Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
- -
- No preventive radiotherapy or chemotherapy having been undergone;
- -
- No smoking;
- -
- No systemic disease;
- -
- An age of 18–65 years.
2.2. Primary Gingival Fibroblast Cell Cultures
2.3. Organotypic Cultures
- Group A: HA (0.2%);
- Group B: 1 HA (0.2%):0.5 SP (0.1%);
- Group C: 1 HA (0.2%):5 SP (1%).
2.4. Slot Blot
2.5. Wound Healing Assay
2.6. Histological Analysis and Immunohistochemistry
2.7. Statistical Analysis
3. Results
3.1. In Vitro Analysis: Gingival Connective Tissue Extracellular Matrix Remodeling
3.2. In Vitro Analysis: Cell Migration
3.3. Morphological Analysis of Basal Samples and Untreated OCs and Effect of Gel
3.4. Ki-67 Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Şenel, S. An Overview of Physical, Microbiological and Immune Barriers of Oral Mucosa. Int. J. Mol. Sci. 2021, 22, 7821. [Google Scholar] [CrossRef]
- Kuten-Shorrer, M.; Menon, R.S.; Lerman, M.A. Mucocutaneous Diseases. Dent. Clin. N. Am. 2020, 64, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Garantziotis, S.; Savani, R.C. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol. 2019, 78–79, 1–10. [Google Scholar] [CrossRef]
- Pilloni, A.; Marini, L.; Gagliano, N.; Canciani, E.; Dellavia, C.; Cornaghi, L.B.; Costa, E.; Rojas, M.A. Clinical, Histological, Immunohistochemical, and Biomolecular Analysis of Hyaluronic Acid in Early Wound Healing of Human Gingival Tissues: A Randomized, Split-Mouth Trial. J. Periodontol. 2023, 94, 868–881. [Google Scholar] [CrossRef]
- Canciani, E.; Sirello, R.; Pellegrini, G.; Henin, D.; Perrotta, M.; Toma, M.; Khomchyna, N.; Dellavia, C. Effects of Vitamin and Amino Acid-enriched Hyaluronic Acid Gel on the Healing of Oral Mucosa: In Vivo and in Vitro Study. Medicina 2021, 57, 285. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Tracey, K.J. Regulation of Macrophage Activation and Inflammation by Spermine: A New Chapter in an Old Story. Crit. Care Med. 2000, 28, N60–N66. [Google Scholar] [CrossRef]
- Yadav, M.; Parle, M.; Jindal, D.K.; Sharma, N. Potential Effect of Spermidine on GABA, Dopamine, Acetylcholinesterase, Oxidative Stress and Proinflammatory Cytokines to Diminish Ketamine-Induced Psychotic Symptoms in Rats. Biomed. Pharmacother. 2018, 98, 207–213. [Google Scholar] [CrossRef]
- James, C.; Zhao, T.Y.; Rahim, A.; Saxena, P.; Muthalif, N.A.; Uemura, T.; Tsuneyoshi, N.; Ong, S.; Igarashi, K.; Lim, C.Y.; et al. MINDY1 Is a Downstream Target of the Polyamines and Promotes Embryonic Stem Cell Self-Renewal. Stem Cells 2018, 36, 1170–1178. [Google Scholar] [CrossRef]
- Minois, N. Molecular Basis of the “anti-Aging” Effect of Spermidine and Other Natural Polyamines—A Mini-Review. Gerontology 2014, 60, 319–326. [Google Scholar] [CrossRef]
- Minguzzi, M.; Guidotti, S.; Platano, D.; D’Adamo, S.; Cetrullo, S.; Assirelli, E.; Santi, S.; Mariani, E.; Trisolino, G.; Filardo, G.; et al. Polyamine Supplementation Reduces DNA Damage in Adipose Stem Cells Cultured in 3-D. Sci. Rep. 2019, 9, 14269. [Google Scholar] [CrossRef]
- Carmagnola, D.; Ghisalberti, C.A.; Pellegrini, G.; Cinquanta, L.; Toma, M.; Dellavia, C. Spermidine Associated to Non-Surgical Treatment of Periodontal Disease: Split Mouth Randomized Controlled Clinical Trial. CPQ Dent. 2019, 1. [Google Scholar]
- Murina, F.; Ghisalberti, C.; Murina, F.; Ghisalberti, C. Clinical Significance of Topical Spermidine Hyaluronate in Vestibulodynia: An Early Appraisal. Open J. Obstet. Gynecol. 2023, 13, 1974–1984. [Google Scholar] [CrossRef]
- Murina, F.; Graziottin, A.; Toni, N.; Schettino, M.T.; Bello, L.; Marchi, A.; Del Bravo, B.; Gambini, D.; Tiranini, L.; Nappi, R.E. Clinical Evidence Regarding Spermidine-Hyaluronate Gel as a Novel Therapeutic Strategy in Vestibulodynia Management. Pharmaceutics 2024, 16, 1448. [Google Scholar] [CrossRef]
- Iorio-Siciliano, V.; Marasca, D.; Mauriello, L.; Vaia, E.; Stratul, S.I.; Ramaglia, L. Treatment of peri-implant mucositis using spermidine and calcium chloride as local adjunctive delivery to non-surgical mechanical debridement: A double-blind randomized controlled clinical trial. Clin. Oral Investig. 2024, 28, 537. [Google Scholar] [CrossRef]
- Vaira, V.; Fedele, G.; Pyne, S.; Fasoli, E.; Zadra, G.; Bailey, D.; Snyder, E.; Faversani, A.; Coggi, G.; Flavin, R.; et al. Preclinical Model of Organotypic Culture for Pharmacodynamic Profiling of Human Tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 8352–8356. [Google Scholar] [CrossRef]
- Randelli, F.; Menon, A.; Via, A.G.; Mazzoleni, M.; Sciancalepore, F.; Brioschi, M.; Gagliano, N. Effect of a Collagen-Based Compound on Morpho-Functional Properties of Cultured Human Tenocytes. Cells 2018, 7, 246. [Google Scholar] [CrossRef]
- Liang, C.C.; Park, A.Y.; Guan, J.L. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Del Gobbo, A.; Pellegrinelli, A.; Gaudioso, G.; Castellani, M.; Zito Marino, F.; Franco, R.; Palleschi, A.; Nosotti, M.; Bosari, S.; Vaira, V.; et al. Analysis of NSCLC Tumour Heterogeneity, Proliferative and 18F-FDG PET Indices Reveals Ki67 Prognostic Role in Adenocarcinomas. Histopathology 2016, 68, 746–751. [Google Scholar] [CrossRef]
- ISO-10993-6:2016; Biological Evaluation of Medical Device. Part 6: Tests for Local Effects After Implantation. International Organization for Standardization: Geneva, Switzerland, 2007.
- Henin, D.; Fiorin, L.G.; Carmagnola, D.; Pellegrini, G.; Toma, M.; Cristofalo, A.; Dellavia, C. Quantitative Evaluation of Inflammatory Markers in Peri-Implantitis and Periodontitis Tissues: Digital vs. Manual Analysis—A Proof of Concept Study. Medicina 2022, 58, 867. [Google Scholar] [CrossRef]
- Habanjar, O.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int. J. Mol. Sci. 2021, 22, 12200. [Google Scholar] [CrossRef]
- Wolff, E.; Haffen, K. Sur une méthode de culture d’organes embryonnaires in vitro. Tex. Rep. Biol. Med. 1952, 10, 463–472. [Google Scholar] [PubMed]
- Sigot-Luizard, M.F.; Lanfranchi, M.; Duval, J.L.; Benslimane, S.; Sigot, M.; Guidoin, R.G.; King, M.W. The Cytocompatibility of Compound Polyester-Protein Surfaces Using an in Vitro Technique. Vitr. Cell. Dev. Biol. 1986, 22, 234–240. [Google Scholar] [CrossRef]
- Brunot-Gohin, C.; Duval, J.L.; Azogui, E.E.; Jannetta, R.; Pezron, I.; Laurent-Maquin, D.; Gangloff, S.C.; Egles, C. Soft Tissue Adhesion of Polished versus Glazed Lithium Disilicate Ceramic for Dental Applications. Dent. Mater. 2013, 29, e205–e212. [Google Scholar] [CrossRef] [PubMed]
- Demangel, C.; Auzène, D.; Vayssade, M.; Duval, J.L.; Vigneron, P.; Nagel, M.D.; Puippe, J.C. Cytocompatibility of Titanium Metal Injection Molding with Various Anodic Oxidation Post-Treatments. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1919–1925. [Google Scholar] [CrossRef]
- Duval, J.; Warocquier-Clerout, R.; Sigot-Luizard, M. Comparative Assessment of the Cytotoxicity of Various Substrates in Organ Culture and Cell Culture: A Scanning Electron Microscopy Study. Cells Mater. 1992, 2, 1. [Google Scholar]
- Duval, J.L.; Letort, M.; Sigot-Luizard, M.F. Comparative Assessment of Cell/Substratum Static Adhesion Using an in Vitro Organ Culture Method and Computerized Analysis System. Biomaterials 1988, 9, 155–161. [Google Scholar] [CrossRef]
- Duval, J.L.; Dinis, T.; Vidal, G.; Vigneron, P.; Kaplan, D.L.; Egles, C. Organotypic Culture to Assess Cell Adhesion, Growth and Alignment of Different Organs on Silk Fibroin. J. Tissue Eng. Regen. Med. 2017, 11, 354–361. [Google Scholar] [CrossRef]
- Bierbaumer, L.; Schwarze, U.Y.; Gruber, R.; Neuhaus, W. Cell Culture Models of Oral Mucosal Barriers: A Review with a Focus on Applications, Culture Conditions and Barrier Properties. Tissue Barriers 2018, 6, 1479568. [Google Scholar] [CrossRef]
- Donetti, E.; Bedoni, M.; Boschini, E.; Dellavia, C.; Barajon, I.; Gagliano, N. Desmocollin 1 and Desmoglein 1 Expression in Human Epidermis and Keratinizing Oral Mucosa: A Comparative Immunohistochemical and Molecular Study. Arch. Dermatol. Res. 2005, 297, 31–38. [Google Scholar] [CrossRef]
- Ferrari, E.; Palma, C.; Vesentini, S.; Occhetta, P.; Rasponi, M. Integrating Biosensors in Organs-on-Chip Devices: A Perspective on Current Strategies to Monitor Microphysiological Systems. Biosensors 2020, 10, 110. [Google Scholar] [CrossRef]
- Chavrier, C.; Couble, M.L.; Magloire, H.; Grimaud, J.A. Connective Tissue Organization of Healthy Human Gingiva. Ultrastructural Localization of Collagen Types I-III-IV. J. Periodontal Res. 1984, 19, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Gogly, B.; Godeau, G.; Gilbert, S.; Legrand, J.M.; Kut, C.; Pellat, B.; Goldberg, M. Morphometric Analysis of Collagen and Elastic Fibers in Normal Skin and Gingiva in Relation to Age. Clin. Oral. Investig. 1997, 1, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rai, V.; Agrawal, D.K. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Gross, J. Some Properties of the Products of Reaction of Tadpole Collagenase with Collagen. Biochemistry 1967, 6, 518–528. [Google Scholar] [CrossRef]
- Woessner, J.F. Matrix Metalloproteinases and Their Inhibitors in Connective Tissue Remodeling. FASEB J. 1991, 5, 2145–2154. [Google Scholar] [CrossRef]
- Brew, K.; Dinakarpandian, D.; Nagase, H. Tissue Inhibitors of Metalloproteinases: Evolution, Structure and Function. Biochim. Biophys. Acta 2000, 1477, 267–283. [Google Scholar] [CrossRef]
- Francetti, L.; Dellavia, C.; Corbella, S.; Cavalli, N.; Moscheni, C.; Canciani, E.; Gagliano, N. Morphological and Molecular Characterization of Human Gingival Tissue Overlying Multiple Oral Exostoses. Case Rep. Dent. 2019, 2019, 3231759. [Google Scholar] [CrossRef]
- Gagliano, N.; Moscheni, C.; Dellavia, C.; Torri, C.; Stabellini, G.; Ferrario, V.F.; Gioia, M. Effect of Cyclosporin A on Human Gingival Fibroblast Collagen Turnover in Relation to the Development of Gingival Overgrowth: An in Vitro Study. Biomed. Pharmacother. 2004, 58, 231–238. [Google Scholar] [CrossRef]
- Gagliano, N.; Moscheni, C.; Dellavia, C.; Masiero, S.; Torri, C.; Grizzi, F.; Stabellini, G.; Gioia, M. Morphological and Molecular Analysis of Idiopathic Gingival Fibromatosis: A Case Report. J. Clin. Periodontol. 2005, 32, 1116–1121. [Google Scholar] [CrossRef]
- Gagliano, N.; Costa, F.; Tartaglia, G.M.; Pettinari, L.; Grizzi, F.; Sforza, C.; Portinaro, N.; Gioia, M.; Annoni, G. Effects of Aging and Cyclosporin a on Collagen Turnover in Human Gingiva. Open Dent. J. 2009, 3, 219–226. [Google Scholar] [CrossRef]
- Murphy, G.; Willenbrock, F.; Crabbe, T.; O’Shea, M.; Ward, R.; Atkinson, S.; O’connell, J.; Docherty, A. Regulation of Matrix Metalloproteinase Activity. Ann. N. Y. Acad. Sci. 1994, 732, 31–41. [Google Scholar] [CrossRef]
- Häkkinen, L.; Uitto, V.J.; Larjava, H. Cell Biology of Gingival Wound Healing. Periodontol. 2000 2000, 24, 127–152. [Google Scholar] [CrossRef] [PubMed]
- al-Khateeb, T.; Stephens, P.; Shepherd, J.P.; Thomas, D.W. An Investigation of Preferential Fibroblast Wound Repopulation Using a Novel in Vitro Wound Model. J. Periodontol. 1997, 68, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Robert, L. Hyaluronan, a Truly “Youthful” Polysaccharide. Its Medical Applications. Pathol. Biol. 2015, 63, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Eliezer, M.; Sculean, A.; Miron, R.J.; Nemcovsky, C.; Weinberg, E.; Weinreb, M.; Zoabi, H.; Bosshardt, D.D.; Fujioka-Kobayashi, M.; Moses, O. Hyaluronic Acid Slows down Collagen Membrane Degradation in Uncontrolled Diabetic Rats. J. Periodontal. Res. 2019, 54, 644–652. [Google Scholar] [CrossRef]
- Bertl, K.; Bruckmann, C.; Isberg, P.E.; Klinge, B.; Gotfredsen, K.; Stavropoulos, A. Hyaluronan in Non-Surgical and Surgical Periodontal Therapy: A Systematic Review. J. Clin. Periodontol. 2015, 42, 236–246. [Google Scholar] [CrossRef]
- HEBY, O. Role of Polyamines in the Control of Cell Proliferation and Differentiation. Differentiation 1981, 19, 1–20. [Google Scholar] [CrossRef]
- Bartsch, S.; Kohnert, E.; Kreutz, C.; Woelber, J.P.; Anderson, A.; Burkhardt, A.S.; Hellwig, E.; Buchalla, W.; Hiller, K.A.; Ratka-Krueger, P.; et al. Chlorhexidine digluconate mouthwash alters the oral microbial composition and affects the prevalence of antimicrobial resistance genes. Front. Microbiol. 2024, 15, 1429692. [Google Scholar] [CrossRef]
- Pilloni, A.; Ceccarelli, S.; Bosco, D.; Gerini, G.; Marchese, C.; Marini, L.; Rojas, M.A. Effect of Chlorhexidine Digluconate in Early Wound Healing of Human Gingival Tissues. A Histological, Immunohistochemical and Biomolecular Analysis. Antibiotics 2021, 10, 1192. [Google Scholar] [CrossRef]
Gel Components | Concentration in the Gel | Concentration in the Medium |
---|---|---|
Sodium hyaluronate | 2% | 0.2% |
Spermidine HCl | 1% | 0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henin, D.; Canciani, E.; Carmagnola, D.; Ferrero, S.; Pellegrini, G.; Perrotta, M.; Sirello, R.; Dellavia, C.; Gagliano, N. Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes. Cells 2025, 14, 1047. https://doi.org/10.3390/cells14141047
Henin D, Canciani E, Carmagnola D, Ferrero S, Pellegrini G, Perrotta M, Sirello R, Dellavia C, Gagliano N. Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes. Cells. 2025; 14(14):1047. https://doi.org/10.3390/cells14141047
Chicago/Turabian StyleHenin, Dolaji, Elena Canciani, Daniela Carmagnola, Stefano Ferrero, Gaia Pellegrini, Mariachiara Perrotta, Riccardo Sirello, Claudia Dellavia, and Nicoletta Gagliano. 2025. "Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes" Cells 14, no. 14: 1047. https://doi.org/10.3390/cells14141047
APA StyleHenin, D., Canciani, E., Carmagnola, D., Ferrero, S., Pellegrini, G., Perrotta, M., Sirello, R., Dellavia, C., & Gagliano, N. (2025). Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes. Cells, 14(14), 1047. https://doi.org/10.3390/cells14141047