You are currently viewing a new version of our website. To view the old version click .
Energies
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

31 December 2025

A Supplementary Damping Control of D-STATCOM for Alleviating SSO in Photovoltaic Generation Integrated into Weak AC Grid

,
,
,
,
and
1
State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
2
College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
*
Author to whom correspondence should be addressed.
This article belongs to the Topic Optimal Planning, Integration and Control of Smart Grids and Microgrids Systems, 2nd Edition

Abstract

The interaction between the Photovoltaic station and the weak grid can easily trigger sub- or super-synchronous oscillation (SSO). In this article, the equivalent impedance model of the photovoltaic grid-connected system is built, and the mechanism of SSO is analyzed based on the global admittance criterion (GA). To mitigate the SSO, a Distribution Static Synchronous Compensator (D-STATCOM) supplementary damping control (SDC) strategy is proposed, which uses a three-parameter notch filter to extract the sub- or super-synchronous harmonic component without a phase shift. The component is superimposed on the modulated wave of the D-STATCOM through the gain link to obtain the modulation instruction. At the sub- or super-synchronous frequency, the D-STATCOM can be equivalent to the parallel impedance in the system and play a role in suppressing the sub- or super-synchronous oscillation. Compared to the complex combination filters in the traditional SDC, which require phase compensation and have poor adaptability, the three-parameter notch filter used in this SDC does not need a phase compensation stage and can effectively cope with the presence of oscillation frequencies on both sides of the fundamental frequency with a simpler design. Simulation results prove that the proposed scheme effectively improves the stability of photovoltaic generation under different short-circuit ratios, irradiance levels, and fault conditions. The proposed solution can be applied to photovoltaic generation equipped with D-STATCOM.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.