Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = mechanical impedance control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5390 KB  
Article
Multilevel Modeling and Validation of Thermo-Mechanical Nonlinear Dynamics in Flexible Supports
by Xiangyu Meng, Qingyu Zhu, Qingkai Han and Junzhe Lin
Machines 2026, 14(1), 131; https://doi.org/10.3390/machines14010131 - 22 Jan 2026
Viewed by 31
Abstract
Prediction accuracy for complex flexible support systems is often limited by insufficiently characterized thermo-mechanical couplings and nonlinearities. To address this, we propose a multilevel hybrid parallel–serial model that integrates the thermo-viscous effects of a Squeeze Film Damper (SFD) via a coupled Reynolds–Walther equation, [...] Read more.
Prediction accuracy for complex flexible support systems is often limited by insufficiently characterized thermo-mechanical couplings and nonlinearities. To address this, we propose a multilevel hybrid parallel–serial model that integrates the thermo-viscous effects of a Squeeze Film Damper (SFD) via a coupled Reynolds–Walther equation, the structural flexibility of a squirrel-cage support using Finite Element analysis, and the load-dependent stiffness of a four-point contact ball bearing based on Hertzian theory. The resulting state-dependent system is solved using a force-controlled iterative numerical algorithm. For validation, a dedicated bidirectional excitation test rig was constructed to decouple and characterize the support’s dynamics via frequency-domain impedance identification. Experimental results indicate that equivalent damping is temperature-sensitive, decreasing by approximately 50% as the lubricant temperature rises from 30 °C to 100 °C. In contrast, the system exhibits pronounced stiffness hardening under increasing loads. Theoretical analysis attributes this nonlinearity primarily to the bearing’s Hertzian contact mechanics, which accounts for a stiffness increase of nearly 240%. This coupled model offers a distinct advancement over traditional linear approaches, providing a validated framework for the design and vibration control of aero-engine flexible supports. Full article
Show Figures

Figure 1

38 pages, 7740 KB  
Review
Waterborne Poly(urethane-urea)s for Lithium-Ion/Lithium-Metal Batteries
by Bushra Rashid, Anjum Hanief Kohli and In Woo Cheong
Polymers 2026, 18(2), 299; https://doi.org/10.3390/polym18020299 - 22 Jan 2026
Viewed by 68
Abstract
Waterborne polyurethane (WPU) and waterborne poly(urethane-urea) (WPUU) dispersions allow safer and more sustainable manufacturing of rechargeable batteries via water-based processing, while offering tunable adhesion and segmented-domain mechanics. Beyond conventional roles as binders and coatings, WPU/WPUU chemistries also support separator/interlayer and polymer-electrolyte designs for [...] Read more.
Waterborne polyurethane (WPU) and waterborne poly(urethane-urea) (WPUU) dispersions allow safer and more sustainable manufacturing of rechargeable batteries via water-based processing, while offering tunable adhesion and segmented-domain mechanics. Beyond conventional roles as binders and coatings, WPU/WPUU chemistries also support separator/interlayer and polymer-electrolyte designs for lithium-ion and lithium metal systems, where interfacial integrity, stress accommodation, and ion transport must be balanced. Here, we review WPU/WPUU fundamentals (building blocks, dispersion stabilization, morphology, and film formation) and review prior studies through a battery-centric structure–processing–property lens. We point out key performance-limiting trade-offs—adhesion versus electrolyte uptake and ionic conductivity versus storage modulus—and relate them to practical formulation variables, including soft-/hard-segment selection, ionic center/counterion design, molecular weight/topology control, and crosslinking strategies. Applications are reviewed for (i) electrode binders (graphite/Si; cathodes such as LFP and NMC), (ii) separator coatings and functional interlayers, and (iii) gel/solid polymer electrolytes and hybrid composites, with a focus on practical design guidelines for navigating these trade-offs. Future advancements in WPU/WPUU chemistries will depend on developing stable, low-impedance interlayers, enhancing electrochemical behavior, and establishing application-specific design guidelines to optimize performance in lithium metal batteries (LMB). Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 3949 KB  
Article
Endogenous Curing Mechanism and Self-Healing Properties of an Epoxy Resin (E-51) in Alkaline Environments of Cement-Based Materials
by Qianjin Mao, Yuanlong Wang, Runfeng Li, Yuhuan Zhou, Shuqing Shi and Suping Cui
Polymers 2026, 18(2), 262; https://doi.org/10.3390/polym18020262 - 18 Jan 2026
Viewed by 208
Abstract
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates [...] Read more.
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates the curing characteristics of epoxy resin without external curing agents and their impact on the performance of cement-based materials. Differential scanning calorimetry, mechanical property testing, microstructural observation, and electrochemical impedance spectroscopy were used to study the mechanism of sodium hydroxide (NaOH) catalyzing the process of bisphenol-A epoxy resin (E-51)-based curing, the influence of moisture and temperature on curing kinetics, and the performance of epoxy resins in mortar and self-healing concrete. The results showed that E-51 achieved self-curing under alkaline conditions in the absence of an external hardener. However, moisture significantly inhibited the reaction process. Elevating the temperature and reducing environmental humidity effectively promoted the curing reaction. In cement-based materials, E-51 exhibited endogenous curing by the inherent alkalinity of the system, remarkably enhancing the compressive strength of mortar. At 60 °C, mortar containing 10% E-51 (by cement mass) exhibited a 1.5-fold higher compressive strength than that of the control group without E-51 at 14 days of curing. It demonstrated higher healing efficiency in a microencapsulated self-healing concrete system than the traditional curing agent systems. Concrete specimens with damage induced by loading at 60% of their compressive strength exhibited 100% recovery of ultrasonic pulse velocity after storing indoors for 28 d. The findings of this study can provide theoretical basis and technical support for the application of epoxy resins in cement-based materials without the need for curing agents. Full article
Show Figures

Figure 1

24 pages, 8142 KB  
Article
Evaluating the Hydrogen Embrittlement Resistance of Nickel-Based Coatings as Diffusion Barriers for Carbon Steels
by Mmesoma Mario Alaneme and Zoheir Farhat
Hydrogen 2026, 7(1), 13; https://doi.org/10.3390/hydrogen7010013 - 17 Jan 2026
Viewed by 243
Abstract
This study evaluates the hydrogen embrittlement (HE) resistance of nickel-based electroplated coatings applied on cold-finished mild steel, with emphasis on their performance as diffusion barriers to impede hydrogen ingress. Nickel coatings were deposited using Watts plating bath under controlled electroplating parameters. Electrochemical hydrogen [...] Read more.
This study evaluates the hydrogen embrittlement (HE) resistance of nickel-based electroplated coatings applied on cold-finished mild steel, with emphasis on their performance as diffusion barriers to impede hydrogen ingress. Nickel coatings were deposited using Watts plating bath under controlled electroplating parameters. Electrochemical hydrogen charging was performed in an alkaline medium at progressively increasing charging current densities to simulate varying levels of hydrogen exposure. Tensile testing was conducted immediately after charging to assess the mechanical response of both uncoated and nickel-coated specimens, focusing on key properties such as elongation, yield strength, ultimate tensile strength, and toughness. The results revealed a gradual degradation in ductility and toughness for the uncoated steel samples with increasing hydrogen content. In contrast, the nickel-coated specimens maintained mechanical stability up to a critical hydrogen threshold, beyond which a pronounced reduction in tensile response was observed. Fractographic analysis supported these trends, revealing a transition from ductile to brittle fracture characteristics with increasing concentrations of hydrogen. These findings highlight the protective capabilities and limitations of nickel-based coatings in mitigating hydrogen-induced degradation, offering insights into their application in industries where hydrogen embrittlement of structural materials is a major concern. Full article
Show Figures

Figure 1

32 pages, 10354 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M. Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Viewed by 202
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
Show Figures

Figure 1

34 pages, 10017 KB  
Article
U-H-Mamba: An Uncertainty-Aware Hierarchical State-Space Model for Lithium-Ion Battery Remaining Useful Life Prediction Using Hybrid Laboratory and Real-World Datasets
by Zhihong Wen, Xiangpeng Liu, Wenshu Niu, Hui Zhang and Yuhua Cheng
Energies 2026, 19(2), 414; https://doi.org/10.3390/en19020414 - 14 Jan 2026
Viewed by 224
Abstract
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, [...] Read more.
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, real-world environments. To bridge this gap, this study presents U-H-Mamba, a novel uncertainty-aware hierarchical framework trained on a massive hybrid repository comprising over 146,000 charge–discharge cycles from both laboratory benchmarks and operational electric vehicle datasets. The proposed architecture employs a two-level design to decouple degradation dynamics, where a Multi-scale Temporal Convolutional Network functions as the base encoder to extract fine-grained electrochemical fingerprints, including derived virtual impedance proxies, from high-frequency intra-cycle measurements. Subsequently, an enhanced Pressure-Aware Multi-Head Mamba decoder models the long-range inter-cycle degradation trajectories with linear computational complexity. To guarantee reliability in safety-critical applications, a hybrid uncertainty quantification mechanism integrating Monte Carlo Dropout with Inductive Conformal Prediction is implemented to generate calibrated confidence intervals. Extensive empirical evaluations demonstrate the framework’s superior performance, achieving a RMSE of 3.2 cycles on the NASA dataset and 5.4 cycles on the highly variable NDANEV dataset, thereby outperforming state-of-the-art baselines by 20–40%. Furthermore, SHAP-based interpretability analysis confirms that the model correctly identifies physics-informed pressure dynamics as critical degradation drivers, validating its zero-shot generalization capabilities. With high accuracy and linear scalability, the U-H-Mamba model offers a viable and physically interpretable solution for cloud-based prognostics in large-scale electric vehicle fleets. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

23 pages, 4462 KB  
Article
Differential Tectono-Thermal Evolution Along the South–North Direction in the Central Qiangtang Basin and Implications for Hydrocarbon Generation Potential
by Qiang Yu, Zhanli Ren, Ruize Yuan, Tianzi Wang, Xinchen Cao, Ahmad Ali, Naimat Ullah, Qing Fan and Yanze Lv
Processes 2026, 14(2), 277; https://doi.org/10.3390/pr14020277 - 13 Jan 2026
Viewed by 200
Abstract
The Qiangtang Basin in the Tibetan Plateau exhibits a paradoxically reversed source-rock maturity pattern (high margins, low center), which presents a challenge to classical basin models. Critically, the unclear genetic mechanism behind this anomaly has impeded hydrocarbon exploration. To address this, this study [...] Read more.
The Qiangtang Basin in the Tibetan Plateau exhibits a paradoxically reversed source-rock maturity pattern (high margins, low center), which presents a challenge to classical basin models. Critically, the unclear genetic mechanism behind this anomaly has impeded hydrocarbon exploration. To address this, this study investigates a north–south-oriented 2D geological section across the central basin. By employing an integrated methodology, the genetic mechanism was elucidated through systematic calculations of paleo-burial depth, paleotemperature, and vitrinite reflectance (Ro) at ten control points (C1–C10). Specifically, tectonic burial history was reconstructed using the backstripping method, while mantle heat flow was corrected by integrating the McKenzie extensional and Royden compressional models. Maturity evolution was quantified using the Easy%Ro model. The results demonstrate that (1) since the Early Jurassic, the basin has undergone five tectono-thermal evolution stages, with the geothermal gradient reaching 30–36 °C/km during the end of the Early Cretaceous); (2) Ro values range from 1.2% to 1.68% at the northern basin margin (C1–C4), are approximately 1.15% in the Central Uplift Zone (C5–C7), and range from 1.45% to 1.6% at the southern basin margin (C8–C10); (3) importantly, the reversed distribution was jointly controlled by three factors: deep burial at the basin margins (5–6 km), early uplift in the central part (initiating from the Late Cretaceous), and local magmatic thermal disturbance. Their estimated contribution ratios are 40–50%, 30–40%, and 10–20%, respectively. Consequently, regions such as the Luxiongcuo Syncline, the Bandaohu–Qingshuihu area, and the Chibuzhangcuo area are identified as having favorable exploration potential. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 134
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

24 pages, 1515 KB  
Article
Prediction Models for Non-Destructive Identification of Compacted Soil Layers Based on Electrical Conductivity and Moisture Content
by Hasan Mirzakhaninafchi, Ahmet Celik, Roaf Parray and Abir Mohammad Hadi
Agriculture 2026, 16(2), 197; https://doi.org/10.3390/agriculture16020197 - 13 Jan 2026
Viewed by 321
Abstract
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential [...] Read more.
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential for site-specific tillage and sustainable root-zone management. A sensing approach that can support future real-time identification of compacted layers after soil-specific calibration, which would enable variable-depth tillage, reducing mechanical impedance and improving energy-use efficiency while maintaining crop yields. This study aimed to develop and evaluate prediction models that can support future real-time identification of compacted soil layers using soil electrical conductivity (EC) and moisture content as non-destructive indicators. A sandy clay soil (48.6% sand, 29.3% clay, 22.1% silt) was tested in a soil-bin laboratory under controlled conditions at three moisture levels (13, 18, and 22% db.) and six depth layers (C1–C6, 0–30 cm) identified from the penetration-resistance profile to measure penetration resistance, shear resistance, and EC. Penetration and shear resistance increased toward the most resistant depth layer and decreased with increasing moisture content, whereas EC generally increased with both depth layer and moisture content. Linear regression models relating penetration resistance (R2=0.893) and shear resistance (R2=0.782) to EC and moisture content were developed and evaluated. Field validation in a paddy field of similar texture showed that predicted penetration resistance differed from measured values by 3–6% across the three compaction treatments evaluated. Root length density and root volume decreased with increasing machine-induced compaction, confirming the agronomic relevance of the modeled patterns and supporting the suitability of the proposed indicators. Together, these results demonstrate that EC and moisture content can potentially be used as non-destructive proxies for compacted-layer identification and provide a calibration basis for future on-the-go sensing systems to support site-specific, variable-depth tillage in agricultural fields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 8664 KB  
Article
Research on Robot Collision Response Based on Human–Robot Collaboration
by Sicheng Zhong, Chaoyang Xu, Guoqiang Chen, Yanghuan Xu and Zhijun Wang
Sensors 2026, 26(2), 495; https://doi.org/10.3390/s26020495 - 12 Jan 2026
Viewed by 292
Abstract
With the rapid advancement of science and technology, robotics is evolving towards more profound and extensive applications. Nevertheless, the inherent limitations of traditional industrial “caged” robots have significantly impeded the full utilization of their capabilities. Consequently, breaking free from these constraints and realizing [...] Read more.
With the rapid advancement of science and technology, robotics is evolving towards more profound and extensive applications. Nevertheless, the inherent limitations of traditional industrial “caged” robots have significantly impeded the full utilization of their capabilities. Consequently, breaking free from these constraints and realizing human–robot collaboration has emerged as a new developmental trend in the robotics field. The collision-response mechanism, as a crucial safeguard for human–robot collaboration safety, has become a pivotal issue in enhancing the performance of human–robot interaction. To address this, an adaptive admittance control collision-response algorithm is proposed in this paper, grounded in the principle of admittance control. A collision simulation model of the AUBO-i5 collaborative robot is constructed. The effectiveness of the proposed algorithm is verified through simulation experiments focusing on both the end-effector collision and body collision of the robot, and by comparing it with existing admittance control algorithms. Furthermore, a collision-response experimental platform is established based on the AUBO-i5 collaborative robot. Experimental studies on end-effector and body collisions are conducted, providing practical validation of the reliability and utility of the proposed adaptive admittance control collision-response algorithm. Full article
Show Figures

Figure 1

24 pages, 4536 KB  
Article
From Lab to Real-World: Unraveling Coconut Shell Activated Carbon’s Efficiency for Low-Concentration TCE/PCE in Indoor Air
by Ying Sheng, Qingqing Dong and Saiqichen Zhang
Sustainability 2026, 18(2), 570; https://doi.org/10.3390/su18020570 - 6 Jan 2026
Viewed by 255
Abstract
Low-concentration trichloroethylene (TCE) and tetrachloroethylene (PCE) indoors pose a significant threat to human health due to their potent carcinogenic properties. However, existing research has predominantly focused on high-concentration scenarios in industrial settings, offering limited guidance for indoor air purification. This study investigated the [...] Read more.
Low-concentration trichloroethylene (TCE) and tetrachloroethylene (PCE) indoors pose a significant threat to human health due to their potent carcinogenic properties. However, existing research has predominantly focused on high-concentration scenarios in industrial settings, offering limited guidance for indoor air purification. This study investigated the adsorption mechanisms and performance regulation of coconut shell activated carbon for TCE/PCE through experimental analysis, molecular simulations, and dynamic modeling. Experimental results demonstrated that PCE, characterized by its non-polar nature and high boiling point, exhibited a substantially higher adsorption capacity than TCE. Increased humidity induced competitive adsorption between water molecules and pollutants, reducing the adsorption capacity of PCE by approximately 30%. Molecular simulations validated that water molecules occupied the active sites of oxygen-containing functional groups and pores, impeding the diffusion of TCE/PCE, while the non-polar surface of activated carbon preferentially adsorbs PCE. A dynamic prediction model developed in this study accurately forecasted breakthrough curves under varying pollutant concentrations, temperatures, humidities, and air velocities and quantified the service life of activated carbon. Response surface methodology revealed that controlling inlet concentrations (TCE < 7 ppb, PCE < 30 ppb), air velocity (<1 m/s), humidity (<50%), and temperature (<25 °C) can extend the service life of activated carbon to 3–5 months. Full article
Show Figures

Figure 1

19 pages, 16366 KB  
Article
A Supplementary Damping Control of D-STATCOM for Alleviating SSO in Photovoltaic Generation Integrated into Weak AC Grid
by Qichao Chen, Nan Wei, Zhidong Wang, Zhi An, Peng Tao and Yiqi Liu
Energies 2026, 19(1), 234; https://doi.org/10.3390/en19010234 - 31 Dec 2025
Viewed by 255
Abstract
The interaction between the Photovoltaic station and the weak grid can easily trigger sub- or super-synchronous oscillation (SSO). In this article, the equivalent impedance model of the photovoltaic grid-connected system is built, and the mechanism of SSO is analyzed based on the global [...] Read more.
The interaction between the Photovoltaic station and the weak grid can easily trigger sub- or super-synchronous oscillation (SSO). In this article, the equivalent impedance model of the photovoltaic grid-connected system is built, and the mechanism of SSO is analyzed based on the global admittance criterion (GA). To mitigate the SSO, a Distribution Static Synchronous Compensator (D-STATCOM) supplementary damping control (SDC) strategy is proposed, which uses a three-parameter notch filter to extract the sub- or super-synchronous harmonic component without a phase shift. The component is superimposed on the modulated wave of the D-STATCOM through the gain link to obtain the modulation instruction. At the sub- or super-synchronous frequency, the D-STATCOM can be equivalent to the parallel impedance in the system and play a role in suppressing the sub- or super-synchronous oscillation. Compared to the complex combination filters in the traditional SDC, which require phase compensation and have poor adaptability, the three-parameter notch filter used in this SDC does not need a phase compensation stage and can effectively cope with the presence of oscillation frequencies on both sides of the fundamental frequency with a simpler design. Simulation results prove that the proposed scheme effectively improves the stability of photovoltaic generation under different short-circuit ratios, irradiance levels, and fault conditions. The proposed solution can be applied to photovoltaic generation equipped with D-STATCOM. Full article
Show Figures

Figure 1

16 pages, 2022 KB  
Article
Impedance Mismatch Mechanism and Matching Network Design of Incident End in Single-Core Cable Fault Location of IT System
by Yanming Han, Qingfeng Wang, Jianqiong Zhang and Xiangqiang Li
World Electr. Veh. J. 2026, 17(1), 20; https://doi.org/10.3390/wevj17010020 - 31 Dec 2025
Viewed by 220
Abstract
The reliability of the Medium-Voltage Direct-Current (MVDC) power supply system is crucial for train operation, as it powers control, communication, and other critical onboard systems. Accurately locating insulation faults within this system can significantly reduce troubleshooting difficulty and prevent major operational losses. This [...] Read more.
The reliability of the Medium-Voltage Direct-Current (MVDC) power supply system is crucial for train operation, as it powers control, communication, and other critical onboard systems. Accurately locating insulation faults within this system can significantly reduce troubleshooting difficulty and prevent major operational losses. This study addresses a key challenge in applying Time-Domain Reflectometry (TDR) for fault location in single-core cables of IT systems: the incident-end impedance mismatch caused by the variable characteristic impedance of such cables, which fluctuates with installation distance from a ground plane. First, the mechanism through which this mismatch attenuates the primary fault reflection and generates secondary reflections is theoretically modeled. A resistive-capacitive (RC) coupling network is then designed to achieve bidirectional impedance matching between the test equipment and the cable under test while maintaining essential DC isolation. Simulation and experimental results demonstrate that the proposed network effectively mitigates the mismatch issue. In experiments, it increased the proportion of the primary reflected wave entering the receiver by over 30 percentage points and suppressed the secondary reflection by approximately 80%. These improvements enhance waveform clarity and signal strength, directly leading to more accurate fault location. The proposed solution, validated in a railway context, also holds significant potential for improving insulation fault diagnosis in analogous high-voltage cable applications, such as electric vehicle powertrains. Full article
(This article belongs to the Section Vehicle Management)
Show Figures

Figure 1

19 pages, 4191 KB  
Article
Effects of Salt Stress on Earthworm Function and Compost Quality During Vermicomposting of Kitchen Wastes
by Hailiang Mao, Jungang Ding, Wenqi Huang, Kui Huang and Rongchuan Yang
Bioengineering 2026, 13(1), 38; https://doi.org/10.3390/bioengineering13010038 - 29 Dec 2025
Viewed by 347
Abstract
The high salt concentration in kitchen waste (KW) can impede the performance of subsequent biological treatment. However, the impact of salt stress on the quality of vermicomposting products generated from KW remains unclear. In this study, the effects of high salt concentration in [...] Read more.
The high salt concentration in kitchen waste (KW) can impede the performance of subsequent biological treatment. However, the impact of salt stress on the quality of vermicomposting products generated from KW remains unclear. In this study, the effects of high salt concentration in KW on earthworm function and vermicompost quality were investigated by comparing two groups: a 1.5% salt (ST) group and a control (CK) group without salt. Results showed a significant decrease in the number and weight of earthworms in the ST (p < 0.01), with a mortality rate of 24.33% (p < 0.05) after vermicomposting. Compared to the CK, ST treatment resulted in a significant increase in catalase activity and a significant decrease in superoxide dismutase activity (p < 0.01). In addition, mucus secretion by earthworms decreased by 82.6% in ST (p < 0.01). Moreover, salt stress reduced KW humification during vermicomposting, lowering the humification index and β:α index by 23.7% and 41.2%, respectively. Microbial composition shifted under spatially heterogeneous selection pressures, leading to a 37.5% decrease in Ascomycota abundance, a 58.3% increase in Bacteroidetes abundance, and a 72.3% reduction in Proteobacteria abundance. Furthermore, the vertical stratification of physicochemical conditions significantly affected both microbial abundance and earthworm biomass in the ST treatment (p < 0.01), suggesting a salt–microbe–earthworm interaction mechanism. This study reveals that salt stress disrupts humification by impairing key microbial functions and ecological roles of earthworms during vermicomposting of KW. Full article
(This article belongs to the Topic Waste Biodegradation: Recycling and Upcycling)
Show Figures

Figure 1

24 pages, 3240 KB  
Article
Investigations into Selected Pollinator-Friendly Plant Species: Seed Lot Germination, Breaking Dormancy with Plant Hormone Priming and the Influence of Water Stress on Germination
by Sıtkı Ermiş, Masoume Amirkhani, Michael T. Loos and Alan G. Taylor
Horticulturae 2026, 12(1), 32; https://doi.org/10.3390/horticulturae12010032 - 26 Dec 2025
Viewed by 377
Abstract
The lack of protocols for breaking seed dormancy, inconsistent seed quality, and abiotic stress factors such as drought impede large-scale restoration efforts of pollinator-friendly native plant species. This research explores the germination response, dormancy-breaking techniques, and water stress tolerance in selected pollinator-friendly plant [...] Read more.
The lack of protocols for breaking seed dormancy, inconsistent seed quality, and abiotic stress factors such as drought impede large-scale restoration efforts of pollinator-friendly native plant species. This research explores the germination response, dormancy-breaking techniques, and water stress tolerance in selected pollinator-friendly plant species with characteristics facilitating mechanized rehabilitation protocols and biodiversity enhancement. Forty-two commercial seed lots representing seven plant families with 28 species were evaluated under two alternating temperature regimes (15/25 °C and 20/30 °C) with and without gibberellic acid (GA3) priming treatments. Six of the twenty-eight species were selected based on pollinator requirements for the monarch butterfly (Danaus plexippus L.) and further examined by priming seeds for 24 h in solutions containing GA3, kinetin (KIN), and hydrogen peroxide (H2O2), or their combinations, to evaluate their dormancy-breaking responses. The effect of water stress on seed germination was assessed in controlled chambers at soil water potentials of −1.08, −0.75, −0.13, and 0 MPa. Initial seed quality of the 42 seed lots revealed that only 62% had greater than 50% germination, while of the same 42 lots, 98% had greater than 50% viability based on the commercial seed label. The difference was largely attributed to seed dormancy. In laboratory studies of the 42 seed lots, GA3 significantly enhanced germination percentage, and reduced T50 (time to 50% germination) across most seed lots. Overall, germination was higher and faster at 20/30 °C than 15/25 °C. Priming the six selected species with 1.0 mM GA3 in 0.3% H2O2 consistently improved germination compared to the non-primed control after 14 days. Asclepias species (A. incarnata, A. syriaca, and A. tuberosa) exhibited consistently high germination across a broad moisture range of −0.75 to 0 MPa. In contrast, Echinacea purpurea required high moisture levels (−0.13 to 0 MPa) for optimal germination. Monarda fistulosa and Rudbeckia hirta showed their best performance under moderate moisture conditions (−0.13 MPa). Collectively, the use of GA3 priming to break physiological seed dormancy offers a promising approach to enhance germination and improving the establishment potential of native pollinator species in restoration programs. Full article
(This article belongs to the Special Issue Seed Biology in Horticulture: From Dormancy to Germination)
Show Figures

Figure 1

Back to TopTop