Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (496)

Search Parameters:
Keywords = mechanism of stress relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 9728 KiB  
Review
Hydrogel Network Architecture Design Space: Impact on Mechanical and Viscoelastic Properties
by Andres F. Roca-Arroyo, Jhonatan A. Gutierrez-Rivera, Logan D. Morton and David A. Castilla-Casadiego
Gels 2025, 11(8), 588; https://doi.org/10.3390/gels11080588 (registering DOI) - 30 Jul 2025
Viewed by 223
Abstract
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into [...] Read more.
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into rational design strategies for tailoring hydrogel mechanics for specific applications. Recent advances in sequence-defined crosslinkers, dynamic covalent chemistries, and biomimetic approaches have significantly expanded the toolbox for creating hydrogels with precisely controlled viscoelasticity, stiffness, and stress relaxation behavior—properties that are crucial for biomedical applications, particularly in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

15 pages, 2230 KiB  
Article
Exploring the Rheological Properties of 3D Bioprinted Alginate-Based Hydrogels for Tissue Engineering
by R. Palacín-García, L. Goñi and T. Gómez-del Río
Biomimetics 2025, 10(8), 491; https://doi.org/10.3390/biomimetics10080491 - 24 Jul 2025
Viewed by 385
Abstract
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how [...] Read more.
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how the alginate concentration and curing speed impact their mechanical properties. Rheological testing was employed to examine the viscoelastic behavior of alginate/polyacrylamide hydrogels manufactured using a 3D bioprinting technique. The relaxation behavior and dynamic response of these hydrogels were analyzed under torsional stress, with relaxation curves fitted using a two-term Prony series. Fourier Transform Infrared (FTIR) spectroscopy was also employed to assess biocompatibility and the conversion of acrylamide. This study successfully demonstrated the printability of alginate/polyacrylamide hydrogels with varying alginate contents. The rheological results indicated that 3D bioprinted hydrogels exhibited significantly high stiffness, viscoelasticity, and long relaxation times. The curing speed had a minimal impact on these properties. Additionally, the FTIR analysis confirmed the complete conversion of polyacrylamide, ensuring no harmful effects in biological applications. The study concludes that 3D bioprinting significantly enhances the mechanical properties of alginate/polyacrylamide hydrogels, with the alginate concentration playing a key role in the shear modulus. These hydrogels show promising potential for biocompatible applications such as wound healing dressings. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Figure 1

17 pages, 6308 KiB  
Article
Effect of Heat Treatment on Microstructure and Mechanical Properties of (TiB + TiC) /Ti-6Al-4V Composites Fabricated by Directed Energy Deposition
by Hai Gu, Guoqing Dai, Jie Jiang, Zulei Liang, Jianhua Sun, Jie Zhang and Bin Li
Metals 2025, 15(7), 806; https://doi.org/10.3390/met15070806 - 18 Jul 2025
Viewed by 253
Abstract
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to [...] Read more.
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to refine the microstructure and tailor mechanical properties. The results reveal that the plate-like α phase in the as-deposited composites gradually transforms into an equiaxed morphology with increasing annealing temperature and holding time. Notably, when the annealing temperature exceeds 1000 °C, significant coarsening of the TiC phase is observed, while the TiB phase remains morphologically stable. Annealing promotes decomposition of acicular martensite and stress relaxation, leading to a reduction in hardness compared to the as-deposited state. However, the reticulated distribution of the TiB and TiC reinforcement phases contributes to enhanced tensile performance. Specifically, the as-deposited composite achieves a tensile strength of 1109 MPa in the XOY direction, representing a 21.6% improvement over the as-cast counterpart, while maintaining a ductility of 2.47%. These findings demonstrate that post-deposition annealing is an effective strategy to regulate microstructure and achieve a desirable balance between strength and ductility in DED-fabricated titanium matrix composites. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 320
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 207
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Residual Stress Evolution of Graphene-Reinforced AA2195 (Aluminum–Lithium) Composite for Aerospace Structural Hydrogen Fuel Tank Application
by Venkatraman Manokaran, Anthony Xavior Michael, Ashwath Pazhani and Andre Batako
J. Compos. Sci. 2025, 9(7), 369; https://doi.org/10.3390/jcs9070369 - 16 Jul 2025
Viewed by 559
Abstract
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. [...] Read more.
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. The evolution of residual stress was systematically examined after each rolling pass and during thermal treatments. The successful incorporation of graphene into the matrix was confirmed through Energy-Dispersive Spectroscopy (EDS) analysis. Residual stress measurements after each pass revealed a progressive increase in compressive stress, reaching a maximum of −68 MPa after the fourth hot rolling pass. Prior to the fifth pass, a solution treatment at 530 °C was performed to dissolve coarse precipitates and relieve internal stresses. Cold rolling during the fifth pass reduced the compressive residual stress to −40 MPa, and subsequent artificial aging at 180 °C for 48 h further decreased it to −23 MPa due to recovery and stress relaxation mechanisms. Compared to the unreinforced AA2195 alloy in the T8 condition, which exhibited a tensile residual stress of +29 MPa, the graphene-reinforced composite in the same condition retained a compressive residual stress of −23 MPa. This represents a net improvement of 52 MPa, highlighting the composite’s superior capability to retain compressive residual stress. The presence of graphene significantly influenced the stress distribution by introducing thermal expansion mismatch and acting as a barrier to dislocation motion. Overall, the composite demonstrated enhanced residual stress characteristics, making it a promising candidate for lightweight, fatigue-resistant aerospace components. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

25 pages, 6067 KiB  
Article
Early-Stage Alcoholic Cardiomyopathy Highlighted by Metabolic Remodeling, Oxidative Stress, and Cardiac Myosin Dysfunction in Male Rats
by David V. Rasicci, Jinghua Ge, Adrien P. Chen, Neil B. Wood, Skylar M. L. Bodt, Allyson L. Toro, Alexandra Evans, Omid Golestanian, Md Shahrier Amin, Anne Pruznak, Nelli Mnatsakanyan, Yuval Silberman, Michael D. Dennis, Michael J. Previs, Charles H. Lang and Christopher M. Yengo
Int. J. Mol. Sci. 2025, 26(14), 6766; https://doi.org/10.3390/ijms26146766 - 15 Jul 2025
Viewed by 254
Abstract
Chronic ethanol use can lead to alcoholic cardiomyopathy (ACM), while the impact on the molecular and cellular aspects of the myocardium is unclear. Accordingly, male Sprague-Dawley rats were exposed to an ethanol-containing diet for 16 weeks and compared with a control group that [...] Read more.
Chronic ethanol use can lead to alcoholic cardiomyopathy (ACM), while the impact on the molecular and cellular aspects of the myocardium is unclear. Accordingly, male Sprague-Dawley rats were exposed to an ethanol-containing diet for 16 weeks and compared with a control group that was fed an isocaloric diet. Histological measurements from H&E slides revealed no significant differences in cell size. A proteomic approach revealed that alcohol exposure leads to enhanced mitochondrial lipid metabolism, and electron microscopy revealed impairments in mitochondrial morphology/density. Cardiac myosin purified from the hearts of ethanol-exposed animals demonstrated a 15% reduction in high-salt ATPase activity, with no significant changes in the in vitro motility and low-salt ATPase or formation of the super-relaxed (SRX) state. A protein carbonyl assay indicated a 20% increase in carbonyl incorporation, suggesting that alcohol may impact cardiac myosin through oxidative stress mechanisms. In vitro oxidation of healthy cardiac myosin revealed a dramatic decline in ATPase activity and in vitro motility, demonstrating a link between myosin protein oxidation and myosin mechanochemistry. Collectively, this study suggests alcohol-induced metabolic remodeling may be the initial insult that eventually leads to defects in the contractile machinery in the myocardium of ACM hearts. Full article
(This article belongs to the Special Issue Sarcomeric Proteins in Health and Disease: 3rd Edition)
Show Figures

Figure 1

19 pages, 7553 KiB  
Article
Effect of Mass Reduction of 3D-Printed PLA on Load Transfer Capacity—A Circular Economy Perspective
by Aneta Liber-Kneć and Sylwia Łagan
Materials 2025, 18(14), 3262; https://doi.org/10.3390/ma18143262 - 10 Jul 2025
Viewed by 485
Abstract
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA [...] Read more.
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA specimens were printed with infill densities of 100%, 75%, and 25%. Mechanical tests, including tensile and compression tests, and one-hour stress-relaxation at 2% strain were conducted. The digital image correlation method was used to obtain the strain fields on the samples’ surface under tensile loading. Mechanical properties, including the elastic modulus, strength values, and Poisson’s ratio, were assessed. Hydrolytic degradation effects over one month were also evaluated. (3) Results: Lowering the PLA infill density reduced the ultimate tensile strength (from 60.04 ± 2.24 MPa to 26.24 ± 0.77 MPa), Young’s modulus (from 2645.05 ± 204.15 MPa to 1245.41 ± 83.79 MPa), compressive strength (from 26.59 ± 0.80 MPa to 21.83 ± 1.01 MPa), and Poisson’s ratio (from 0.32 to 0.30). A 40% mass reduction (form 100% to 25% infill density) resulted in a 56% decrease in tensile strength and a 53% decrease in Young’s modulus. A 31% mass reduction was observed for compression samples. Stress relaxation decreased significantly from 100% to 75% density, with further reductions having minimal impact. Hydrated samples showed no mechanical changes compared to baseline specimens. (4) Conclusions: Optimizing infill density in 3D-printed PLA parts helps to balance mechanical performance with material efficiency. The best mechanical properties are typically achieved with an infill density of 100%, but results show that decreasing the mass of the part by a reduction in infill density from 75% to 25% does not significantly affect the ability to transfer tensile and compression loads. PLA’s biodegradability makes it a viable alternative to stable polymers. By minimizing material waste and enabling the efficient use of resources, additive manufacturing aligns with the principles of a closed-loop economy, supporting sustainable development. Full article
(This article belongs to the Special Issue Recent Researches in Polymer and Plastic Processing)
Show Figures

Figure 1

12 pages, 3788 KiB  
Article
The Combination of Direct Aging and Cryogenic Treatment Effectively Enhances the Mechanical Properties of 18Ni300 by Selective Laser Melting
by Yaling Zhang, Xia Chen, Bo Qu, Yao Tao, Wei Zeng and Bin Chen
Metals 2025, 15(7), 766; https://doi.org/10.3390/met15070766 - 8 Jul 2025
Viewed by 292
Abstract
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three [...] Read more.
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three conditions were investigated: as-built, direct aging (AT6), and direct aging plus cryogenic treatment (AT6C8). Microstructural characterization was performed using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), while the mechanical properties were evaluated via microhardness and tensile testing. The results show that the AT6C8 sample achieved the highest microhardness (635 HV0.5) and tensile strength (2180 MPa), significantly exceeding the as-built (311 HV0.5, 1182 MPa) and AT6 (580 HV0.5, 2012 MPa) samples. Cryogenic treatment induced a notable phase transformation from retained austenite (γ phase) to martensite (α phase), with the peak relative intensity ratio ranging from 1.42 (AT6) to 1.58 (AT6C8) in the XRD results. TEM observations revealed that cryogenic treatment refined lath martensite from 0.75 μm (AT6) to 0.24 μm (AT6C8) and transformed reversed austenite into thin linear structures at the martensite boundaries. The combination of direct aging and cryogenic treatment effectively enhances the mechanical properties of SLM-fabricated 18Ni300 maraging steel through martensite transformation, microstructural refinement, and increased dislocation density. This approach addresses the challenge of balancing strength improvement and residual stress relaxation. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

24 pages, 462 KiB  
Review
In Vitro Flexural Testing of Clear Aligner Materials: A Scoping Review of Methods, Results, and Clinical Relevance
by Gavin Nugent, Alvaro Munoz, Chris Louca and Alessandro Vichi
Appl. Sci. 2025, 15(13), 7516; https://doi.org/10.3390/app15137516 - 4 Jul 2025
Viewed by 337
Abstract
Background: Clear aligner therapy (CAT) has become increasingly popular for treating mild to moderate malocclusions. However, discrepancies between predicted and achieved tooth movement remain a concern, partly due to the limited understanding of aligner material behavior under clinical conditions. Since these materials must [...] Read more.
Background: Clear aligner therapy (CAT) has become increasingly popular for treating mild to moderate malocclusions. However, discrepancies between predicted and achieved tooth movement remain a concern, partly due to the limited understanding of aligner material behavior under clinical conditions. Since these materials must deliver controlled and sustained forces, their flexural properties are critical for treatment efficacy. Objective: To identify and analyze in vitro studies investigating the flexural properties of thermoplastic clear aligner materials, summarize their testing methodologies, and examine the factors that may influence their clinical performance. Methods: A scoping review was conducted following the PRISMA-ScR guidelines. Three electronic databases (PubMed, Scopus, and Web of Science) were systematically searched. Studies were screened based on predefined eligibility criteria, and data extraction included testing methods, materials, and clinically relevant variables. Risk of bias was assessed using the QUIN tool. Results: Seventeen studies published between 2008 and 2024 were included. All studies used three-point bending to assess mechanical properties. Common influencing factors included thermoforming, liquid absorption, temperature changes, loading conditions, and material thickness. Most studies reported that these factors negatively affected force delivery. The most frequently tested material was Duran (PET-G). Polyurethane-based materials, such as Zendura, showed comparatively better stress relaxation properties. Conclusions: Thermoforming, intraoral temperature changes, liquid exposure, and prolonged or repeated loading can compromise the mechanical properties and force delivery capacity of aligner materials. Standardized testing methods and further investigation of newer materials are essential to enhance the predictability and performance of clear aligner therapy. Full article
(This article belongs to the Special Issue New Materials and Techniques in Restorative Dentistry)
Show Figures

Figure 1

28 pages, 5996 KiB  
Article
Development of Sustainable Composite Sandwich with Wood Waste and Natural Fibers for Circular Economy Applications
by Sofia Gomes, Paulo Santos and Tânia M. Lima
Recycling 2025, 10(4), 131; https://doi.org/10.3390/recycling10040131 - 2 Jul 2025
Viewed by 311
Abstract
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a [...] Read more.
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a green epoxy resin matrix, incorporating wood waste in the core and flax fibers in the outer layers. Mechanical tests on the sandwich panel revealed a facing bending stress of 92.79 MPa and a core shear stress of 2.43 MPa. The panel demonstrated good compressive performance, with an edgewise compressive strength of 61.39 MPa and a flatwise compressive strength of 96.66 MPa. The material’s viscoelastic behavior was also characterized. In stress relaxation tests (from an initial 21 MPa), the panel’s stress decreased by 20.2% after three hours. The experimental relaxation data were successfully fitted by the Kohlrausch–Williams–Watts (KWW) model for both short- and long-term predictions. In creep tests, the panel showed a 21.30% increase in displacement after three hours under a 21 MPa load. For creep behavior, the KWW model was preferable for short-term predictions, while the Findley model provided a better fit for long-term predictions. Full article
Show Figures

Figure 1

16 pages, 5185 KiB  
Article
Analysis the Mechanical Response of Tunnels Under the Action of Vertical Jacking in Shield Construction and Research on Reinforcement
by Mingxun Hou, Chunshan Yang, Jiayi Yang, Yuefei Zeng and Zhigang Zhu
Buildings 2025, 15(13), 2321; https://doi.org/10.3390/buildings15132321 - 2 Jul 2025
Viewed by 244
Abstract
This research examines the effects of vertical jacking construction on the mechanical behavior of shield tunnels. Model tests simulating vertical jacking were performed utilizing a purpose-built apparatus to quantify the reaction forces generated by the diffusion block during the jacking operation. A systematic [...] Read more.
This research examines the effects of vertical jacking construction on the mechanical behavior of shield tunnels. Model tests simulating vertical jacking were performed utilizing a purpose-built apparatus to quantify the reaction forces generated by the diffusion block during the jacking operation. A systematic analysis was conducted on the mechanical responses of shield tunnel lining segments and their interconnecting joints. Utilizing Particle Flow Code (PFC) methodology, a deformation prediction model specifically tailored for vertical jacking conditions was formulated. Correlating simulation results with experimental measurements quantified the sensitivity of tunnel deformation to grouting reinforcement, enabling the identification of an optimal reinforcement zone. Key findings reveal that the jacking reaction force distribution exhibits pronounced nonlinearity: a substantial increase precedes failure, followed by rapid post-failure reduction and eventual stabilization in advanced jacking stages. Tunnel convergence deformation evolves through four distinct phases: significant growth, rapid attenuation, gradual diminution, and final stabilization. The primary zone of influence encompasses the opening ring and its two adjacent rings. Jacking induces longitudinal bending deformation, with maximum joint opening occurring at the opening ring. Abrupt longitudinal load fluctuations cause dislocation between the opening ring and neighboring rings. Internal segment stresses exhibit initial tensile and compressive increases followed by subsequent relaxation. Externally applied grouting reinforcement effectively attenuates jacking-induced tunnel deformation. An optimal reinforcement range was determined at the 60° position relative to the segment springline, substantially lowering resource consumption and construction risks compared to conventional reinforcement strategies. These outcomes furnish theoretical underpinnings and technical benchmarks for optimizing engineering design and facilitating the implementation of vertical jacking technology. Full article
Show Figures

Figure 1

26 pages, 3269 KiB  
Article
Dynamic Characteristics of Additive Manufacturing Based on Dual Materials of Heterogeneity
by Hsien-Hsiu Hung, Shih-Han Chang and Yu-Hsi Huang
Polymers 2025, 17(13), 1793; https://doi.org/10.3390/polym17131793 - 27 Jun 2025
Viewed by 315
Abstract
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using [...] Read more.
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using the PolyJet process based on stereolithography (SLA) to fabricate composite beam structures composed of alternating soft and hard materials. Initially, impact tests using a steel ball on cantilever beams made of hard material were conducted to inversely calculate the first natural frequency via time–frequency analysis, thereby identifying Young’s modulus and Poisson’s ratio. For the viscoelastic soft material, tensile and stress relaxation tests were performed to construct a Generalized Maxwell Model, from which the Prony series parameters were derived. Subsequently, symmetric and asymmetric multilayer composite beams were fabricated and subjected to impact testing. The experimental results were compared with FEA simulations to evaluate the accuracy and validity of the identified material parameters of different structural configurations under vibration modes. The research focuses on the time- and frequency-dependent stiffness response of the composite by hard and soft materials and integrating this behavior into structural dynamic simulations. The specific objectives of the study include (1) establishing the Prony series parameters for the soft material integrated with hard material and implementing them in the FE model, (2) validating the accuracy of resonant frequencies and dynamic responses through combined experimental and simulation, (3) analyzing the influence of composite material symmetry and thickness ratio on dynamic modals, and (4) comparing simulation results with experimental measurements to assess the reliability and accuracy of the proposed modeling framework. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Kinetics of Phase Transitions in Amorphous Carbamazepine: From Sub-Tg Structural Relaxation to High-Temperature Decomposition
by Roman Svoboda and Adéla Pospíšilová
Int. J. Mol. Sci. 2025, 26(13), 6136; https://doi.org/10.3390/ijms26136136 - 26 Jun 2025
Viewed by 313
Abstract
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = [...] Read more.
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták–Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol−1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1–2% mass loss at temperatures 190–200 °C). Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Evaluating Parameter Value Identification Methods for Modeling of Nonlinear Stress Relaxation in Polyethylene
by Furui Shi and P.-Y. Ben Jar
Materials 2025, 18(13), 2960; https://doi.org/10.3390/ma18132960 - 23 Jun 2025
Viewed by 259
Abstract
Viscous properties play a major role in the time-dependent deformation behavior of polymers and have long been characterized using spring-dashpot models. However, such models face a bottleneck of having multiple sets of model parameter values that can all be used to simulate the [...] Read more.
Viscous properties play a major role in the time-dependent deformation behavior of polymers and have long been characterized using spring-dashpot models. However, such models face a bottleneck of having multiple sets of model parameter values that can all be used to simulate the same deformation behavior. As a result, these model parameters have not been widely used to quantify the viscous properties. In this study, a newly developed multi-relaxation-recovery test was used to obtain the variation in stress response to deformation of polyethylene (PE) and its pipes during relaxation, revealing the complexity of PE’s nonlinear viscous stress response to deformation. Using a three-branch spring-dashpot model with two Eyring’s dashpots, this study shows the possibility of determining the model parameter values using four different analysis methods, namely, the mode method, peak-point method, highest-frequency method, and best-five-fits method. Model parameter values from these methods are compared and discussed in this paper, to reach the conclusion that the best-five-fits method provides the most reliable and relatively unique set of model parameter values for characterizing the mechanical performance of PE and its pipes. The best-five-fits method is expected to enable the use of the model parameters to quantify PE’s viscous properties so that PE’s load-carrying performance can be properly characterized, even for long-term applications. Full article
Show Figures

Figure 1

Back to TopTop