Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Directional Movement of Neighboring Vesicles Tuned by Confining Membranes
3.2. The Confinement of Asymmetric Deformation Causes Long-Range Interactions Between Neighboring Vesicles
3.3. Force Analysis of Vesicles in Soft Confined Space
3.4. Motion of Multiple Particles in a Soft Confined Space
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Yue, H.; Zhai, X.; Huang, Z.; Ma, G.; Wei, W.; Yan, L. Transport of agraphene nanosheet sandwiched inside cell membranes. Sci. Adv. 2019, 5, eaaw3192. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, S.; Liu, X.; Sun, H.; Yue, T.; Zhang, X.; Yuan, B.; Cao, D. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Appl. Mater. Interfaces 2019, 11, 23822–23831. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Tajima, M.; Nakamura, H.; Ohsaki, S.; Watano, S. Effect of cholesterol on nanoparticle translocation across a lipid bilayer. Phys. Chem. Chem. Phys. 2024, 26, 21229–21239. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, H.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015, 9, 8655–8671. [Google Scholar] [CrossRef]
- Davis, D.M.; Sowinski, S. Membrane nanotubes: Dynamic long-distance connections between animal cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 431–436. [Google Scholar] [CrossRef]
- Sharma, S.; Masud, M.K.; Kaneti, Y.V.; Rewatkar, P.; Koradia, A.; Hossain, M.S.A.; Yamauchi, Y.; Popat, A.; Salomon, C. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small 2021, 17, 2102220. [Google Scholar] [CrossRef]
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Sedgwick, A.E.; D’Souza-Schorey, C. The biology of extracellular microvesicles. Traffic 2018, 19, 319–327. [Google Scholar] [CrossRef]
- Sowinski, S.; Jolly, C.; Berninghausen, O.; Purbhoo, M.A.; Chauveau, A.; Köhler, K.; Oddos, S.; Eissmann, P.; Brodsky, F.M.; Hopkins, C.; et al. Membrane Nanotubes Physically Connect T Cells over Long Distances Presenting a Novel Route for HIV-1 Transmission. Nat. Cell Biol. 2018, 10, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Liu, S.L.; Tian, Z.Q.; Zhang, Z.L.; Tang, H.W.; Pang, D.W. Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes Between Human Lung Cancer Cells. ACS Nano 2012, 6, 10033–10041. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, A.; Aucher, A.; Eissmann, P.; Vivier, E.; Davis, D.M. Membrane Nanotubes Facilitate LongDistance Interactions Between Natural Killer Cells and Target Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 5545–5550. [Google Scholar] [CrossRef] [PubMed]
- Simunovic, M.; Evergren, E.; Golushko, I.; Prévost, C.; Renard, H.; Johannes, L.; McMahon, H.T.; Lorman, V.; Voth, G.A.; Bassereau, P. How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl. Acad. Sci. USA 2016, 113, 11226–11231. [Google Scholar] [CrossRef]
- Noguchi, H.; Tozzi, C.; Arroyo, M. Binding of anisotropic curvature-inducing proteins onto membrane tubes. Soft Matter 2022, 18, 3384–3394. [Google Scholar] [CrossRef]
- Liu, X.; Tian, F.; Yue, T.; Zhang, X.; Zhong, C. Exploring the shape deformation of biomembrane tubes with theoretical analysis and computer simulation. Soft Matter 2016, 12, 9077–9085. [Google Scholar] [CrossRef]
- Karal, M.A.S.; Billah, M.M.; Ahmed, M.; Ahamed, M.K. A review on the measurement of the bending rigidity of lipid membranes. Soft Matter 2023, 19, 8285–8304. [Google Scholar] [CrossRef]
- Lee, T.H.; Charchar, P.; Separovic, F.; Reid, G.E.; Yarovsky, I.; Aguilar, M.-I. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem. Sci. 2024, 15, 3408–3427. [Google Scholar] [CrossRef]
- Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H.H. Nanotubular highways for intercellular organelle transport. Science 2004, 303, 1007–1010. [Google Scholar] [CrossRef]
- Hurtig, J.; Chiu, D.T.; Önfelt, B. Intercellular nanotubes: Insights from imaging studies and beyond. WIREs Nanomed. Nanobiotechnol. 2010, 2, 260–276. [Google Scholar] [CrossRef]
- Epperla, C.P.; Mohan, N.; Chang, C.W.; Chen, C.-C.; Chang, H.C. Nanodiamond-mediated intercellular transport of proteins through membrane tunneling nanotubes. Small 2016, 11, 6097–6105. [Google Scholar] [CrossRef] [PubMed]
- Onfelt, B.; Davis, D.M. Can membrane nanotubes facilitate communication between immune cells? Biochem. Soc. Trans. 2004, 32, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Dubey, G.P.; Benyehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 2011, 144, 590–600. [Google Scholar] [CrossRef]
- Karlsson, A.; Karlsson, R.; Karlsson, M.; Cans, A.S.; Strömberg, A.; Ryttsén, F.; Orwar, O. Molecular engineering: Networks of nanotubes and containers. Nature 1999, 409, 150–152. [Google Scholar] [CrossRef]
- Khan, F.A.; Albalawi, R.; Pottoo, F.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med. Res. Rev. 2022, 42, 227–258. [Google Scholar] [CrossRef]
- Marquez, C.A.; Oh, C.I.; Ahn, G.; Shin, W.R.; Kim, Y.H.; Ahn, J.Y. Synergistic vesicle-vector systems for targeted delivery. J. Nanobiotechnol. 2024, 22, 6. [Google Scholar] [CrossRef]
- Zhao, S.; Di, Y.; Fan, H.; Xu, C.; Li, H.; Wang, Y.; Wang, W.; Li, C.; Wang, J. Targeted delivery of extracellular vesicles: The mechanisms, techniques and therapeutic applications. Mol. Biomed. 2024, 5, 60. [Google Scholar] [CrossRef]
- Xiong, K.; Zhao, J.; Yang, D.; Cheng, Q.; Wang, J.; Ji, H. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes. Soft Matter 2017, 13, 4644–4652. [Google Scholar] [CrossRef]
- Liu, X.; Tian, F.; Yue, T.; Zhang, X.; Zhong, C. Pulling force and surface tension drive membrane fusion. J. Chem. Phys. 2017, 147, 194703. [Google Scholar] [CrossRef]
- Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435. [Google Scholar] [CrossRef]
- Sreekumari, A.; Lipowsky, R. Lipids with bulky head groups generate large membrane curvatures by small compositional asymmetries. J. Chem. Phys. 2018, 149, 084901. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, Y.; Lin, H.; Zhang, C.; Liu, Z.; Yu, L.; Wang, X.; Lin, Y. Novel multiscale simulations on the membrane formation via hybrid induced phase separation process based on dissipative particle dynamics. Sep. Purif. Technol. 2023, 314, 123614. [Google Scholar] [CrossRef]
- Mitsuhashi, H.; Morikawa, R.; Noguchi, Y.; Takasu, M. Dissipative particle dynamics simulations for shape change of growing lipid bilayer vesicles. Life 2023, 13, 306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Tian, F.; Yue, T.; Yang, K.; Zhang, X. Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes. Nanomaterials 2025, 15, 912. https://doi.org/10.3390/nano15120912
Liu X, Tian F, Yue T, Yang K, Zhang X. Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes. Nanomaterials. 2025; 15(12):912. https://doi.org/10.3390/nano15120912
Chicago/Turabian StyleLiu, Xuejuan, Falin Tian, Tongtao Yue, Kai Yang, and Xianren Zhang. 2025. "Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes" Nanomaterials 15, no. 12: 912. https://doi.org/10.3390/nano15120912
APA StyleLiu, X., Tian, F., Yue, T., Yang, K., & Zhang, X. (2025). Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes. Nanomaterials, 15(12), 912. https://doi.org/10.3390/nano15120912