Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (702)

Search Parameters:
Keywords = matrix metalloproteinase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2837 KiB  
Article
Design, Synthesis, and Bioactivity Assessment of Modified Vemurafenib Analog
by Fabiana Sélos Guerra, Rosana Helena Coimbra Nogueira de Freitas, Florina Moldovan, David Rodrigues da Rocha, Renato Sampaio Carvalho and Patricia Dias Fernandes
Pharmaceuticals 2025, 18(8), 1161; https://doi.org/10.3390/ph18081161 - 5 Aug 2025
Abstract
Background: Metastatic melanoma is a highly aggressive malignancy with poor prognoses and frequent resistance to conventional chemotherapy. Approximately 40% of melanoma cases carry the BRAFV600E mutation, for which vemurafenib, a selective BRAFV600E inhibitor, is approved. Despite initial clinical benefits, vemurafenib often [...] Read more.
Background: Metastatic melanoma is a highly aggressive malignancy with poor prognoses and frequent resistance to conventional chemotherapy. Approximately 40% of melanoma cases carry the BRAFV600E mutation, for which vemurafenib, a selective BRAFV600E inhibitor, is approved. Despite initial clinical benefits, vemurafenib often leads to drug resistance and relapse, highlighting the need for improved therapeutic strategies. Objectives, methods: In this study, we designed, synthesized, and characterized five novel vemurafenib analogs—RF-86A, RF-87A, RF-94A, RF-94B, and RF-96B—with the aim of enhancing anti-proliferative and anti-metastatic effects against human melanoma cells. Results: All compounds induced apoptosis in BRAFV600E-mutated A375 cells, with RF-86A displaying the lowest IC50 value among the series, comparable to that of vemurafenib. Moreover, RF-86A exhibited the highest selectivity index, as determined using HEK293T cells as a non-tumorigenic control. Additionally, migration assays and gelatin zymography demonstrated that the analogs, unlike vemurafenib, significantly inhibited matrix metalloproteinases MMP-2 and MMP-9, key enzymes involved in tumor invasion and metastasis. Conclusions: These findings suggest that structural modifications to the vemurafenib scaffold may improve therapeutic efficacy and offer a promising strategy to overcome acquired resistance. Full article
Show Figures

Figure 1

14 pages, 1886 KiB  
Review
Membrane-Type 5 Matrix Metalloproteinase (MT5-MMP): Background and Proposed Roles in Normal Physiology and Disease
by Deepak Jadhav, Anna M. Knapinska, Hongjie Wang and Gregg B. Fields
Biomolecules 2025, 15(8), 1114; https://doi.org/10.3390/biom15081114 - 3 Aug 2025
Viewed by 323
Abstract
The matrix metalloproteinase (MMP) family includes several membrane-bound enzymes. Membrane-type 5 matrix metalloproteinase (MT5-MMP) is unique amongst the MMP family in being primarily expressed in the brain and during development. It is proposed to contribute to synaptic plasticity and is implicated in several [...] Read more.
The matrix metalloproteinase (MMP) family includes several membrane-bound enzymes. Membrane-type 5 matrix metalloproteinase (MT5-MMP) is unique amongst the MMP family in being primarily expressed in the brain and during development. It is proposed to contribute to synaptic plasticity and is implicated in several pathologies, including multiple cancers and Alzheimer’s disease. In cancer, MT5-MMP expression has been correlated to cancer progression, but a distinct mechanistic role has yet to be uncovered. In Alzheimer’s disease, MT5-MMP exhibits pro-amyloidogenic activity, functioning as an η-secretase that cleaves amyloid precursor protein (APP), ultimately generating two synaptotoxic fragments, Aη-α and Aη-β. Several intracellular binding partners for MT5-MMP have been identified, and of these, N4BP2L1, EIG121, BIN1, or TMX3 binding to MT5-MMP results in a significant increase in MT5-MMP η-secretase activity. Beyond direct effects on APP, MT5-MMP may also facilitate APP trafficking to endosomal/lysosomal compartments and enhance proinflammatory responses. Overall, the substrate profile of MT5-MMP has not been well defined, and selective inhibitors of MT5-MMP have not been described. These advances will be needed for further consideration of MT5-MMP as a therapeutic target in Alzheimer’s disease and other pathologies. Full article
Show Figures

Figure 1

16 pages, 7618 KiB  
Article
Collagen Remodeling of Strattice™ Firm in a Nonhuman Primate Model of Abdominal Wall Repair
by Kelly Bolden, Jared Lombardi, Nimesh Kabaria, Eric Stec and Maryellen Gardocki-Sandor
Bioengineering 2025, 12(8), 796; https://doi.org/10.3390/bioengineering12080796 - 24 Jul 2025
Viewed by 339
Abstract
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). [...] Read more.
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). Histological, immunohistochemical, and biochemical assessments were conducted. Pro-inflammatory tissue cytokines peaked 1 month post-implantation and subsided to baseline by 6 months. E-PADM-specific serum immunoglobulin G antibodies increased by 213-fold from baseline at 1 month, then decreased to <10-fold by 6–9 months. The mean percentage tissue area staining positively for matrix metalloproteinase-1 plateaued at 3 months (40.3 ± 16.9%), then subsided by 6 months (16.3 ± 11.1%); tissue inhibitor matrix metalloproteinase-1 content plateaued at 1 month (39.0 ± 14.3%), then subsided by 9 months (13.0 ± 8.8%). Mean E-PADM thickness (1.7 ± 0.2 mm pre-implant) increased at 3 months (2.9 ± 1.5 mm), then decreased by 9 months (1.9 ± 1.1; equivalent to pre-implant). Histology demonstrated mild inflammation between 1–3 months, then a peak in host tissue deposition, with ≈75%–100% E-PADM collagen turnover, and fibroblast infiltration and neovascularization between 3–6 months. Picrosirius red staining revealed that mature E-PADM collagen was replaced by host-associated neo-collagen by 6 months. E-PADM implantation induced wound healing, which drove dermal E-PADM collagen remodeling to native, functional fascia-like tissue at the implant site. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Figure 1

20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 174
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

28 pages, 3757 KiB  
Article
Growth Hormone Signaling in Bladder Cancer: Transcriptomic Profiling of Patient Samples and In Vitro Evidence of Therapy Resistance via ABC Transporters and EMT Activation
by Emily Davis, Lydia J. Caggiano, Hannah Munholland, Reetobrata Basu, Darlene E. Berryman and John J. Kopchick
Int. J. Mol. Sci. 2025, 26(15), 7113; https://doi.org/10.3390/ijms26157113 - 23 Jul 2025
Viewed by 492
Abstract
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and [...] Read more.
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and disease progression in urothelial carcinoma (UC) through integrated transcriptomic and in vitro analyses. Transcriptomic profiling of The Cancer Genome Atlas bladder cancer cohort revealed that high tumoral GHR expression was associated with differential upregulation of genes involved in drug efflux, epithelial-to-mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. Notably, elevated GHR levels correlated with significantly reduced overall survival in patients with UC. In parallel, in vitro experiments demonstrated that GH promotes chemoresistance in UC cell lines via upregulation of ATP-binding cassette-containing (ABC) transporters and activation of EMT. GH also modulated ECM-remodeling-associated genes in a chemotherapy-dependent manner, including matrix metalloproteinases and tissue inhibitors of metalloproteinases. Importantly, these effects were abrogated by Pegvisomant, a GHR antagonist, indicating the functional relevance of GH/GHR signaling in the mediation of these phenotypes. Collectively, our findings support a mechanistic role for GH signaling in driving therapy resistance and tumor aggressiveness in bladder cancer and suggest GHR antagonism as a potential therapeutic strategy to improve treatment outcomes. Full article
(This article belongs to the Special Issue Urologic Cancers: Molecular Basis for Novel Therapeutic Approaches)
Show Figures

Figure 1

26 pages, 1899 KiB  
Review
Extracellular Matrix (ECM) Aging in the Retina: The Role of Matrix Metalloproteinases (MMPs) in Bruch’s Membrane Pathology and Age-Related Macular Degeneration (AMD)
by Ali A. Hussain and Yunhee Lee
Biomolecules 2025, 15(8), 1059; https://doi.org/10.3390/biom15081059 - 22 Jul 2025
Viewed by 378
Abstract
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted [...] Read more.
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted as pro-forms and require activation to degrade ECM components. Their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Aging disrupts this balance, leading to the accumulation of oxidized, cross-linked, and denatured matrix proteins, thereby impairing ECM function. Bruch’s membrane, a penta-laminated ECM structure in the eye, plays a critical role in supporting photoreceptor and retinal pigment epithelium (RPE) health. Its age-related thickening and decreased permeability are associated with impaired nutrient delivery and waste removal, contributing to the pathogenesis of age-related macular degeneration (AMD). In AMD, MMP dysfunction is characterized by the reduced activation and sequestration of MMPs, which further limits matrix turnover. This narrative review explores the structural and functional changes in Bruch’s membrane with aging, the role of MMPs in ECM degradation, and the relevance of these processes to AMD pathophysiology, highlighting emerging regulatory mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

17 pages, 659 KiB  
Review
Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease
by Yuan Zhou, Huiping Chen, Qinbo Wang, Guozeng Ye, Yingjuan Ou, Lihong Huang, Xia Wu and Jiaxi Fei
Biomedicines 2025, 13(7), 1777; https://doi.org/10.3390/biomedicines13071777 - 21 Jul 2025
Viewed by 435
Abstract
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical [...] Read more.
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical therapeutic void. Emerging evidence highlights the multifactorial nature of stenosis-associated fibrosis, driven by profibrotic mediators and dysregulated crosstalk among immune, epithelial, and mesenchymal cells. Key pathways, including transforming growth factor (TGF-β), drosophila mothers against decapentaplegic protein (Smad) signaling, Wnt/β-catenin activation, epithelial–mesenchymal transition (EMT), and matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP)-mediated ECM remodeling, orchestrate fibrotic progression. Despite the current pharmacological, endoscopic, and surgical interventions for fibrostenotic CD, their palliative nature and inability to reverse fibrosis highlight an unmet need for disease-modifying therapies. This review synthesizes mechanistic insights, critiques therapeutic limitations with original perspectives, and proposes a translational roadmap prioritizing biomarker-driven stratification, combinatorial biologics, and mechanistically targeted antifibrotics. Full article
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 432
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

14 pages, 2893 KiB  
Article
Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes
by Dolaji Henin, Elena Canciani, Daniela Carmagnola, Stefano Ferrero, Gaia Pellegrini, Mariachiara Perrotta, Riccardo Sirello, Claudia Dellavia and Nicoletta Gagliano
Cells 2025, 14(14), 1047; https://doi.org/10.3390/cells14141047 - 9 Jul 2025
Viewed by 405
Abstract
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect [...] Read more.
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect of a gel composed of a mixture of HA and SP on the epithelial and connective compartments of oral tissue separately, evaluating (i) collagen turnover and cell migration on primary human gingival fibroblasts (HGFs) and (ii) epithelial integrity and cell proliferation on gingival organotypic cultures (OCs). Methods: HGFs were cultured, treated with HA-SP gel (1:0.5 HA-SP ratio) and evaluated for collagen types I and III (COL-I, COL-III), matrix metalloproteinase (MMP-1) protein and tissue inhibitor of MMP-1 (TIMP-1) levels secreted by the cells upon gel treatment, compared to CT. HGFs were also analyzed through a wound healing assay. Gingival samples were obtained to set OCs and were treated with different HA-SP formulations (HA 0.2%; 1:0.5 HA-SP ratio; 1:5 HA-SP ratio) to evaluate the beneficial addition of SP to HA for epithelial tissue. OC samples were formalin-fixed and paraffin-embedded and were stained with hematoxylin and eosin and immunostained for Ki-67 analysis. Results: In HGFs, the gel induced increased COL-III gene expression relative to that of COL-I after 48 h and stimulated cell migration, in turn favoring connective tissue remodeling and repair. In OCs, the gel preserved epithelial integrity up to 48 h, with the best effects observed with the 1:0.5 HA-SP ratio. After 72 h, epithelial detachment was more evident in HA formulations, suggesting that SP contributes to epithelial integrity. Conclusions: The HA-SP gel may support oral tissue healing by modulating ECM remodeling and maintaining epithelial integrity. The gel containing HA and SP at the 1:0.5 ratio may provide a promising solution for enhancing wound healing. Full article
Show Figures

Figure 1

19 pages, 937 KiB  
Review
Tissue Repair Mechanisms of Dental Pulp Stem Cells: A Comprehensive Review from Cutaneous Regeneration to Mucosal Healing
by Jihui He, Jiao Fu, Ruoxuan Wang, Xiaojing Liu, Juming Yao, Wenbo Xing, Xinxin Wang and Yan He
Curr. Issues Mol. Biol. 2025, 47(7), 509; https://doi.org/10.3390/cimb47070509 - 2 Jul 2025
Viewed by 674
Abstract
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp [...] Read more.
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp stem cells (DPSCs) and their derivatives, including extracellular vesicles, conditioned medium, and intracellular factors, in accelerating skin wound healing. The key mechanisms include: (1) DPSCs regulating inflammatory microenvironments by promoting anti-inflammatory M2 macrophage polarization; (2) DPSCs activating vascular endothelial growth factor (VEGF) to drive angiogenesis; (3) DPSCs optimizing extracellular matrix (ECM) spatial structure through matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP) balance; and (4) DPSCs enhancing transforming growth factor-β (TGF-β) secretion to accelerate granulation tissue formation. Collectively, these processes promote wound healing. In addition, we explored potential factors that accelerate wound healing in DPSCs, such as oxidative stress, mechanical stimulation, hypertension, electrical stimulation, and organoid modeling. In addition to demonstrating the great potential of DPSCs for skin repair, this review explores their translational prospects in mucosal regenerative medicine. It covers the oral cavity, esophagus, colon, and fallopian tube. Some studies have found that combining DPSCs and their derivatives with drugs can significantly enhance their biological effects. By integrating insights from skin and mucosal models, this review offers novel ideas and strategies for treating chronic wounds, inflammatory bowel disease, and mucosal injuries. It also lays the foundation for connecting basic research results with clinical practice. This represents a significant step forward in tackling these complex medical challenges and lays a solid scientific foundation for developing more targeted and efficient regenerative therapies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

30 pages, 1700 KiB  
Review
The Inflammatory Nexus: Unraveling Shared Pathways and Promising Treatments in Alzheimer’s Disease and Schizophrenia
by Aurelio Pio Russo, Ylenia Pastorello, Lóránd Dénes, Klara Brînzaniuc, Jerzy Krupinski and Mark Slevin
Int. J. Mol. Sci. 2025, 26(13), 6237; https://doi.org/10.3390/ijms26136237 - 27 Jun 2025
Viewed by 647
Abstract
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, [...] Read more.
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, blood–brain barrier (BBB) disruption, and cognitive impairment. We examine key signaling pathways, particularly spleen tyrosine kinase (SYK), the mechanistic (or mammalian) target of rapamycin (mTOR), and the S100 calcium-binding protein B (S100B)/receptor for advanced glycation end-products (RAGE) axis, that link glial activation, excitatory/inhibitory neurotransmitter imbalances, and impaired proteostasis across both disorders. Specific biomarkers such as S100B, matrix metalloproteinase 9 (MMP9), and soluble RAGE show promise for stratifying disease subtypes and predicting treatment response. Moreover, psychiatric symptoms frequently precede cognitive decline in both AD and schizophrenia, suggesting that mood and behavioral disturbances may serve as early diagnostic indicators. The roles of autophagic failure, cellular senescence, and impaired glymphatic clearance are also explored as contributors to chronic inflammation and neurodegeneration. Current treatments, including cholinesterase inhibitors and antipsychotics, primarily offer symptomatic relief, while emerging therapeutic approaches target upstream molecular drivers, such as mTOR inhibition and RAGE antagonism. Finally, we discuss the future potential of personalized medicine guided by genetic, neuroimaging, and biomarker profiles to optimize diagnosis and treatment strategies in both AD and schizophrenia. A greater understanding of the pathophysiological convergence between these disorders may pave the way for cross-diagnostic interventions and improved clinical outcomes. Full article
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Inhibition of Matrix Metalloproteinase-7 Attenuates Subpleural Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease
by Li Xiong, Li-Mei Liang, Shu-Yi Ye, Xiao-Lin Cui, Shi-He Hu, Chen-Yue Lian, Wen-Jia Sun, Yang-Ping Lv, He-De Zhang, Meng Wang, Fei Xiang, Liang Xiong, Hong Ye, Wan-Li Ma and Lin-Jie Song
Biomedicines 2025, 13(7), 1581; https://doi.org/10.3390/biomedicines13071581 - 27 Jun 2025
Viewed by 642
Abstract
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD [...] Read more.
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD patients, a bioinformatics analysis was performed. A protein–protein interaction (PPI) network focusing on MMP-7 was simulated. Pleural mesothelial cells (PMCs) were treated with RA-ILD patients’ serum or RA-ILD-related inflammatory factors, and the protein expressions of collagen-I and MMP-7 were examined. An arthritis model was established using complete Freund’s adjuvant (CFA). Changes in the weight and joints of mice were recorded, and lung tissues were evaluated by Masson staining and Sirius red stain techniques. MMP-7 inhibitor, MMP-7 siRNA and MMP shRNA lentivirus were used to inhibit MMP-7 and investigate changes in collagen-I and fibrosis in vivo and in vitro. Results: MMP-7 was found to be significantly expressed in RA-ILD lung tissue by bioinformatics analysis, and MMP-7 to maybe interact with collagen-I. In vitro experiments indicated cytokines IL-1β, IL-6 and TNF-α promoted MMP-7 and collagen-I expression in PMCs. Serum obtained from patients with RA-ILD also upregulated MMP-7 and collagen-I expression in PMCs. Inhibition of MMP-7 with MMP-7 siRNA or MMP inhibitor prevented collagen-I synthesis in PMCs. In vivo, CFA induced arthritis and subpleural lung inflammation in rats, but the MMP-7 inhibitor and MMP-7 siRNA attenuated CFA-induced lung inflammation and subpleural lung fibrosis. Conclusions: MMP-7 mediated subpleural lung inflammation as well as fibrosis in RA-ILD. It provided theoretical and experimental support for MMP-7 being a therapeutic target in RA-ILD. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

15 pages, 1059 KiB  
Article
Kidney Transplant Recipients with Acute Antibody-Mediated Rejection Show Altered Levels of Matrix Metalloproteinases and Their Inhibitors: Evaluation of Circulating MMP and TIMP Profiles
by Miguel A. Vázquez-Toledo, Fausto Sánchez-Muñoz, Iván Zepeda-Quiroz, Carlos A. Guzmán-Martín, Horacio Osorio-Alonso, Juárez-Villa Daniel, Ma. Virgilia Soto-Abraham, Bernardo Moguel-González, Rommel Chacón-Salinas, César Flores-Gama and Rashidi Springall
Int. J. Mol. Sci. 2025, 26(13), 6011; https://doi.org/10.3390/ijms26136011 - 23 Jun 2025
Viewed by 716
Abstract
Antibody-mediated rejection (ABMR) remains a major cause of renal graft dysfunction and loss. The histological hallmark of antibody-mediated rejection is progressive tissue damage, in which extracellular matrix turnover plays an important role. This turnover is mainly regulated by matrix metalloproteinases (MMPs) and tissue [...] Read more.
Antibody-mediated rejection (ABMR) remains a major cause of renal graft dysfunction and loss. The histological hallmark of antibody-mediated rejection is progressive tissue damage, in which extracellular matrix turnover plays an important role. This turnover is mainly regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Recent studies suggest that MMP/TIMP imbalance may favor the progression of renal damage, inflammation, and fibrosis, but the utility of these molecules as a biomarker of antibody-mediated turnover has not been fully explored. We measured plasma MMP and TIMP levels by ELISA in 15 patients with antibody-mediated renal transplant rejection and 12 patients without rejection. There was a significant increase in MMP-1, MMP-2, and MMP-3 concentrations in the plasma of patients with rejection, directly correlating with the severity of different renal lesions. In contrast, TIMP-3 levels were elevated in patients without rejection, showing a negative correlation with the severity of histopathological lesions. The concentrations of these molecules demonstrated good diagnostic capacity for patients with rejection. Our results show that MMP-1, MMP-2, MMP-3, and TIMP-3 could be potential biomarkers of rejection. Full article
(This article belongs to the Special Issue Advances in Kidney Transplantation)
Show Figures

Figure 1

18 pages, 5903 KiB  
Article
Oxidative Stress Mediates the Dual Regulatory Effects of Bovine Uterine ECM Remodeling Through the TGF-β1/Smad3 Pathway: Molecular Mechanisms of MMPs and COL-IV Imbalances
by Jiamei Tan, Zongjie Wang, Mingmao Yang, Ruihang Zhang, Zhongqiang Xue, Dong Zhou, Aihua Wang, Pengfei Lin and Yaping Jin
Animals 2025, 15(13), 1847; https://doi.org/10.3390/ani15131847 - 23 Jun 2025
Viewed by 546
Abstract
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative [...] Read more.
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative stress may contribute to the pathological progression of endometritis by regulating ECM remodeling, but the specific molecular mechanisms remain unclear. ECM homeostasis relies on the coordinated action of matrix metalloproteinases (e.g., MMP2, MMP9) and collagen (e.g., type IV collagen, COL-IV), while the TGFβ1/Smad3 signaling pathway is implicated in ECM metabolic regulation. Therefore, elucidating the regulatory mechanisms of oxidative-stress-mediated TGFβ1/Smad3 signaling on ECM remodeling is crucial for understanding the pathogenesis of endometritis. This study investigates postpartum bovine uterine tissues, comparing inflammatory cytokines (IL-1β, IL-6, TNF-α) and oxidative-stress-related factors (GPx, SOD, CAT) between healthy and endometritis groups. Additionally, the differences in ECM-remodeling-associated proteins (MMP2, MMP9, COL-IV) and TGFβ1/Smad3 pathway activity are analyzed. To further validate the mechanisms, an oxidative stress model is established in vitro by treating bovine endometrial epithelial cells (bEECs) with 200 μM H2O2 for 4 h, followed by the valuation of the same indicators. Furthermore, gene silencing to downregulate Smad3 expression or inhibitor-mediated suppression of TGFβ1/Smad3 pathway activity is performed to observe their regulatory effects on MMP2, MMP9, and COL-IV. The results demonstrate that oxidative-stress-mediated endometritis significantly upregulates MMP2, MMP9, and the TGFβ1/Smad3 pathway activity, while suppressing COL-IV expression. Functional genetic experiments further reveal the dual regulatory role of the TGFβ1/Smad3 pathway in ECM remodeling: (1) pathway activation promotes MMP2/MMP9 expression, accelerating COL-IV degradation; (2) Smad3 positively regulates COL-IV synthesis. These findings provide a theoretical basis for targeting the TGFβ1/Smad3 pathway to mitigate the pathological progression of endometritis. Full article
(This article belongs to the Special Issue Physiology and Pathology of Bovine Reproduction)
Show Figures

Figure 1

31 pages, 1741 KiB  
Review
Spotlight on Proteases: Roles in Ovarian Health and Disease
by Bhawna Kushawaha and Emanuele Pelosi
Cells 2025, 14(12), 921; https://doi.org/10.3390/cells14120921 - 18 Jun 2025
Viewed by 629
Abstract
Proteases play crucial roles in ovarian folliculogenesis, regulating several processes from primordial follicle activation to ovulation and corpus luteum formation. This review synthesizes the current knowledge on the diverse functions of proteases in ovarian physiology and pathology. We discuss the classification and regulation [...] Read more.
Proteases play crucial roles in ovarian folliculogenesis, regulating several processes from primordial follicle activation to ovulation and corpus luteum formation. This review synthesizes the current knowledge on the diverse functions of proteases in ovarian physiology and pathology. We discuss the classification and regulation of proteases, highlighting their importance in extracellular matrix remodeling, cell signaling, and apoptosis during ovarian follicular development. We explore the roles of several proteases including matrix metalloproteinases, tissue inhibitors of metalloproteinases, the plasminogen activator system, and cathepsins, and their roles in the critical functions of ovarian biology including follicle dynamics and senescence. Furthermore, we address the involvement of proteases in ovarian pathologies, including cancer, polycystic ovary syndrome, and primary ovarian insufficiency. By integrating recent findings from clinical genomics and animal models, this review provides a comprehensive overview of protease functions in the ovary, emphasizing their potential use for therapeutic interventions in reproductive medicine. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Gynecological Disorders)
Show Figures

Figure 1

Back to TopTop