactive Poly(Butylene 1,4-Cyclohexanedicarboxylate)-Based Film Fast Induced Neuronal-Like Differentiation of Human Bone Marrow-Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 9274. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Duan, H.; Hao, F.; Zhao, W.; Gao, Y.; Yang, Z.; So, K.-F.; Li, X. Activation of Adult Endogenous Neurogenesis by a Hyaluronic Acid Collagen Gel Containing Basic Fibroblast Growth Factor Promotes Remodeling and Functional Recovery of the Injured Cerebral Cortex. Neural Regen. Res. 2025, 20, 2923–2937. [Google Scholar] [CrossRef]
- Ruiz, O.N.; Fernando, K.A.S.; Wang, B.; Brown, N.A.; Luo, P.G.; McNamara, N.D.; Vangsness, M.; Sun, Y.-P.; Bunker, C.E. Graphene Oxide: A Nonspecific Enhancer of Cellular Growth. ACS Nano 2011, 5, 8100–8107. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z. Biomaterials for Corneal Regeneration. Adv. Sci. 2024, 12, 2408021. [Google Scholar] [CrossRef]
- Gunasekaran, D.; Sekar Jeyakumar, G.F.; Panneerselvam Manimegalai, N.; Tiruchirapalli Sivagnanam, U. Thiol-Functionalized Collagen Patch Channelizes TGFβ1- JNK Trafficking and Reverses Corneal Stroma Opacity. Int. J. Biol. Macromol. 2025, 306, 141327. [Google Scholar] [CrossRef]
- Di Girolamo, N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. Adv. Mater. 2024, 36, 2401763. [Google Scholar] [CrossRef] [PubMed]
- Argentati, C.; Morena, F.; Bazzucchi, M.; Armentano, I.; Emiliani, C.; Martino, S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int. J. Mol. Sci. 2018, 19, 3475. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Bellas, E.; Vunjak-Novakovic, G.; Kaplan, D.L. Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. In Adipose-Derived Stem Cells; Gimble, J.M., Bunnell, B.A., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 702, pp. 319–330. ISBN 978-1-61737-959-8. [Google Scholar]
- Kim, S.Y.; Lee, J.K.; Jung, S.W.; Lee, K.-W.; Song, S.Y. Injectable Human Acellular Adipose Matrix with Crosslinked Hyaluronic Acid and Carboxymethyl Cellulose Gels for Soft Tissue Augmentation. In Tissue Engineering and Regenerative Medicine; Springer Nature: Berlin, Germany, 2025. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, T.; Cai, W.; Zhu, X.; Zhang, Z.; Huang, G. Microstring-Engineered Tension Tissues: A Novel Platform for Replicating Tissue Mechanics and Advancing Mechanobiology. Lab Chip 2025, 25, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, G.; Azevedo Gonzalez-Oliva, M.; Versaevel, M.; Cantini, M.; Vassalli, M.; Salmeron-Sanchez, M.; Gabriele, S. Epithelial Cell Mechanoresponse to Matrix Viscoelasticity and Confinement Within Micropatterned Viscoelastic Hydrogels. Adv. Sci. 2025, 12, e2408635. [Google Scholar] [CrossRef]
- Bai, F.-J.; Wang, H.; Hu, Y.-Q.; Shao, Y.-F.; Zhu, Y.-R.; Jiang, Y.-L.; Hu, J.-C.; Zhao, H.-J.; Zhang, K.-Q. Effectively Guiding Cell Elongation and Alignment by Constructing Micro/Nano Hierarchical Patterned Titania on Titanium Substrate. Biotechnol. Bioeng. 2025, 122, 1272–1283. [Google Scholar] [CrossRef]
- Son, Y.; Lee, M.S.; Hwang, D.J.; Lee, S.H.; Lee, A.S.; Hwang, S.S.; Choi, D.H.; Jo, C.H.; Yang, H.S. Fabrication of a Micropatterned Shape-Memory Polymer Patch with L-DOPA for Tendon Regeneration. Biomater. Sci. 2025, 13, 1243–1260. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef]
- Gusiatin, M.Z.; Mazur, Z.; Radziemska, M. Application of an Organic-Mineral Biocomposite for Sustainable Remediation of Post-Industrial Soil Contaminated with Potentially Toxic Elements (PTEs). Environ. Geochem. Health 2025, 47, 168. [Google Scholar] [CrossRef]
- Hernandez-Urquizo, D.V.; Claudio Rizo, J.A.; Cabrera-Munguía, D.A.; Caldera-Villalobos, M.; León-Campos, M.I.; Enríquez-Medrano, F.J.; Elizalde-Herrera, L.E. Antibacterial Collagen-Guar Gum Hydrogels with Zeolitic Imidazolate Framework-67 (ZIF-67): An Innovative Platform for Advanced Wound Healing. J. Biomater. Sci. Polym. Ed. 2025, 1–26. [Google Scholar] [CrossRef]
- Ayala-Peña, V.B.; Jaimes, A.K.; Conesa, A.L.; García, C.C.; Sepulveda, C.S.; Dellatorre, F.G.; Latour, E.; Ponce, N.M.A.; Álvarez, V.A.; Lassalle, V.L. New Insights into Antiviral Natural Formulations: Biopolymeric Films for the Prevention and Treatment of a Wide Gamma of Viral Infections. Viruses 2025, 17, 216. [Google Scholar] [CrossRef]
- Hu, M.; Liu, Q.; Zhang, L.; Yang, D.; Wang, G.; Wang, Q.; Chang, C.; Chen, X.; Yang, Z.; Zheng, G.; et al. Green Fabrication of Antimicrobial Film for Food Preservation by Polysaccharides from Poria Cocos. Int. J. Biol. Macromol. 2025, 309, 143131. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Shukla, A.; Shivhare, S.J.; Vivekan; Bagal, S.; Upadhyay, N. High Performance Conducting Nanocomposites Polyaniline (PANI)-CuO with Enhanced Antimicrobial Activity for Biomedical Applications. ES Mater. Manuf. 2021, 15, 46–52. [Google Scholar] [CrossRef]
- Zhou, S.; Xiao, C.; Fan, L.; Yang, J.; Ge, R.; Cai, M.; Yuan, K.; Li, C.; Crawford, R.W.; Xiao, Y.; et al. Injectable Ultrasound-Powered Bone-Adhesive Nanocomposite Hydrogel for Electrically Accelerated Irregular Bone Defect Healing. J. Nanobiotechnol. 2024, 22, 54. [Google Scholar] [CrossRef]
- Shokrani, H.; Shokrani, A.; Jouyandeh, M.; Seidi, F.; Gholami, F.; Kar, S.; Munir, M.T.; Kowalkowska-Zedler, D.; Zarrintaj, P.; Rabiee, N.; et al. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Appl. Bio Mater. 2022, 5, 2107–2121. [Google Scholar] [CrossRef]
- Khodarahmi, G.; Sabeti, B.; Chekin, F. Carbon Nanotubes/Ordered Mesoporous Carbon/Chitosan Nanocomposite as a Promising Carrier for Everolimus Targeted Delivery toward Lung Cancer Cells. J. Mater. Sci. Mater. Med. 2025, 36, 46. [Google Scholar] [CrossRef]
- Akman, R.; Ramaraju, H.; Hollister, S.J. Development of Photocrosslinked Poly(Glycerol Dodecanedioate)—A Biodegradable Shape Memory Polymer for 3D-Printed Tissue Engineering Applications. Adv. Eng. Mater. 2021, 23, 2100219. [Google Scholar] [CrossRef]
- Basak, S.; Tiwari, A.; Sharma, D.; Packirisamy, G. Unveiling Mechanobiology: A Compact Device for Uniaxial Mechanical Stimulation on Nanofiber Substrates and Its Impact on Cellular Behavior and Nanoparticle Distribution. ACS Appl. Bio Mater. 2024, 7, 2283–2298. [Google Scholar] [CrossRef]
- Chan, W.-I.; Zhang, G.; Li, X.; Leung, C.-H.; Ma, D.-L.; Dong, L.; Wang, C. Carrageenan Activates Monocytes via Type-Specific Binding with Interleukin-8: An Implication for Design of Immuno-Active Biomaterials. Biomater. Sci. 2017, 5, 403–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, F.; Liang, R.; Shuai, X.J.; Nie, K.H.; Li, J.; Zeng, Q.L.; Huang, C.Z.; Li, C.M. In Situ Activation of the Receptor Aggregation for Cell Apoptosis by an AI–Au Intelligent Nanomachine via Tumor Extracellular Acidity. ACS Appl. Mater. Interfaces 2023, 15, 32262–32271. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Chelu, M.; Musuc, A.M. Biomaterials-Based Hydrogels for Therapeutic Applications. In Biomaterials in Microencapsulation; IntechOpen: London, UK, 2024; ISBN 978-0-85466-106-0. [Google Scholar]
- Waqar, M.A.; Mubarak, N.; Khan, A.M.; Shaheen, F.; Mustafa, M.A.; Riaz, T. Recent Advances in Polymers, Preparation Techniques, Applications and Future Perspectives of Hydrogels. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 265–284. [Google Scholar] [CrossRef]
- Nehal; Awasthi, S. Insights into the Versatile and Efficient Characteristics, Classifications, and Rational Design of Surface-Grafted Smart Hydrogels. Chem. Asian J. 2025, e202500441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yan, K.; Zheng, X.; Liu, Q.; Han, Y.; Liu, Z. Research Progress of Photo-Crosslink Hydrogels in Ophthalmology: A Comprehensive Review Focus on the Applications. Mater. Today Bio 2024, 26, 101082. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-Q.; Xu, D.; Dong, Q.-W.; Song, X.-J.; Chen, Y.-B.; Cui, Y.-L. Biomedical Potentials of Alginate via Physical, Chemical, and Biological Modifications. Int. J. Biol. Macromol. 2024, 277, 134409. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Selicato, N.; Coricciati, C.; Rainer, A.; Capodilupo, A.L.; Gigli, G.; Moroni, L.; Polini, A.; Gervaso, F. Modelling Methacrylated Chitosan Hydrogel Properties through an Experimental Design Approach: From Composition to Material Properties. J. Mater. Chem. B 2024, 12, 10221–10240. [Google Scholar] [CrossRef]
- Zhu, L.; Ouyang, F.; Fu, X.; Wang, Y.; Li, T.; Wen, M.; Zha, G.; Yang, X. Tannic Acid Modified Keratin/Sodium Alginate/Carboxymethyl Chitosan Biocomposite Hydrogels with Good Mechanical Properties and Swelling Behavior. Sci. Rep. 2024, 14, 12864. [Google Scholar] [CrossRef]
- Brusatin, G.; Panciera, T.; Gandin, A.; Citron, A.; Piccolo, S. Biomaterials and Engineered Microenvironments to Control YAP/TAZ-Dependent Cell Behaviour. Nat. Mater. 2018, 17, 1063–1075. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.-K.; Yang, M.T.; Desai, R.A.; Yu, X.; Liu, Z.; Chen, C.S. Mechanical Regulation of Cell Function with Geometrically Modulated Elastomeric Substrates. Nat. Methods 2010, 7, 733–736. [Google Scholar] [CrossRef]
- Luo, T.; Tan, B.; Zhu, L.; Wang, Y.; Liao, J. A Review on the Design of Hydrogels with Different Stiffness and Their Effects on Tissue Repair. Front. Bioeng. Biotechnol. 2022, 10, 817391. [Google Scholar] [CrossRef]
- Prouvé, E.; Drouin, B.; Chevallier, P.; Rémy, M.; Durrieu, M.-C.; Laroche, G. Evaluating Poly(Acrylamide-Co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol. Biosci. 2021, 21, 2100069. [Google Scholar] [CrossRef]
- Genchi, G.G.; Ceseracciu, L.; Marino, A.; Labardi, M.; Marras, S.; Pignatelli, F.; Bruschini, L.; Mattoli, V.; Ciofani, G. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Adv. Healthc. Mater. 2016, 5, 1808–1820. [Google Scholar] [CrossRef]
- Cafarelli, A.; Marino, A.; Vannozzi, L.; Puigmartí-Luis, J.; Pané, S.; Ciofani, G.; Ricotti, L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano 2021, 15, 11066–11086. [Google Scholar] [CrossRef] [PubMed]
- Şen, Ö.; Marino, A.; Pucci, C.; Ciofani, G. Modulation of Anti-Angiogenic Activity Using Ultrasound-Activated Nutlin-Loaded Piezoelectric Nanovectors. Mater. Today Bio 2022, 13, 100196. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Peng, H.; Chelvarajan, L.; Abdel-Latif, A.; Berron, B.J. Increased Yield of Gelatin Coated Therapeutic Cells through Cholesterol Insertion. J. Biomed. Mater. Res. Part A 2021, 109, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Blazquez, J.P.F.; Yin, G.-Z.; Wang, D.-Y.; Llorca, J.; Echeverry-Rendón, M. A Strategy to Tailor the Mechanical and Degradation Properties of PCL-PEG-PCL Based Copolymers for Biomedical Application. Eur. Polym. J. 2023, 198, 112388. [Google Scholar] [CrossRef]
- Sultana, N.; Hassan, M.I.; Lim, M.M. Scaffolding Biomaterials. In Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine; Sultana, N., Hassan, M.I., Lim, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–11. ISBN 978-3-319-09755-8. [Google Scholar]
- Kozan, N.G.; Joshi, M.; Sicherer, S.T.; Grasman, J.M. Porous Biomaterial Scaffolds for Skeletal Muscle Tissue Engineering. Front. Bioeng. Biotechnol. 2023, 11, 1245897. [Google Scholar] [CrossRef]
- Carotenuto, F.; Politi, S.; Ul Haq, A.; De Matteis, F.; Tamburri, E.; Terranova, M.L.; Teodori, L.; Pasquo, A.; Di Nardo, P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines 2022, 13, 780. [Google Scholar] [CrossRef]
- Khan, A.R.; Gholap, A.D.; Grewal, N.S.; Jun, Z.; Khalid, M.; Zhang, H.-J. Advances in Smart Hybrid Scaffolds: A Strategic Approach for Regenerative Clinical Applications. Eng. Regen. 2025, 6, 85–110. [Google Scholar] [CrossRef]
- Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; et al. Scaffolds for Drug Delivery and Tissue Engineering: The Role of Genetics. J. Control Release 2023, 359, 207–223. [Google Scholar] [CrossRef]
- Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive Polymeric Scaffolds for Tissue Engineering. Bioact. Mater. 2016, 1, 93–108. [Google Scholar] [CrossRef]
- Guvendiren, M.; Burdick, J.A. Stiffening Hydrogels to Probe Short- and Long-Term Cellular Responses to Dynamic Mechanics. Nat. Commun. 2012, 3, 792. [Google Scholar] [CrossRef]
- Henstock, J.R.; Rotherham, M.; Rashidi, H.; Shakesheff, K.M.; El Haj, A.J. Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically with Bone Morphogenetic Protein 2: Applications for Injectable Cell Therapy. Stem Cells Transl. Med. 2014, 3, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Montoya, C.; Du, Y.; Gianforcaro, A.L.; Orrego, S.; Yang, M.; Lelkes, P.I. On the Road to Smart Biomaterials for Bone Research: Definitions, Concepts, Advances, and Outlook. Bone Res. 2021, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Memarzadeh, K.; Stephen, A.S.; Allaker, R.P.; Brown, R.A.; Huang, J. Development of a 3D Collagen Model for the In Vitro Evaluation of Magnetic-Assisted Osteogenesis. Sci. Rep. 2018, 8, 16270. [Google Scholar] [CrossRef]
- Onuma, Y.; Dudek, D.; Thuesen, L.; Webster, M.; Nieman, K.; Garcia-Garcia, H.M.; Ormiston, J.A.; Serruys, P.W. Five-Year Clinical and Functional Multislice Computed Tomography Angiographic Results After Coronary Implantation of the Fully Resorbable Polymeric Everolimus-Eluting Scaffold in Patients with De Novo Coronary Artery Disease: The ABSORB Cohort A Trial. JACC Cardiovasc. Interv. 2013, 6, 999–1009. [Google Scholar] [CrossRef]
- Kerkmeijer, L.S.M.; Renkens, M.P.L.; Tijssen, R.Y.G.; Hofma, S.H.; van der Schaaf, R.J.; Arkenbout, E.K.; Weevers, A.P.J.D.; Garcia-Garcia, H.M.; Kraak, R.; Piek, J.J.; et al. Long-Term Clinical Outcomes of Everolimus-Eluting Bioresorbable Scaffolds versus Everolimus-Eluting Stents: Final Five-Year Results of the AIDA Randomised Clinical Trial. EuroIntervention 2022, 17, 1340–1347. [Google Scholar] [CrossRef]
- Özkale, B.; Sakar, M.S.; Mooney, D.J. Active Biomaterials for Mechanobiology. Biomaterials 2021, 267, 120497. [Google Scholar] [CrossRef]
- Schwartz, M.A.; Chen, C.S. Cell Biology. Deconstructing Dimensionality. Science 2013, 339, 402–404. [Google Scholar] [CrossRef]
- Bril, M.; Fredrich, S.; Kurniawan, N.A. Stimuli-Responsive Materials: A Smart Way to Study Dynamic Cell Responses. Smart Mater. Med. 2022, 3, 257–273. [Google Scholar] [CrossRef]
- Zhao, H.; Sterner, E.S.; Coughlin, E.B.; Theato, P. o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012, 45, 1723–1736. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Lee, S.J. Nature-Inspired Thermo-Responsive Multifunctional Membrane Adaptively Hybridized with PNIPAm and PPy. NPG Asia Mater. 2017, 9, e445. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Greene, T.; Lin, T.-Y.; Dawes, C.S.; Korc, M.; Lin, C.-C. Enzyme-Mediated Stiffening Hydrogels for Probing Activation of Pancreatic Stellate Cells. Acta Biomater. 2017, 48, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.J.; Ayurini, M.; Browne, C.; Raghuwanshi, V.S.; Simon, G.P.; Hooper, J.F.; Garnier, G. Thermoresponsive Poly(N-Isopropylacrylamide) Grafted from Cellulose Nanofibers via Silver-Promoted Decarboxylative Radical Polymerization. Biomacromolecules 2022, 23, 1610–1621. [Google Scholar] [CrossRef]
- Schmidt, S.; Zeiser, M.; Hellweg, T.; Duschl, C.; Fery, A.; Möhwald, H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Adv. Funct. Mater. 2010, 20, 3235–3243. [Google Scholar] [CrossRef]
- Zhang, K.; Xue, K.; Loh, X.J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7, 77. [Google Scholar] [CrossRef]
- de León, E.H.-P.; Valle-Pérez, A.U.; Khan, Z.N.; Hauser, C.A.E. Intelligent and Smart Biomaterials for Sustainable 3D Printing Applications. Curr. Opin. Biomed. Eng. 2023, 26, 100450. [Google Scholar] [CrossRef]
- Hörning, M.; Nakahata, M.; Linke, P.; Yamamoto, A.; Veschgini, M.; Kaufmann, S.; Takashima, Y.; Harada, A.; Tanaka, M. Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Sci. Rep. 2017, 7, 7660. [Google Scholar] [CrossRef]
- Soriente, A.; Zuppardi, F.; Duraccio, D.; d’Ayala, G.G.; Razzaq, H.A.A.; Corsaro, M.M.; Casillo, A.; Ambrosio, L.; Raucci, M.G. Barley β-Glucan Bioactive Films: Promising Eco-Friendly Materials for Wound Healing. Int. J. Biol. Macromol. 2024, 278, 134434. [Google Scholar] [CrossRef]
- Leach, J.K.; Whitehead, J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 1115–1127. [Google Scholar] [CrossRef]
- Martino, S.; D’Angelo, F.; Armentano, I.; Tiribuzi, R.; Pennacchi, M.; Dottori, M.; Mattioli, S.; Caraffa, A.; Cerulli, G.G.; Kenny, J.M.; et al. Hydrogenated Amorphous Carbon Nanopatterned Film Designs Drive Human Bone Marrow Mesenchymal Stem Cell Cytoskeleton Architecture. Tissue Eng. Part A 2009, 15, 3139–3149. [Google Scholar] [CrossRef]
- D’Angelo, F.; Armentano, I.; Mattioli, S.; Crispoltoni, L.; Tiribuzi, R.; Cerulli, G.G.; Palmerini, C.A.; Kenny, J.M.; Martino, S.; Orlacchio, A. Micropatterned Hydrogenated Amorphous Carbon Guides Mesenchymal Stem Cells towards Neuronal Differentiation. Eur. Cell Mater. 2010, 20, 231–244. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, Z.; Wei, Z.; Tian, L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Adv. Sci. 2020, 7, 2001048. [Google Scholar] [CrossRef] [PubMed]
- Nitti, P.; Narayanan, A.; Pellegrino, R.; Villani, S.; Madaghiele, M.; Demitri, C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering 2023, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Webb, K.; Hlady, V.; Tresco, P.A. Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization. J. Biomed. Mater. Res. 1998, 41, 422–430. [Google Scholar] [CrossRef]
- Groeger, A.L.; Freeman, B.A. Signaling Actions of Electrophiles: Anti-Inflammatory Therapeutic Candidates. Mol. Interv. 2010, 10, 39–50. [Google Scholar] [CrossRef]
- Lv, Z.; Ji, Y.; Wen, G.; Liang, X.; Zhang, K.; Zhang, W. Structure-Optimized and Microenvironment-Inspired Nanocomposite Biomaterials in Bone Tissue Engineering. Burn. Trauma 2024, 12, tkae036. [Google Scholar] [CrossRef]
- Buehler, M.J.; Misra, A. Mechanical Behavior of Nanocomposites. MRS Bull. 2019, 44, 19–24. [Google Scholar] [CrossRef]
- Cassani, M.; Niro, F.; Fernandes, S.; Pereira-Sousa, D.; Faes Morazzo, S.; Durikova, H.; Wang, T.; González-Cabaleiro, L.; Vrbsky, J.; Oliver-De La Cruz, J.; et al. Regulation of Cell–Nanoparticle Interactions through Mechanobiology. Nano Lett. 2025, 25, 2600–2609. [Google Scholar] [CrossRef]
- D’Angelo, F.; Armentano, I.; Cacciotti, I.; Tiribuzi, R.; Quattrocelli, M.; Del Gaudio, C.; Fortunati, E.; Saino, E.; Caraffa, A.; Cerulli, G.G.; et al. Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(l-Lactic Acid)-Calcium-Deficient Hydroxyapatite Nanocomposite Mats. Biomacromolecules 2012, 13, 1350–1360. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, C.; Xiong, W.; Song, Y.; Wang, Q.; Zhang, H.; Guo, S.; Yang, S.; Liu, H. Advances in Electroactive Biomaterials: Through the Lens of Electrical Stimulation Promoting Bone Regeneration Strategy. J. Orthop. Transl. 2024, 47, 191–206. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Zabielski, K.; Gradys, A.; Kowalczyk, T.; Sajkiewicz, P. Piezoelectric Scaffolds as Smart Materials for Bone Tissue Engineering. Polymers 2024, 16, 2797. [Google Scholar] [CrossRef]
- Ali, I.; Ali, A.; Weimin, Y.; Haoyi, L.; Javed, F.; Xiaodong, X.; Xuan, S.; Tianyang, Z. Enhancing the Electro-Stimulation Performance of Polyvinyl Chloride Matrix With Nanofillers: A Comprehensive Review. Polym. Adv. Technol. 2025, 36, e70165. [Google Scholar] [CrossRef]
- Sreejivungsa, K.; Phromviyo, N.; Jarernboon, W.; Wantala, K.; Thongbai, P. Enhancing Dielectric Properties of Gold Nanoparticles Attached to Acid-Treated Pristine Multiwalled Carbon Nanotubes-BaTiO3/PVDF Polymer Nanocomposites. Arab. J. Sci. Eng. 2025, 50, 6853–6863. [Google Scholar] [CrossRef]
- Tunç, T.; Hepokur, C.; Kariper, A. Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity. Bioinorg. Chem. Appl. 2024, 2024, 9916187. [Google Scholar] [CrossRef]
- Ozelin, S.D.; Esperandim, T.R.; Dias, F.G.G.; de Freitas Pereira, L.; Garcia, C.B.; de Souza, T.O.; Magalhães, L.F.; da Silva Barud, H.; Sábio, R.M.; Tavares, D.C. Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles Improve Wound Healing Without Exhibiting Toxic Effect. J. Pharm. Sci. 2024, 113, 2383–2393. [Google Scholar] [CrossRef]
- Sati, A.; Ranade, T.N.; Mali, S.N.; Ahmad Yasin, H.K.; Pratap, A. Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity—A 2024 Update. ACS Omega 2025, 10, 7549–7582. [Google Scholar] [CrossRef]
- Khairnar, S.V.; Das, A.; Oupický, D.; Sadykov, M.; Romanova, S. Strategies to Overcome Antibiotic Resistance: Silver Nanoparticles and Vancomycin in Pathogen Eradication. RSC Pharm. 2025, 2, 455–479. [Google Scholar] [CrossRef]
- Wijeratne, P.M.; Ocando, C.; Grignard, B.; Berglund, L.A.; Raquez, J.-M.; Zhou, Q. Synthesis, Thermal and Mechanical Properties of Nonisocyanate Thermoplastic Polyhydroxyurethane Nanocomposites with Cellulose Nanocrystals and Chitin Nanocrystals. Biomacromolecules 2025, 26, 3481–3494. [Google Scholar] [CrossRef]
- Parvan, M.; Parihar, V.S.; Kellomäki, M.; Mahato, M.; Layek, R. Tailoring of Crystal Size and Significant Enhancement of Physical Property, Ductility and Toughness in in-Situ Nano Kraft Lignin/Nano-Fibrillated Cellulose Biocomposite. Compos. Part B Eng. 2025, 298, 112400. [Google Scholar] [CrossRef]
- Fortunati, E.; Gigli, M.; Luzi, F.; Dominici, F.; Lotti, N.; Gazzano, M.; Cano, A.; Chiralt, A.; Munari, A.; Kenny, J.M.; et al. Processing and Characterization of Nanocomposite Based on Poly(Butylene/Triethylene Succinate) Copolymers and Cellulose Nanocrystals. Carbohydr. Polym. 2017, 165, 51–60. [Google Scholar] [CrossRef]
- Luzi, F.; Dominici, F.; Armentano, I.; Fortunati, E.; Burgos, N.; Fiori, S.; Jiménez, A.; Kenny, J.M.; Torre, L. Combined Effect of Cellulose Nanocrystals, Carvacrol and Oligomeric Lactic Acid in PLA_PHB Polymeric Films. Carbohydr. Polym. 2019, 223, 115131. [Google Scholar] [CrossRef]
- Lizundia, E.; Goikuria, U.; Vilas, J.L.; Cristofaro, F.; Bruni, G.; Fortunati, E.; Armentano, I.; Visai, L.; Torre, L. Metal Nanoparticles Embedded in Cellulose Nanocrystal Based Films: Material Properties and Post-Use Analysis. Biomacromolecules 2018, 19, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Wypych, G. 8—The Effect of Fillers on the Mechanical Properties of Filled Materials. In Handbook of Fillers, 5th ed.; Wypych, G., Ed.; ChemTec Publishing: Toronto, ON, Canada, 2021; pp. 525–608. ISBN 978-1-927885-79-6. [Google Scholar]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2016, 8, 127–143. [Google Scholar] [CrossRef]
- Higuchi, A.; Ling, Q.-D.; Kumar, S.S.; Chang, Y.; Kao, T.-C.; Munusamy, M.A.; Alarfaj, A.A.; Hsu, S.-T.; Umezawa, A. External Stimulus-Responsive Biomaterials Designed for the Culture and Differentiation of ES, iPS, and Adult Stem Cells. Progress. Polym. Sci. 2014, 39, 1585–1613. [Google Scholar] [CrossRef]
- Argentati, C.; Dominici, F.; Morena, F.; Rallini, M.; Tortorella, I.; Ferrandez-Montero, A.; Pellegrino, R.M.; Ferrari, B.; Emiliani, C.; Lieblich, M.; et al. Thermal Treatment of Magnesium Particles in Polylactic Acid Polymer Films Elicits the Expression of Osteogenic Differentiation Markers and Lipidome Profile Remodeling in Human Adipose Stem Cells. Int. J. Biol. Macromol. 2022, 223, 684–701. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Montanucci, P.; Rallini, M.; Basta, G.; Calabrese, N.; Calafiore, R.; Cordellini, M.; Emiliani, C.; Armentano, I.; et al. Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Polymers 2018, 10, 140. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Argentati, C.; Luzi, F.; Aluigi, A.; Torre, L.; Armentano, I.; Emiliani, C.; Morena, F.; Martino, S.; et al. Novel Nanostructured Scaffolds of Poly(Butylene Trans-1,4-Cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling. Nanomaterials 2023, 13, 2330. [Google Scholar] [CrossRef]
- Xie, W.; Wei, X.; Kang, H.; Jiang, H.; Chu, Z.; Lin, Y.; Hou, Y.; Wei, Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Adv. Sci. 2023, 10, 2204594. [Google Scholar] [CrossRef]
- Solanki, R.; Bhatia, D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024, 10, 440. [Google Scholar] [CrossRef]
- Sadraei, A.; Naghib, S.M.; Rabiee, N. 4D Printing Biological Stimuli-Responsive Hydrogels for Tissue Engineering and Localized Drug Delivery Applications—Part 1. Expert. Opin. Drug Deliv. 2025, 22, 471–490. [Google Scholar] [CrossRef]
- Chang, D.K.; Louis, M.R.; Gimenez, A.; Reece, E.M. The Basics of Integra Dermal Regeneration Template and Its Expanding Clinical Applications. Semin. Plast. Surg. 2019, 33, 185–189. [Google Scholar] [CrossRef]
- Turton, N.; Aggarwal, A.; Twohig, E.; Gallagher, J.; McVeigh, K.; Barnard, N.; Payne, K. Integra® Dermal Regeneration Template in Complex Scalp Reconstruction. J. Clin. Med. 2024, 13, 1511. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.J.; Haga, J.H.; Chien, S. Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells. J. Biomech. 2005, 38, 1949–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Yin, W.; Wang, A.; Zheng, J.; Wang, Y.; Dong, J. Microscale Tissue Engineering of Liver Lobule Models: Advancements and Applications. Front. Bioeng. Biotechnol. 2023, 11, 1303053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, L.; Wu, L.; Zhou, W.; Xie, J.; Fan, Y.; Zhou, X.; Zhou, C.; Cui, Y.; Sun, J. Versatile Hydrogels Prepared by Microfluidics Technology for Bone Tissue Engineering Applications. J. Mater. Chem. B 2025, 13, 2611–2639. [Google Scholar] [CrossRef]
- Johnson, A.M.; Froman-Glover, C.; Mistry, A.; Yaddanapudi, K.; Chen, J. The Impact of Compression and Confinement in Tumor Growth and Progression: Emerging Concepts in Cancer Mechanobiology. Front. Mater. 2025, 12, 1492438. [Google Scholar] [CrossRef]
- Cao, X.; Yang, P.; Gao, W.; Dai, Y.; Gao, J.; Jin, Q. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Hybridoma Cell Using Microfluidic Impedance Cytometry Measurement System. Measurement 2025, 253, 117462. [Google Scholar] [CrossRef]
- Wang, Y.; Yung, P.; Lu, G.; Liu, Y.; Ding, C.; Mao, C.; Li, Z.A.; Tuan, R.S. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology–Biology Interface. Adv. Mater. 2025, 37, 2401334. [Google Scholar] [CrossRef]
- Monteiro, C.F.; Deus, I.A.; Custódio, C.A.; Mano, J.F. Biomaterials Meet Organ-on-Chips—A Perspective on Tumor Modeling. Int. Mater. Rev. 2025, 70, 31–68. [Google Scholar] [CrossRef]
- Tang, H.; Evers, T.M.J.; Babaei, M.; Mashaghi, A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater. Sci. Eng. 2025, 11, 2448–2455. [Google Scholar] [CrossRef]
- Kieda, J.; Shakeri, A.; Landau, S.; Wang, E.Y.; Zhao, Y.; Lai, B.F.; Okhovatian, S.; Wang, Y.; Jiang, R.; Radisic, M. Advances in Cardiac Tissue Engineering and Heart-on-a-Chip. J. Biomed. Mater. Res. Part A 2024, 112, 492–511. [Google Scholar] [CrossRef]
- Lei, X.; Ye, W.; Safdarin, F.; Baghaei, S. Microfluidics Devices for Sports: A Review on Technology for Biomedical Application Used in Fields Such as Biomedicine, Drug Encapsulation, Preparation of Nanoparticles, Cell Targeting, Analysis, Diagnosis, and Cell Culture. Tissue Cell 2024, 87, 102339. [Google Scholar] [CrossRef] [PubMed]
- Samantasinghar, A.; Sunildutt, N.; Ahmed, F.; Memon, F.H.; Kang, C.; Choi, K.H. Revolutionizing Biomedical Research: Unveiling the Power of Microphysiological Systems with Advanced Assays, Integrated Sensor Technologies, and Real-Time Monitoring. ACS Omega 2025, 10, 9869–9889. [Google Scholar] [CrossRef] [PubMed]
- Bighi, B.; Ragazzini, G.; Gallerani, A.; Mescola, A.; Scagliarini, C.; Zannini, C.; Marcuzzi, M.; Olivi, E.; Cavallini, C.; Tassinari, R.; et al. Cell Stretching Devices Integrated with Live Cell Imaging: A Powerful Approach to Study How Cells React to Mechanical Cues. Prog. Biomed. Eng. 2024, 7, 012005. [Google Scholar] [CrossRef] [PubMed]
- Polacheck, W.J.; Li, R.; Uzel, S.G.M.; Kamm, R.D. Microfluidic Platforms for Mechanobiology. Lab Chip 2013, 13, 2252–2267. [Google Scholar] [CrossRef]
- Imparato, G.; Urciuolo, F.; Netti, P.A. Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering 2022, 9, 28. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Zhao, Y.; Zhong, W.; Xing, M.; Lyu, G. Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation. Pharmaceutics 2023, 15, 2094. [Google Scholar] [CrossRef]
- Ruiz-Espigares, J.; Nieto, D.; Moroni, L.; Jiménez, G.; Marchal, J.A. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? Small 2021, 17, 2006009. [Google Scholar] [CrossRef]
- Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef]
- Ingber, D.E. Human Organs-on-Chips for Disease Modelling, Drug Development and Personalized Medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Aziz, M.M.; Beard, L.; Ali, S.; Eltaggaz, A.; Deiab, I. Optimization Scheme for 3D Printing of PLA–PHBV–PCL Biodegradable Blends for Use in Orthopedic Casting. Polymers 2025, 17, 852. [Google Scholar] [CrossRef] [PubMed]
- Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Tang, D.; Song, H.; Yan, C.; Luo, Y.; Su, X.; Ruan, S. Hydrogel Composite Scaffold Repairs Knee Cartilage Defects: A Systematic Review. RSC Adv. 2025, 15, 10337–10364. [Google Scholar] [CrossRef] [PubMed]
- Kontaxis, L.C.; Zachos, D.; Georgali-Fickel, A.; Portan, D.V.; Zaoutsos, S.P.; Papanicolaou, G.C. 3D-Printed PLA Mechanical and Viscoelastic Behavior Dependence on the Nozzle Temperature and Printing Orientation. Polymers 2025, 17, 913. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Stabrauskiene, J.; Kazlauskaite, J.A.; Bernatonyte, U.; Kopustinskiene, D.M. The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals. Pharmaceutics 2025, 17, 390. [Google Scholar] [CrossRef]
- Ramaux, J.; Ziegler-Devin, I.; Besserer, A.; Nouvel, C. 3D Printing of Wood Composites: State of the Art and Opportunities. Polymers 2024, 16, 2827. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, S.; Ravichandran, D.; Ramanathan, A.; Sobczak, M.T.; Sacco, A.F.; Patil, D.; Thummalapalli, S.V.; Pulido, T.V.; Lancaster, J.N.; et al. 3D-Printed Polymeric Biomaterials for Health Applications. Adv. Healthc. Mater. 2025, 14, 2402571. [Google Scholar] [CrossRef]
- Guarino, V.; Causa, F.; Taddei, P.; di Foggia, M.; Ciapetti, G.; Martini, D.; Fagnano, C.; Baldini, N.; Ambrosio, L. Polylactic Acid Fibre-Reinforced Polycaprolactone Scaffolds for Bone Tissue Engineering. Biomaterials 2008, 29, 3662–3670. [Google Scholar] [CrossRef]
- Peng, H.; Han, B.; Tong, T.; Jin, X.; Peng, Y.; Guo, M.; Li, B.; Ding, J.; Kong, Q.; Wang, Q. 3D Printing Processes in Precise Drug Delivery for Personalized Medicine. Biofabrication 2024, 16, 032001. [Google Scholar] [CrossRef]
- Lin, X.; Yang, H.; Xia, Y.; Wu, K.; Chu, F.; Zhou, H.; Gao, H.; Yang, L. Mechanobiomaterials: Harnessing Mechanobiology Principles for Tissue Repair and Regeneration. Mechanobiol. Med. 2024, 2, 100079. [Google Scholar] [CrossRef]
- Kim, S.; Uroz, M.; Bays, J.L.; Chen, C.S. Harnessing Mechanobiology for Tissue Engineering. Dev. Cell 2021, 56, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Wang, F.; McAlpine, M.C. 3D Printed Microfluidics: Advances in Strategies, Integration, and Applications. Lab Chip 2023, 23, 1279–1299. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zheng, L.; Zheng, Z.; Fu, M.; Peng, H.; Ma, S. Microbead Encapsulation Strategy for Efficient Production of Extracellular Vesicles Derived from Human Mesenchymal Stem Cells. J. Extracell. Vesicles 2025, 14, e70053. [Google Scholar] [CrossRef]
- Kunwar, P.; Poudel, A.; Aryal, U.; Xie, R.; Geffert, Z.J.; Wittmann, H.; Fougnier, D.; Chiang, T.H.; Maye, M.M.; Li, Z.; et al. Multi-Material Gradient Printing Using Meniscus-Enabled Projection Stereolithography (MAPS). Adv. Mater. Technol. 2025, 10, 2400675. [Google Scholar] [CrossRef]
- D’Amora, U.; Ronca, A.; Scialla, S.; Soriente, A.; Manini, P.; Phua, J.W.; Ottenheim, C.; Pezzella, A.; Calabrese, G.; Raucci, M.G.; et al. Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds. Nanomaterials 2023, 13, 772. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Tseng, T.-M.; Schlichtmann, U. Open-Source Interactive Design Platform for 3D-Printed Microfluidic Devices. Commun. Eng. 2024, 3, 71. [Google Scholar] [CrossRef]
- Mierke, C.T. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024, 13, 1638. [Google Scholar] [CrossRef]
- Salehi, S. A Comprehensive Review on Using Injectable Chitosan Microgels for Osteochondral Tissue Repair. J. Biomater. Sci. Polym. Ed. 2025, 36, 647–662. [Google Scholar] [CrossRef]
- Narayanan, S.A. Gravity’s Effect on Biology. Front. Physiol. 2023, 14, 1199175. [Google Scholar] [CrossRef]
- Ruden, D.M.; Rappolee, D.A. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mouse Embryogenesis: A Review of the First Two Space Embryo Studies. Mechanobiol. Med. 2024, 2, 100081. [Google Scholar] [CrossRef]
- Wubshet, N.H.; Cai, G.; Chen, S.J.; Sullivan, M.; Reeves, M.; Mays, D.; Harrison, M.; Varnado, P.; Yang, B.; Arreguin-Martinez, E.; et al. Cellular Mechanotransduction of Human Osteoblasts in Microgravity. npj Microgravity 2024, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y. Technology Using Simulated Microgravity. Regen. Ther. 2023, 24, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Basirun, C.; Ferlazzo, M.L.; Howell, N.R.; Liu, G.-J.; Middleton, R.J.; Martinac, B.; Narayanan, S.A.; Poole, K.; Gentile, C.; Chou, J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front. Cell Dev. Biol. 2021, 9, 750775. [Google Scholar] [CrossRef]
- López Garzón, N.A.; Pinzón-Fernández, M.V.; Saavedra T., J.S.; Nati-Castillo, H.A.; Arias-Intriago, M.; Salazar-Santoliva, C.; Izquierdo-Condoy, J.S. Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health. Int. J. Mol. Sci. 2025, 26, 3058. [Google Scholar] [CrossRef]
- Grimm, D.; Corydon, T.J.; Sahana, J.; González-Torres, L.F.; Kraus, A.; Marchal, S.; Wise, P.M.; Simonsen, U.; Krüger, M. Recent Studies of the Effects of Microgravity on Cancer Cells and the Development of 3D Multicellular Cancer Spheroids. Stem Cells Transl. Med. 2025, 14, szaf008. [Google Scholar] [CrossRef]
- Graf, J.; Schulz, H.; Wehland, M.; Corydon, T.J.; Sahana, J.; Abdelfattah, F.; Wuest, S.L.; Egli, M.; Krüger, M.; Kraus, A.; et al. Omics Studies of Tumor Cells under Microgravity Conditions. Int. J. Mol. Sci. 2024, 25, 926. [Google Scholar] [CrossRef]
- Wuest, S.L.; Richard, S.; Kopp, S.; Grimm, D.; Egli, M. Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture. BioMed Res. Int. 2015, 2015, 971474. [Google Scholar] [CrossRef]
- Nie, H.-Y.; Ge, J.; Liu, K.-G.; Yue, Y.; Li, H.; Lin, H.-G.; Yan, H.-F.; Zhang, T.; Sun, H.-W.; Yang, J.-W.; et al. The Effects of Microgravity on Stem Cells and the New Insights It Brings to Tissue Engineering and Regenerative Medicine. Life Sci. Space Res. 2024, 41, 1–17. [Google Scholar] [CrossRef]
- Mann, V.; Sundaresan, A. Chapter 12—Regenerative Medicine and Spaceflight. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 163–177. ISBN 978-0-443-22259-7. [Google Scholar]
- Chen, N.; Danalache, M.; Liang, C.; Alexander, D.; Umrath, F. Mechanosignaling in Osteoporosis: When Cells Feel the Force. Int. J. Mol. Sci. 2025, 26, 4007. [Google Scholar] [CrossRef]
- Liao, Z.; Zoumhani, O.; Boutry, C.M. Recent Advances in Magnetic Polymer Composites for BioMEMS: A Review. Materials 2023, 16, 3802. [Google Scholar] [CrossRef]
- Kee, Y.-S.; Robinson, D.N. Micropipette Aspiration for Studying Cellular Mechanosensory Responses and Mechanics. Methods Mol. Biol. 2013, 983, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.H.; Aguayo, S.; Cartagena-Rivera, A.X. Atomic Force Microscopy-Mediated Mechanobiological Profiling of Complex Human Tissues. Biomaterials 2023, 303, 122389. [Google Scholar] [CrossRef] [PubMed]
- Boot, R.C.; Roscani, A.; van Buren, L.; Maity, S.; Koenderink, G.H.; Boukany, P.E. High-Throughput Mechanophenotyping of Multicellular Spheroids Using a Microfluidic Micropipette Aspiration Chip. Lab Chip 2023, 23, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Asnaghi, M.A.; Smith, T.; Martin, I.; Wendt, D. Chapter 12—Bioreactors: Enabling Technologies for Research and Manufacturing. In Tissue Engineering, 2nd ed.; Blitterswijk, C.A.V., De Boer, J., Eds.; Academic Press: Oxford, UK, 2014; pp. 393–425. ISBN 978-0-12-420145-3. [Google Scholar]
- Scholp, A.J.; Jensen, J.; Chinnathambi, S.; Atluri, K.; Mendenhall, A.; Fowler, T.; Salem, A.K.; Martin, J.A.; Sander, E.A. Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets. Front. Bioeng. Biotechnol. 2022, 10, 907611. [Google Scholar] [CrossRef]
- Dvorak, N.; Liu, Z.; Mouthuy, P.-A. Soft Bioreactor Systems: A Necessary Step toward Engineered MSK Soft Tissue? Front. Robot. AI 2024, 11, 1287446. [Google Scholar] [CrossRef]
- Fu, L.; Li, P.; Li, H.; Gao, C.; Yang, Z.; Zhao, T.; Chen, W.; Liao, Z.; Peng, Y.; Cao, F.; et al. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int. 2021, 2021, 6621806. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Boronyak, S.M.; Le, T.; Holmes, A.; Sotiropoulos, F.; Sacks, M.S. A Novel Bioreactor for Mechanobiological Studies of Engineered Heart Valve Tissue Formation under Pulmonary Arterial Physiological Flow Conditions. J. Biomech. Eng. 2014, 136, 121009. [Google Scholar] [CrossRef]
- Hendrikson, W.J.; van Blitterswijk, C.A.; Rouwkema, J.; Moroni, L. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Front. Bioeng. Biotechnol. 2017, 5, 30. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, L.; Chen, H.; Ventikos, Y.; Narayan, R.J.; Huang, J. Finite Element Evaluations of the Mechanical Properties of Polycaprolactone/Hydroxyapatite Scaffolds by Direct Ink Writing: Effects of Pore Geometry. J. Mech. Behav. Biomed. Mater. 2020, 104, 103665. [Google Scholar] [CrossRef]
- Seraji, A.A.; Nahavandi, R.; Kia, A.; Rabbani Doost, A.; Keshavarz, V.; Sharifianjazi, F.; Tavamaishvili, K.; Makarem, D. Finite Element Analysis and in Vitro Tests on Endurance Life and Durability of Composite Bone Substitutes. Front. Bioeng. Biotechnol. 2024, 12, 1417440. [Google Scholar] [CrossRef]
- Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A. Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering. Int. J. Biol. Sci. 2011, 7, 112–132. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Mofrad, M.R.K.; Tepole, A.B. On Modeling the Multiscale Mechanobiology of Soft Tissues: Challenges and Progress. Biophys. Rev. 2022, 3, 031303. [Google Scholar] [CrossRef] [PubMed]
- Ghavamian, F.; Simone, A. Accelerating Multiscale Finite Element Simulations of History-Dependent Materials Using a Recurrent Neural Network. Comput. Methods Appl. Mech. Eng. 2019, 357, 112594. [Google Scholar] [CrossRef]
- Guo, Y.; Calve, S.; Tepole, A.B. Multiscale Mechanobiology: Coupling Models of Adhesion Kinetics and Nonlinear Tissue Mechanics. Biophys. J. 2022, 121, 525–539. [Google Scholar] [CrossRef]
- Mak, M.; Kim, T.; Zaman, M.H.; Kamm, R.D. Multiscale Mechanobiology: Computational Models for Integrating Molecules to Multicellular Systems. Integr. Biol. 2015, 7, 1093–1108. [Google Scholar] [CrossRef]
- Townson, J.; Progida, C. The Emerging Roles of the Endoplasmic Reticulum in Mechanosensing and Mechanotransduction. J. Cell Sci. 2025, 138, JCS263503. [Google Scholar] [CrossRef]
- Xu, H.; Wei, K.; Ni, J.; Deng, X.; Wang, Y.; Xiang, T.; Song, F.; Wang, Q.; Niu, Y.; Jiang, F.; et al. Matrix Stiffness Regulates Nucleus Pulposus Cell Glycolysis by MRTF-A-Dependent Mechanotransduction. Bone Res. 2025, 13, 23. [Google Scholar] [CrossRef]
- Totaro, A.; Panciera, T.; Piccolo, S. YAP/TAZ Upstream Signals and Downstream Responses. Nat. Cell Biol. 2018, 20, 888–899. [Google Scholar] [CrossRef]
- Cai, X.; Wang, K.-C.; Meng, Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front. Cell Dev. Biol. 2021, 9, 673599. [Google Scholar] [CrossRef]
- Pan, C.; Hao, X.; Deng, X.; Lu, F.; Liu, J.; Hou, W.; Xu, T. The Roles of Hippo/YAP Signaling Pathway in Physical Therapy. Cell Death Discov. 2024, 10, 197. [Google Scholar] [CrossRef]
- Ahmad, U.S.; Uttagomol, J.; Wan, H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life 2022, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; et al. Role of YAP/TAZ in Mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef]
- Halder, G.; Dupont, S.; Piccolo, S. Transduction of Mechanical and Cytoskeletal Cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 2012, 13, 591–600. [Google Scholar] [CrossRef]
- Mosaddad, S.; Salari, Y.; Amookhteh, S.; Soufdoost, R.; Seifalian, A.; Bonakdar, S.; Safaeinejad, F.; Moosazadeh Moghaddam, M.; Tebyaniyan, H. Response to Mechanical Cues by Interplay of YAP/TAZ Transcription Factors and Key Mechanical Checkpoints of the Cell: A Comprehensive Review. Cell. Physiol. Biochem. 2021, 55, 33–60. [Google Scholar] [CrossRef]
- Sato, K.; Faraji, F.; Cervantes-Villagrana, R.D.; Wu, X.; Koshizuka, K.; Ishikawa, T.; Iglesias-Bartolome, R.; Chen, L.; Miliani De Marval, P.L.; Gwaltney, S.L.; et al. Targeting YAP/TAZ-TEAD Signaling as a Therapeutic Approach in Head and Neck Squamous Cell Carcinoma. Cancer Lett. 2025, 612, 217467. [Google Scholar] [CrossRef]
- Caliari, S.R.; Perepelyuk, M.; Cosgrove, B.D.; Tsai, S.J.; Lee, G.Y.; Mauck, R.L.; Wells, R.G.; Burdick, J.A. Stiffening Hydrogels for Investigating the Dynamics of Hepatic Stellate Cell Mechanotransduction during Myofibroblast Activation. Sci. Rep. 2016, 6, 21387. [Google Scholar] [CrossRef]
- Liu, F.; Lagares, D.; Choi, K.M.; Stopfer, L.; Marinković, A.; Vrbanac, V.; Probst, C.K.; Hiemer, S.E.; Sisson, T.H.; Horowitz, J.C.; et al. Mechanosignaling through YAP and TAZ Drives Fibroblast Activation and Fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L344–L357. [Google Scholar] [CrossRef]
- Chu, C.-Q.; Quan, T. Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis. J. Clin. Med. 2024, 13, 3358. [Google Scholar] [CrossRef]
- Mia, M.M.; Singh, M.K. New Insights into Hippo/YAP Signaling in Fibrotic Diseases. Cells 2022, 11, 2065. [Google Scholar] [CrossRef]
- Warren, R.; Klinkhammer, K.; Lyu, H.; Knopp, J.; Yuan, T.; Yao, C.; Stripp, B.; De Langhe, S.P. Cell Competition Drives Bronchiolization and Pulmonary Fibrosis. Nat. Commun. 2024, 15, 10624. [Google Scholar] [CrossRef]
- Guo, T.; He, C.; Venado, A.; Zhou, Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr. Physiol. 2022, 12, 3523–3558. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, M.; Uranishi, K.; Asaka, M.N.; Suzuki, A.; Mizuno, Y.; Hirasaki, M.; Okuda, A. Transformation of Normal Cells by Aberrant Activation of YAP via cMyc with TEAD. Sci. Rep. 2019, 9, 10933. [Google Scholar] [CrossRef] [PubMed]
- Basilico, B.; Grieco, M.; D’Amone, S.; Palamà, I.E.; Lauro, C.; Mozetic, P.; Rainer, A.; de Panfilis, S.; de Turris, V.; Gigli, G.; et al. YAP/TAZ Cytoskeletal Remodelling Is Driven by Mechanotactic and Electrotactic Cues. Mater. Adv. 2025, 6, 248–262. [Google Scholar] [CrossRef]
- Jang, W.; Kim, T.; Koo, J.S.; Kim, S.; Lim, D. Mechanical Cue-induced YAP Instructs Skp2-dependent Cell Cycle Exit and Oncogenic Signaling. EMBO J. 2017, 36, 2510–2528. [Google Scholar] [CrossRef]
- Zhao, B.; Wei, X.; Li, W.; Udan, R.S.; Yang, Q.; Kim, J.; Xie, J.; Ikenoue, T.; Yu, J.; Li, L.; et al. Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes. Dev. 2007, 21, 2747–2761. [Google Scholar] [CrossRef]
- Yu, F.-X.; Zhao, B.; Guan, K.-L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2015, 163, 811–828. [Google Scholar] [CrossRef]
- Scott, K.E.; Fraley, S.I.; Rangamani, P. A Spatial Model of YAP/TAZ Signaling Reveals How Stiffness, Dimensionality, and Shape Contribute to Emergent Outcomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2021571118. [Google Scholar] [CrossRef]
- Zonderland, J.; Moldero, I.L.; Anand, S.; Mota, C.; Moroni, L. Dimensionality Changes Actin Network through Lamin A/C and Zyxin. Biomaterials 2020, 240, 119854. [Google Scholar] [CrossRef]
- Galarza Torre, A.; Shaw, J.E.; Wood, A.; Gilbert, H.T.J.; Dobre, O.; Genever, P.; Brennan, K.; Richardson, S.M.; Swift, J. An Immortalised Mesenchymal Stem Cell Line Maintains Mechano-Responsive Behaviour and Can Be Used as a Reporter of Substrate Stiffness. Sci. Rep. 2018, 8, 8981. [Google Scholar] [CrossRef]
- Hadden, W.J.; Young, J.L.; Holle, A.W.; McFetridge, M.L.; Kim, D.Y.; Wijesinghe, P.; Taylor-Weiner, H.; Wen, J.H.; Lee, A.R.; Bieback, K.; et al. Stem Cell Migration and Mechanotransduction on Linear Stiffness Gradient Hydrogels. Proc. Natl. Acad. Sci. USA 2017, 114, 5647–5652. [Google Scholar] [CrossRef]
- Zhou, T.; Gao, B.; Fan, Y.; Liu, Y.; Feng, S.; Cong, Q.; Zhang, X.; Zhou, Y.; Yadav, P.S.; Lin, J.; et al. Piezo1/2 Mediate Mechanotransduction Essential for Bone Formation through Concerted Activation of NFAT-YAP1-ß-Catenin. Elife 2020, 9, e52779. [Google Scholar] [CrossRef] [PubMed]
- Santana Nunez, D.; Malik, A.B.; Lee, Q.; Ahn, S.J.; Coctecon-Murillo, A.; Lazarko, D.; Levitan, I.; Mehta, D.; Komarova, Y.A. Piezo1 Induces Endothelial Responses to Shear Stress via Soluble Adenylyl Cyclase-IP3R2 Circuit. iScience 2023, 26, 106661. [Google Scholar] [CrossRef] [PubMed]
- Sforna, L.; Michelucci, A.; Morena, F.; Argentati, C.; Franciolini, F.; Vassalli, M.; Martino, S.; Catacuzzeno, L. Piezo1 Controls Cell Volume and Migration by Modulating Swelling-Activated Chloride Current through Ca2+ Influx. J. Cell. Physiol. 2022, 237, 1857–1870. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Fujii, S.; Matsumoto, S.; Tajiri, Y.; Kikuchi, A.; Kiyoshima, T. YAP Signaling Induces PIEZO1 to Promote Oral Squamous Cell Carcinoma Cell Proliferation. J. Pathol. 2021, 253, 80–93. [Google Scholar] [CrossRef]
- Kim, O.-H.; Choi, Y.W.; Park, J.H.; Hong, S.A.; Hong, M.; Chang, I.H.; Lee, H.J. Fluid Shear Stress Facilitates Prostate Cancer Metastasis through Piezo1-Src-YAP Axis. Life Sci. 2022, 308, 120936. [Google Scholar] [CrossRef]
- Herrera-Pérez, S.; Lamas, J.A. TREK Channels in Mechanotransduction: A Focus on the Cardiovascular System. Front. Cardiovasc. Med. 2023, 10, 1180242. [Google Scholar] [CrossRef]
- Lamas, J.A.; Fernández-Fernández, D. Tandem Pore TWIK-Related Potassium Channels and Neuroprotection. Neural Regen. Res. 2019, 14, 1293–1308. [Google Scholar] [CrossRef]
- Saberi, A.; Jabbari, F.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019, 9, 448. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, K.; Zhang, Q.; Huang, X.; Chen, Z.; Zhou, Y.; Yu, X. Bioelectronics for Electrical Stimulation: Materials, Devices and Biomedical Applications. Chem. Soc. Rev. 2024, 53, 8632–8712. [Google Scholar] [CrossRef]
- Jalandhra, G.K.; Srethbhakdi, L.; Davies, J.; Nguyen, C.C.; Phan, P.T.; Och, Z.; Ashok, A.; Lim, K.S.; Phan, H.-P.; Do, T.N.; et al. Materials Advances in Devices for Heart Disease Interventions. Adv. Mater. 2025, 2420114. [Google Scholar] [CrossRef]
- Byun, K.-A.; Lee, J.H.; Lee, S.Y.; Oh, S.; Batsukh, S.; Cheon, G.; Lee, D.; Hong, J.H.; Son, K.H.; Byun, K. Piezo1 Activation Drives Enhanced Collagen Synthesis in Aged Animal Skin Induced by Poly L-Lactic Acid Fillers. Int. J. Mol. Sci. 2024, 25, 7232. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Wang, W.; Jiang, Z.; Zhang, B.; Ye, Z.; Zheng, J.; Chen, W.; Liao, Y.; Zhang, Y. Magnetic Aggregation-Induced Bone-Targeting Nanocarrier with Effects of Piezo1 Activation and Osteogenic-Angiogenic Coupling for Osteoporotic Bone Repair. Adv. Mater. 2024, 36, e2312081. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; McBain, S.; Dobson, J.; El Haj, A.J. Selective Activation of Mechanosensitive Ion Channels Using Magnetic Particles. J. R. Soc. Interface 2008, 5, 855–863. [Google Scholar] [CrossRef]
- Martelli, G.; Bloise, N.; Merlettini, A.; Bruni, G.; Visai, L.; Focarete, M.L.; Giacomini, D. Combining Biologically Active β-Lactams Integrin Agonists with Poly(l-Lactic Acid) Nanofibers: Enhancement of Human Mesenchymal Stem Cell Adhesion. Biomacromolecules 2020, 21, 1157–1170. [Google Scholar] [CrossRef]
- Harjumäki, R.; Zhang, X.; Nugroho, R.W.N.; Farooq, M.; Lou, Y.-R.; Yliperttula, M.; Valle-Delgado, J.J.; Österberg, M. AFM Force Spectroscopy Reveals the Role of Integrins and Their Activation in Cell–Biomaterial Interactions. ACS Appl. Bio Mater. 2020, 3, 1406–1417. [Google Scholar] [CrossRef]
- Phuyal, S.; Romani, P.; Dupont, S.; Farhan, H. Mechanobiology of Organelles: Illuminating Their Roles in Mechanosensing and Mechanotransduction. Trends Cell Biol. 2023, 33, 1049–1061. [Google Scholar] [CrossRef]
- Feng, Q.; Lee, S.S.; Kornmann, B. A Toolbox for Organelle Mechanobiology Research—Current Needs and Challenges. Micromachines 2019, 10, 538. [Google Scholar] [CrossRef]
- Romani, P.; Valcarcel-Jimenez, L.; Frezza, C.; Dupont, S. Crosstalk between Mechanotransduction and Metabolism. Nat. Rev. Mol. Cell Biol. 2021, 22, 22–38. [Google Scholar] [CrossRef]
- Guo, L.; Cui, C.; Wang, J.; Yuan, J.; Yang, Q.; Zhang, P.; Su, W.; Bao, R.; Ran, J.; Wu, C. PINCH-1 Regulates Mitochondrial Dynamics to Promote Proline Synthesis and Tumor Growth. Nat. Commun. 2020, 11, 4913. [Google Scholar] [CrossRef]
- Tharp, K.M.; Higuchi-Sanabria, R.; Timblin, G.A.; Ford, B.; Garzon-Coral, C.; Schneider, C.; Muncie, J.M.; Stashko, C.; Daniele, J.R.; Moore, A.S.; et al. Adhesion-Mediated Mechanosignaling Forces Mitohormesis. Cell Metab. 2021, 33, 1322–1341.e13. [Google Scholar] [CrossRef]
- Romani, P.; Benedetti, G.; Cusan, M.; Arboit, M.; Cirillo, C.; Wu, X.; Rouni, G.; Kostourou, V.; Aragona, M.; Giampietro, C.; et al. Mitochondrial Mechanotransduction through MIEF1 Coordinates the Nuclear Response to Forces. Nat. Cell Biol. 2024, 26, 2046–2060. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-X.; Zhang, L.; Liu, H.-H.; Zhang, Z.-Y.; Zhao, N.; Zhou, J.-B.; Qian, L.-L.; Wang, R.-X. The Mechanical Role of YAP/TAZ in the Development of Diabetic Cardiomyopathy. Curr. Issues Mol. Biol. 2025, 47, 297. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Li, X.; Jin, Y.; Yan, Z.; Yao, X.; Yuan, W.-E.; Qian, Y.; Ouyang, Y. A Multifunctional ATP-Generating System by Reduced Graphene Oxide-Based Scaffold Repairs Neuronal Injury by Improving Mitochondrial Function and Restoring Bioelectricity Conduction. Mater. Today Bio 2022, 13, 100211. [Google Scholar] [CrossRef]
- Kumar, S.; Chatterjee, K. Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Appl. Mater. Interfaces 2016, 8, 26431–26457. [Google Scholar] [CrossRef]
- Lansweers, I.; van Rijthoven, S.; van Loon, J.J.W.A. The Role of the LINC Complex in Ageing and Microgravity. Mech. Ageing Dev. 2025, 224, 112028. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Winek, M.A.; Rao, M.K.; Dhyani, S.P.; Lee, M.Y. Nuclear Envelope Components in Vascular Mechanotransduction: Emerging Roles in Vascular Health and Disease. Nucleus 2025, 16, 2453752. [Google Scholar] [CrossRef]
- Östlund, C.; Chang, W.; Gundersen, G.G.; Worman, H.J. Pathogenic Mutations in Genes Encoding Nuclear Envelope Proteins and Defective Nucleocytoplasmic Connections. Exp. Biol. Med. 2019, 244, 1333–1344. [Google Scholar] [CrossRef]
- Vahabikashi, A.; Adam, S.A.; Medalia, O.; Goldman, R.D. Nuclear Lamins: Structure and Function in Mechanobiology. APL Bioeng. 2022, 6, 011503. [Google Scholar] [CrossRef]
- Elosegui-Artola, A.; Andreu, I.; Beedle, A.E.M.; Lezamiz, A.; Uroz, M.; Kosmalska, A.J.; Oria, R.; Kechagia, J.Z.; Rico-Lastres, P.; Le Roux, A.-L.; et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017, 171, 1397–1410.e14. [Google Scholar] [CrossRef]
- Lenne, P.-F.; Trivedi, V. Sculpting Tissues by Phase Transitions. Nat. Commun. 2022, 13, 664. [Google Scholar] [CrossRef]
- Frittoli, E.; Palamidessi, A.; Iannelli, F.; Zanardi, F.; Villa, S.; Barzaghi, L.; Abdo, H.; Cancila, V.; Beznoussenko, G.V.; Della Chiara, G.; et al. Tissue Fluidification Promotes a cGAS–STING Cytosolic DNA Response in Invasive Breast Cancer. Nat. Mater. 2023, 22, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Ba, J.; Zheng, C.; Lai, Y.; He, X.; Pan, Y.; Zhao, Y.; Xie, H.; Wu, B.; Deng, X.; Wang, N. High Matrix Stiffness Promotes Senescence of Type II Alveolar Epithelial Cells by Lysosomal Degradation of Lamin A/C in Pulmonary Fibrosis. Respir. Res. 2025, 26, 128. [Google Scholar] [CrossRef] [PubMed]
- Malashicheva, A.; Perepelina, K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front. Cell Dev. Biol. 2021, 9, 761469. [Google Scholar] [CrossRef] [PubMed]
- Swift, J.; Ivanovska, I.L.; Buxboim, A.; Harada, T.; Dingal, P.C.D.P.; Pinter, J.; Pajerowski, J.D.; Spinler, K.R.; Shin, J.-W.; Tewari, M.; et al. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science 2013, 341, 1240104. [Google Scholar] [CrossRef]
- Buxboim, A.; Irianto, J.; Swift, J.; Athirasala, A.; Shin, J.-W.; Rehfeldt, F.; Discher, D.E. Coordinated Increase of Nuclear Tension and Lamin-A with Matrix Stiffness Outcompetes Lamin-B Receptor That Favors Soft Tissue Phenotypes. MBoC 2017, 28, 3333–3348. [Google Scholar] [CrossRef]
- Egea, G.; Lázaro-Diéguez, F.; Vilella, M. Actin Dynamics at the Golgi Complex in Mammalian Cells. Curr. Opin. Cell Biol. 2006, 18, 168–178. [Google Scholar] [CrossRef]
- Kang, Z.; Wu, B.; Zhang, L.; Liang, X.; Guo, D.; Yuan, S.; Xie, D. Metabolic Regulation by Biomaterials in Osteoblast. Front. Bioeng. Biotechnol. 2023, 11, 1184463. [Google Scholar] [CrossRef]
- Fan, J.; Schiemer, T.; Steinberga, V.; Vaska, A.; Metlova, A.; Sizovs, A.; Locs, J.; Klavins, K. Exploring the Impact of Calcium Phosphate Biomaterials on Cellular Metabolism. Heliyon 2024, 10, e39753. [Google Scholar] [CrossRef]
- Stadter, J.; Hoess, A.; Leemhuis, H.; Herrera, A.; Günther, R.; Cho, S.; Diederich, S.; Korus, G.; Richter, R.F.; Petersen, A. Incorporation of Metal-Doped Silicate Microparticles into Collagen Scaffolds Combines Chemical and Architectural Cues for Endochondral Bone Healing. Acta Biomater. 2025, 192, 260–278. [Google Scholar] [CrossRef]
- Ma, C.; Kuzma, M.L.; Bai, X.; Yang, J. Biomaterial-Based Metabolic Regulation in Regenerative Engineering. Adv. Sci. 2019, 6, 1900819. [Google Scholar] [CrossRef]
- Tran, R.T.; Yang, J.; Ameer, G.A. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. Annu. Rev. Mater. Res. 2015, 45, 277–310. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Gerhard, E.; Lu, D.; Yang, J. Citrate Chemistry and Biology for Biomaterials Design. Biomaterials 2018, 178, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Mycielska, M.E.; Patel, A.; Rizaner, N.; Mazurek, M.P.; Keun, H.; Patel, A.; Ganapathy, V.; Djamgoz, M.B.A. Citrate Transport and Metabolism in Mammalian Cells: Prostate Epithelial Cells and Prostate Cancer. Bioessays 2009, 31, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Selders, G.S.; Fetz, A.E.; Radic, M.Z.; Bowlin, G.L. An Overview of the Role of Neutrophils in Innate Immunity, Inflammation and Host-Biomaterial Integration. Regen. Biomater. 2017, 4, 55–68. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Lee, W.-C.; Guntur, A.R.; Long, F.; Rosen, C.J. Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocr. Rev. 2017, 38, 255–266. [Google Scholar] [CrossRef]
- Vermeulen, S.; Van Puyvelde, B.; Bengtsson del Barrio, L.; Almey, R.; van der Veer, B.K.; Deforce, D.; Dhaenens, M.; de Boer, J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. Adv. Sci. 2023, 10, 2203880. [Google Scholar] [CrossRef]
- Vermeulen, S.; Balmayor, E.R. Discovering the Nucleus in a World of Biomaterials. Biomater. Biosyst. 2024, 14, 100096. [Google Scholar] [CrossRef]
- Lv, L.; Liu, Y.; Zhang, P.; Bai, X.; Ma, X.; Wang, Y.; Li, H.; Wang, L.; Zhou, Y. The Epigenetic Mechanisms of Nanotopography-Guided Osteogenic Differentiation of Mesenchymal Stem Cells via High-Throughput Transcriptome Sequencing. Int. J. Nanomed. 2018, 13, 5605–5623. [Google Scholar] [CrossRef]
- Claude-Taupin, A.; Codogno, P.; Dupont, N. Links between Autophagy and Tissue Mechanics. J. Cell Sci. 2021, 134, jcs258589. [Google Scholar] [CrossRef]
- Das, J.; Chakraborty, S.; Maiti, T.K. Mechanical Stress-Induced Autophagic Response: A Cancer-Enabling Characteristic? Semin. Cancer Biol. 2020, 66, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cáceres, M.P.; Munoz, L.; Pradenas, J.M.; Pena, F.; Lagos, P.; Aceiton, P.; Owen, G.I.; Morselli, E.; Criollo, A.; Ravasio, A.; et al. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front. Oncol. 2021, 11, 632956. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cáceres, M.P.; Toledo-Valenzuela, L.; Díaz-Castro, F.; Ávalos, Y.; Burgos, P.; Narro, C.; Peña-Oyarzun, D.; Espinoza-Caicedo, J.; Cifuentes-Araneda, F.; Navarro-Aguad, F.; et al. Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Front. Endocrinol. 2019, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kim, M.; Hu, Y.-L.; Jalali, S.; Schlaepfer, D.D.; Hunter, T.; Chien, S.; Shyy, J.Y.-J. Fluid Shear Stress Activation of Focal Adhesion Kinase: LINKING TO MITOGEN-ACTIVATED PROTEIN KINASES. J. Biol. Chem. 1997, 272, 30455–30462. [Google Scholar] [CrossRef]
- Cheng, C.K.; Wang, N.; Wang, L.; Huang, Y. Biophysical and Biochemical Roles of Shear Stress on Endothelium: A Revisit and New Insights. Circ. Res. 2025, 136, 752–772. [Google Scholar] [CrossRef]
- Pavel, M.; Park, S.J.; Frake, R.A.; Son, S.M.; Manni, M.M.; Bento, C.F.; Renna, M.; Ricketts, T.; Menzies, F.M.; Tanasa, R.; et al. α-Catenin Levels Determine Direction of YAP/TAZ Response to Autophagy Perturbation. Nat. Commun. 2021, 12, 1703. [Google Scholar] [CrossRef]
- Yanar, S.; Bal Albayrak, M.G.; Korak, T.; Deveci Ozkan, A.; Arabacı Tamer, S.; Kasap, M. Targeting the Hippo Pathway in Breast Cancer: A Proteomic Analysis of Yes-Associated Protein Inhibition. Int. J. Mol. Sci. 2025, 26, 3943. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Sun, W.; Yue, Q.; He, P.; Niu, D.; Zhang, M. Mechanical Forces in the Tumor Microenvironment: Roles, Pathways, and Therapeutic Approaches. J. Transl. Med. 2025, 23, 313. [Google Scholar] [CrossRef]
- Wang, P.; Gong, Y.; Guo, T.; Li, M.; Fang, L.; Yin, S.; Kamran, M.; Liu, Y.; Xu, J.; Xu, L.; et al. Activation of Aurora A Kinase Increases YAP Stability via Blockage of Autophagy. Cell Death Dis. 2019, 10, 432. [Google Scholar] [CrossRef]
- Ravasio, A.; Morselli, E.; Bertocchi, C. Mechanoautophagy: Synergies Between Autophagy and Cell Mechanotransduction at Adhesive Complexes. Front. Cell Dev. Biol. 2022, 10, 917662. [Google Scholar] [CrossRef]
- Totaro, A.; Zhuang, Q.; Panciera, T.; Battilana, G.; Azzolin, L.; Brumana, G.; Gandin, A.; Brusatin, G.; Cordenonsi, M.; Piccolo, S. Cell Phenotypic Plasticity Requires Autophagic Flux Driven by YAP/TAZ Mechanotransduction. Proc. Natl. Acad. Sci. USA 2019, 116, 17848–17857. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, L.; Ning, Z.; Li, C.; Yin, Y.; Chen, K.; Li, L.; Xu, F.; Gao, J. Autophagy-Modulating Biomaterials: Multifunctional Weapons to Promote Tissue Regeneration. Cell Commun. Signal. 2024, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Xiao, Y. The Autophagy in Osteoimmonology: Self-Eating, Maintenance, and Beyond. Front. Endocrinol. 2019, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Shi, M.; Dong, M.; Zhang, Y. Inducing Temporal and Reversible Autophagy by Nanotopography for Potential Control of Cell Differentiation. ACS Appl. Mater. Interfaces 2016, 8, 33475–33483. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Wang, Y.; Li, J.; Qiao, D.; Chen, R.; Yang, W.; Yan, F. Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. Int. J. Nanomed. 2021, 16, 61–73. [Google Scholar] [CrossRef]
- Pirmoradi, L.; Shojaei, S.; Ghavami, S.; Zarepour, A.; Zarrabi, A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023, 15, 2284. [Google Scholar] [CrossRef]
- Kaluđerović, M.R.; Mojić, M.; Schreckenbach, J.P.; Maksimović-Ivanić, D.; Graf, H.-L.; Mijatović, S. A Key Role of Autophagy in Osteoblast Differentiation on Titanium-Based Dental Implants. Cells Tissues Organs 2014, 200, 265–277. [Google Scholar] [CrossRef]
- Bultelle, M.; Casas, A.; Kitney, R. Engineering Biology and Automation-Replicability as a Design Principle. Eng. Biol. 2024, 8, 53–68. [Google Scholar] [CrossRef]
- Morais, A.S.; Mendes, M.; Cordeiro, M.A.; Sousa, J.J.; Pais, A.C.; Mihăilă, S.M.; Vitorino, C. Organ-on-a-Chip: Ubi Sumus? Fundamentals and Design Aspects. Pharmaceutics 2024, 16, 615. [Google Scholar] [CrossRef]
- Lele, M.; Kapur, S.; Hargett, S.; Sureshbabu, N.M.; Gaharwar, A.K. Global Trends in Clinical Trials Involving Engineered Biomaterials. Sci. Adv. 2024, 10, eabq0997. [Google Scholar] [CrossRef]
- Madan, A.; Saini, R.; Satapathy, M.K.; Arora, D. Biomaterials in Clinical Trials and Clinical Applications. In Biomaterials and Neurodegenerative Disorders; Kumar, G., Mukherjee, S., Kumar, S., Eds.; Springer Nature: Singapore, 2025; pp. 205–250. ISBN 978-981-9799-59-6. [Google Scholar]
- Tian, J.; Song, X.; Wang, Y.; Cheng, M.; Lu, S.; Xu, W.; Gao, G.; Sun, L.; Tang, Z.; Wang, M.; et al. Regulatory Perspectives of Combination Products. Bioact. Mater. 2021, 10, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xu, C.; Zhang, P.; Quan, H.; Liang, X.; Lu, L. Integrative Research on the Mechanisms of Acupuncture Mechanics and Interdisciplinary Innovation. Biomed. Eng. OnLine 2025, 24, 30. [Google Scholar] [CrossRef] [PubMed]
- Pillai, E.K.; Franze, K. Mechanics in the Nervous System: From Development to Disease. Neuron 2024, 112, 342–361. [Google Scholar] [CrossRef] [PubMed]
- Bryniarska-Kubiak, N.; Kubiak, A.; Basta-Kaim, A. Mechanotransductive Receptor Piezo1 as a Promising Target in the Treatment of Neurological Diseases. Curr. Neuropharmacol. 2023, 21, 2030–2035. [Google Scholar] [CrossRef]
Biomaterials | Description | Advantages | Disadvantages | Applications | References |
---|---|---|---|---|---|
Scaffold Hydrogel Film Nanoparticles | Engineered materials with specific physicochemical properties to influence cell behaviour. Structure design: films, scaffolds, hydrogels, nanoparticles | Customisable properties for distinct manipulative cues | May not fully mimic dynamic physiological processes | - Bone regeneration: stiff biomaterials mostly composed of collagen, graphene oxide and bioceramics | [56,57,58,59,60,61,62] |
- Peridontal regeneration: zirconia and hydroxyapatite improving the performance of dental materials | [63,64,65,66] | ||||
- Neurogenic differentiation: softer biomaterials mostly composed of collagen, gelatin, hyaluronic acid, poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE), and PBCE-based copolymer containing butylene diglycolate co-units (BDG50) | [67,68,69,70] | ||||
- Corneal regeneration: collagen and thiol-functionalised collagen patch for vision restoration | [71,72,73] | ||||
- Adipogenic differentiation: soft biomaterials (but slightly stiffer than those for neurogenic differentiation) composed of silk, collagen, hyaluronic acid, and polyethylene glycol | [74,75,76] | ||||
- Platform for mechanobiological research: generation of engineered tissues based on flexible microfilaments on which it is possible to replicate mechanical properties of tissues | [77] | ||||
- Micropatterning: precise surface structuring of biomaterials results in customised microscopic patterns/structures influencing cell response regarding growth, proliferation, differentiation, and polarisation | [78,79,80] | ||||
Micro- and Nanocomposites | Engineered materials composed of a matrix combined with nanoscale components with one, two, or three dimensions less than 100 nm | Customisable properties for distinct manipulative cues | May not fully mimic dynamic physiological processes | - Environmental and industrial applications | [81,82] |
- Antimicrobial properties: food preservation, antiviral infections | [83,84,85,86] | ||||
- Piezoelectric-based bone regeneration: hydrogel of oxidised chondroitin sulphate + amino-modified barium titanate nanoparticles (KBTO) promotes osteogenic differentiation | [87] | ||||
- Skin regeneration: nanocomposites biomaterial such as nanofibers and nanoparticles offers a great potential for skin regeneration and wound care | [88] | ||||
- Cancer treatment: the carbon/polymer nanocomposites as drug carriers | [89] | ||||
Smart Biomaterials | Innovative biomaterials that can modulate their properties and structures in response to external stimuli, allowing dynamic interaction with biological systems | High versatility and customisation of their properties, allowing the provision of specific cues to cells | Present an elevated complexity in design and fabrication with reduced stability and durability compared to other biomaterials | - Soft Tissue Regeneration: shape memory polymers (SMPs) of poly(glycerol dodecanedioate) acrylate (APGD) with different properties related to temperature | [90] |
- Drug Delivery: nanofiber mats of polycaprolactone and gelatin for mechanomodulate drug delivery under uniaxial mechanical stimulation | [91] | ||||
- Immunoactive biomaterials: carragenine type λ binds to non-hydrolysed interleukin-8, promoting the differentiation of monocytes into macrophages | [92] | ||||
- Cancer treatment: Au nanoparticles conjugate with pH-sensible aptamers that promote, at acid pH, the aggregation of nanoparticles and apoptosis of cancer cells | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucariello, M.; Valicenti, M.L.; Giannoni, S.; Donati, L.; Armentano, I.; Morena, F.; Martino, S. Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing. Biomolecules 2025, 15, 848. https://doi.org/10.3390/biom15060848
Lucariello M, Valicenti ML, Giannoni S, Donati L, Armentano I, Morena F, Martino S. Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing. Biomolecules. 2025; 15(6):848. https://doi.org/10.3390/biom15060848
Chicago/Turabian StyleLucariello, Miriam, Maria Luisa Valicenti, Samuele Giannoni, Leonardo Donati, Ilaria Armentano, Francesco Morena, and Sabata Martino. 2025. "Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing" Biomolecules 15, no. 6: 848. https://doi.org/10.3390/biom15060848
APA StyleLucariello, M., Valicenti, M. L., Giannoni, S., Donati, L., Armentano, I., Morena, F., & Martino, S. (2025). Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing. Biomolecules, 15(6), 848. https://doi.org/10.3390/biom15060848