Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,374)

Search Parameters:
Keywords = marine cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2407 KB  
Article
Microbial Community Characterization of Nine Korean Sponge Species from Gageodo Island
by Minjee Kim, Myoung-Sook Shin, Sung Jin Kim, Subin Park, Inho Yang, Young A Kim and Hiyoung Kim
Diversity 2026, 18(1), 42; https://doi.org/10.3390/d18010042 (registering DOI) - 14 Jan 2026
Abstract
Marine sponges are known to be associated with diverse and functionally specialized microbial consortia that are implicated in host metabolism, biogeochemical cycling, and bioactive compounds production. The microbiome diversity and composition of nine sponge species from the remote waters of Gageodo Island, Korea, [...] Read more.
Marine sponges are known to be associated with diverse and functionally specialized microbial consortia that are implicated in host metabolism, biogeochemical cycling, and bioactive compounds production. The microbiome diversity and composition of nine sponge species from the remote waters of Gageodo Island, Korea, were evaluated via full-length 16S rRNA sequencing and bioinformatic analyses. Each sponge species harbored a distinct microbial community, with differences potentially influenced by ecological factors, evolutionary history, and host–symbiont associations. The dominant microbial phyla identified across the sponge samples include Pseudomonadota, Cyanobacteriota, Acidobacteriota, Planctomycetota, and Chloroflexota, which were widely distributed across samples. In addition, the classes Gammaproteobacteria, Acidobacteriae, and Anaerolineae appeared as characteristic groups, being particularly abundant in specific sponge samples. Community structures ranged from dominance by one or two abundant taxa to more taxonomically diverse and evenly distributed microbiomes. A notable proportion of sequences were unassignable to known taxa, suggesting the occurrence of previously uncharacterized microbial lineages in these sponges. By combining host species identification with microbiome profiling, this study provides new foundations on the microbial ecology of Korean sponge holobionts, providing higher-resolution taxonomic classification, improved diversity estimates, and enhanced characterization of evolutionary relationships among symbionts. These findings may support future investigations into host–microbe interactions, potential ecological functions, and the management of marine genetic resources. Full article
(This article belongs to the Special Issue Dynamics of Marine Communities—Second Edition)
Show Figures

Figure 1

25 pages, 1768 KB  
Review
A Review of Phytoplankton Sinking Rates: Mechanisms, Methodologies, and Biogeochemical Implications
by Jie Zhu, Jiahong Cheng, Jiangning Zeng, Wei Zhang, Chenggang Liu, Kokoette Sunday Effiong and Qiang Hao
Biology 2026, 15(2), 130; https://doi.org/10.3390/biology15020130 - 12 Jan 2026
Viewed by 67
Abstract
Phytoplankton sinking is a pivotal process within the biological carbon pump that drives the vertical transport of organic carbon in the ocean. Its rates and underlying mechanisms directly influence the efficiency of the global carbon cycle and the potential for long-term sequestration. This [...] Read more.
Phytoplankton sinking is a pivotal process within the biological carbon pump that drives the vertical transport of organic carbon in the ocean. Its rates and underlying mechanisms directly influence the efficiency of the global carbon cycle and the potential for long-term sequestration. This review synthesizes current knowledge of phytoplankton sinking, encompassing buoyancy regulation mechanisms, environmental and physiological controls, methodological approaches such as settling column (SETCOL), and comparative evidence from laboratory and field studies. The aim is to elucidate the regulatory processes governing sinking and to provide a foundation for improving ecological models and refining estimates of carbon export. Evidence demonstrates that sinking rates vary considerably among phytoplankton groups, with nutrient limitation and aggregation emerging as critical modulators of export efficiency. By integrating results from experimental and in situ research, this review identifies unresolved questions and highlights priority areas: (1) quantitative coupling between aggregation and carbon flux; (2) mechanistic understanding of group-specific sinking responses; (3) integration of novel technologies, including in situ imaging and high-resolution modeling with established methods; and (4) development of interdisciplinary frameworks. Overall, this review consolidates current knowledge and underscores phytoplankton sinking as a crucial yet insufficiently resolved process within the marine carbon cycle. Full article
(This article belongs to the Special Issue Algal Stress Responses: Molecular and Ecological Perspectives)
Show Figures

Figure 1

17 pages, 857 KB  
Article
Life Cycle Assessment of Laboratory Analytical Workflows for Microplastics Quantification in Environmental Matrices: Sargassum and Seagrass Approach
by Ramón Fernando Colmenares-Quintero, Laura Stefania Corredor-Muñoz, Juan Carlos Colmenares-Quintero and Sara Piedrahita-Rodriguez
Processes 2026, 14(2), 258; https://doi.org/10.3390/pr14020258 - 12 Jan 2026
Viewed by 37
Abstract
Microplastic quantification in marine vegetated ecosystems remains analytically demanding, yet little is known about the environmental footprint of the laboratory procedures required to isolate and measure these particles. This study applies Life Cycle Assessment (LCA) to laboratory analytical workflows for microplastics quantification, focusing [...] Read more.
Microplastic quantification in marine vegetated ecosystems remains analytically demanding, yet little is known about the environmental footprint of the laboratory procedures required to isolate and measure these particles. This study applies Life Cycle Assessment (LCA) to laboratory analytical workflows for microplastics quantification, focusing exclusively on sample preparation and analytical procedures rather than natural environmental absorption or fate processes, in two ecologically relevant matrices: (i) pelagic algae (Sargassum) and (ii) seagrass biomass. Using the openLCA 2.5 and the ReCiPe Midpoint (H) v1.13 methods, the analysis integrates foreground inventories of digestion, filtration, drying, and spectroscopic identification, combined with background datasets from OzLCI2019, ELCD 3.2 and USDA. Results show substantially higher impacts for the algae scenario, particularly for climate change, human toxicity, ionising radiation and particulate matter formation, largely driven by longer digestion times, increased reagent use and higher energy demand during sample pre-treatment. Conversely, the seagrass scenario exhibited lower burdens per functional unit due to reduced organic complexity and shorter laboratory processing requirements. These findings highlight the importance of matrix-specific methodological choices and the influence of background datasets on impact profiles. This study provides the first benchmark for the environmental performance of microplastic analytical workflows and underscores the need for harmonised, low-impact laboratory protocols to support sustainable monitoring of microplastic pollution in marine ecosystems. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 8261 KB  
Article
Pathogenic Characterization and Host Immune Response to Vibrio harveyi in Diseased Seriola dumerili
by Rizhao Zhang, Jingbo Hu, Xin Zhao, Kunpeng Lan, Haimin Tan, Yang Huang and Chunhua Zhu
Animals 2026, 16(2), 184; https://doi.org/10.3390/ani16020184 - 8 Jan 2026
Viewed by 166
Abstract
The greater amberjack (Seriola dumerili) is an economically important marine species that is prone to bacterial infections, resulting in high mortality rates and substantial economic losses. In this study, a virulent bacterial strain, Vh-2, was isolated from diseased greater amberjack and [...] Read more.
The greater amberjack (Seriola dumerili) is an economically important marine species that is prone to bacterial infections, resulting in high mortality rates and substantial economic losses. In this study, a virulent bacterial strain, Vh-2, was isolated from diseased greater amberjack and identified as Vibrio harveyi. Experimental infections caused high mortality and severe splenic damage characterized by tissue necrosis, abnormal pigment deposition, cellular disintegration, and extensive immune cell infiltration. A virulence gene analysis revealed that Vh-2 harbored multiple virulence-associated genes such as toxR, toxS, vhpA, vhpB, vhhA, vhhB, luxR, and pap6. Antibiotic susceptibility testing demonstrated ampicillin resistance but sensitivity to ceftriaxone, florfenicol, and meropenem. Transcriptomic profiling of infected spleens identified 396 differentially expressed genes (DEGs) compared to the control group, of which 293 were upregulated and 103 were downregulated. A functional enrichment analysis indicated that these genes were primarily involved in cell cycle regulation, DNA repair, metabolic processes, and immune-related pathways. These findings enhance our understanding of V. harveyi pathogenesis and immune responses of S. dumerili and provide new insights into the prevention and control of V. harveyi infections in marine fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 1494 KB  
Article
Polysaccharide Utilization and Adhesion Enable the Genome-Streamlined Opacimonas immobilis to Adapt to the Diatom Phycosphere
by Xiaoyu Yang, Xuanru Lin, Jianmin Xie, Runlin Cai, Guanjing Cai and Hui Wang
Microorganisms 2026, 14(1), 139; https://doi.org/10.3390/microorganisms14010139 - 8 Jan 2026
Viewed by 168
Abstract
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus [...] Read more.
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus that possesses the smallest genome within the Alteromonadaceae family. However, its adaptation mechanisms to the phycosphere remain unclear, particularly given its extensive genome streamlining, a process involving the selective loss of non-essential and energetically costly genes to enhance fitness in nutrient-specific niches. Here, the co-cultivation experiments demonstrated significant mutual growth promotion between LMIT016T and its host microalgae, with the bacterium forming dense attachments on diatom surfaces. Genomic analysis revealed that in addition to loss of motility-related genes, the strain exhibits a substantial reduction in c-di-GMP signaling components, including both synthases and receptors. Conversely, LMIT016T harbors numerous genes essential for extracellular polysaccharide (EPS) biosynthesis and adhesion, supporting long-term attachment and biofilm formation. Other retained genes encode pathways for nutrient acquisition, stress response, and phosphate and nitrogen metabolism, reflecting its adaptations to the nutrient-rich phycosphere. Furthermore, the genome of LMIT016T encodes two polysaccharide utilization loci (PULs) targeting laminarin and α-1,4-glucans, whose functions were experimentally validated by the transcriptional induction of the corresponding carbohydrate-active enzyme genes. These findings indicate that this strain counterbalances genome reduction by enhancing its attachment capabilities and metabolic specialization on algal polysaccharides, potentially facilitating stable association with diatom cells. Our results suggest that genome streamlining may represent an alternative ecological strategy in the phycosphere, highlighting a potential evolutionary trade-off between metabolic efficiency and niche specialization. Full article
Show Figures

Figure 1

17 pages, 2173 KB  
Article
Surface and Drip Irrigation Method in Maize Cultivation: Comparison of Environmental Performance
by Filippo Vigo, Luca Ferraro and Jacopo Bacenetti
Sustainability 2026, 18(2), 580; https://doi.org/10.3390/su18020580 - 6 Jan 2026
Viewed by 166
Abstract
Maize is a water-intensive crop widely cultivated in temperate regions, where irrigation practices strongly influence its environmental performance. This study applies Life Cycle Assessment (LCA) to compare the environmental impacts of surface and drip irrigation for maize green silage production in the Po [...] Read more.
Maize is a water-intensive crop widely cultivated in temperate regions, where irrigation practices strongly influence its environmental performance. This study applies Life Cycle Assessment (LCA) to compare the environmental impacts of surface and drip irrigation for maize green silage production in the Po Valley (Italy), following ISO 14040/44 standards and adopting a cradle-to-farm-gate perspective. Results show that, compared to drip irrigation, surface irrigation leads to lower impacts in 14 out of 15 categories, with reductions ranging from −0.2% (marine eutrophication) to −61% (human toxicity, non-cancer), particularly for human toxicity and resource use due to lower diesel and infrastructure requirements. Conversely, drip irrigation achieves a 58% reduction in water use thanks to its higher irrigation efficiency. The single-score assessment highlights water use as the key differentiating factor, positioning drip irrigation as preferable under scenarios of water scarcity. Contribution and sensitivity analyses confirm that nitrogen fertiliser use and mechanisation are major hotspots, while yield variation (±30%) significantly affects the magnitude of results. These findings emphasise a clear trade-off: surface irrigation shows a lower environmental burden across most impact categories, whereas drip irrigation strongly reduces water scarcity impacts and provides robust, site-specific evidence to guide sustainable irrigation strategies in intensive maize systems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

34 pages, 4210 KB  
Review
Some Bioactive Natural Products from Diatoms: Structures, Biosyntheses, Biological Roles, and Properties: 2015–2025
by Valentin A. Stonik and Inna V. Stonik
Mar. Drugs 2026, 24(1), 23; https://doi.org/10.3390/md24010023 - 4 Jan 2026
Viewed by 424
Abstract
Recently, as a result of growing interest in diatoms as sources of energy (biofuel) and valuable food components for humans and aquaculture organisms, new data on the structures and properties of diatom natural products have been obtained, including both endo- and exometabolites. Information [...] Read more.
Recently, as a result of growing interest in diatoms as sources of energy (biofuel) and valuable food components for humans and aquaculture organisms, new data on the structures and properties of diatom natural products have been obtained, including both endo- and exometabolites. Information about their biosynthesis, biological activity and roles, and their beneficial and hazardous properties has also emerged. The application of modern methods of molecular biology, metabolomics, and chemical ecology to the study of diatom natural products has improved the understanding of many important natural phenomena associated with diatoms, such as photosynthesis, harmful algal blooms, interactions of diatoms with other organisms of marine biota, and their impact on biogeochemical cycles and climate regulation. In this paper, we discuss various aspects of research on natural compounds from diatoms, covering the last decade, as well as prospects for their further development, which have become apparent in recent years. Full article
(This article belongs to the Special Issue High-Value Algae Products, 2nd Edition)
Show Figures

Figure 1

26 pages, 24920 KB  
Article
An Interpretable Transformer-Based Framework for Monitoring Dissolved Inorganic Nitrogen and Phosphorus in Jiangsu–Zhejiang–Shanghai Offshore
by Yushan Jiang, Zigeng Song, Wang Man, Xianqiang He, Qin Nie, Zongmei Li, Xiaofeng Du and Xinchang Zhang
Remote Sens. 2026, 18(1), 154; https://doi.org/10.3390/rs18010154 - 3 Jan 2026
Viewed by 291
Abstract
Anthropogenic increases in nitrogen and phosphorus inputs have intensified coastal water pollution, leading to economic losses and even threats to human health. Dissolved Inorganic Nitrogen (DIN) and Dissolved Inorganic Phosphorus (DIP), as key indicators of water quality, are essential for formulating environmental protection [...] Read more.
Anthropogenic increases in nitrogen and phosphorus inputs have intensified coastal water pollution, leading to economic losses and even threats to human health. Dissolved Inorganic Nitrogen (DIN) and Dissolved Inorganic Phosphorus (DIP), as key indicators of water quality, are essential for formulating environmental protection strategies. While deep learning has advanced the retrieval of these nutrients in coastal waters, existing models remain constrained by limited accuracy, insufficient interpretability, and poor regional transferability. To address these issues, we developed a Transformer-based model for retrieving DIN and DIP in the Jiangsu-Zhejiang-Shanghai (JZS) Offshore, integrating satellite observations with reanalysis data. Our model outperformed previous studies in this region, achieving high retrieval accuracy for DIN (R2 = 0.88, RMSE = 0.16 mg/L, and MAPE = 33.69%) and DIP (R2 = 0.85, RMSE = 0.007 mg/L, and MAPE = 31.59%) with strong interpretability. Based on this model, we generated a long-term (2005–2024) dataset, revealing clear seasonality and spatial patterns of DIN and DIP. Specifically, the concentrations have a distinct seasonal cycle with winter minima and autumn maxima, as well as estuarine-to-offshore decreasing gradient. Water quality assessment further showed that the areal extent of medium-to-high eutrophic waters increased by 3.94 × 102 km2/yr (2005–2016) but decreased by 4.45 × 102 km2/yr (2016–2024). Overall, the proposed Transformer-based framework provided a robust, accurate, and interpretable tool for nitrogen and phosphorus nutrient retrieval, supporting sustainable management of marine water quality in the JZS coastal ecosystems. Full article
Show Figures

Graphical abstract

17 pages, 3228 KB  
Article
Computational Investigation of Methoxy Radical-Driven Oxidation of Dimethyl Sulfide: A Pathway Linked to Methane Oxidation
by Bruce M. Prince, Daniel Vrinceanu, Mark C. Harvey, Michael P. Jensen, Maria Zawadowicz and Chongai Kuang
Gases 2026, 6(1), 2; https://doi.org/10.3390/gases6010002 - 2 Jan 2026
Viewed by 292
Abstract
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation [...] Read more.
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation of the reaction mechanisms and kinetics of DMS oxidation initiated by CH3O•, using density functional theory B3LYP-D3(BJ)/6-311++G(3df,3pd), CCSD(T)/6-311++G(3df,3pd), and UCBS-QB3 methods. Our calculations show that DMS reacts with CH3O• via hydrogen atom abstraction to form the methyl-thiomethylene radical (CH3SCH2•), with a rate constant of 3.05 × 10−16 cm3/molecule/s and a Gibbs free energy barrier of 14.2 kcal/mol, which is higher than the corresponding barrier for reaction with hydroxyl radicals (9.1 kcal/mol). Although less favorable kinetically, the presence of CH3O• in localized, methane-rich environments may still allow it to contribute meaningfully to DMS oxidation under specific atmospheric conditions. While the short atmospheric lifetime of CH3O• limits its global impact on large-scale atmospheric sulfur cycling, in marine layers where methane and DMS emissions overlap, CH3O• may play a meaningful role in forming sulfur dioxide and downstream sulfate aerosols. These secondary organic aerosols lead to cloud condensation nuclei (CCN) formation, subsequent changes in cloud properties, and can thereby influence local radiative forcing. The study’s findings underscore the importance of incorporating CH3O• driven oxidation pathways into atmospheric models to enhance our understanding of regional sulfur cycling and its impacts on local air quality, cloud properties and radiative forcing. These findings provide mechanistic insights that improve data interpretation for atmospheric models and extend predictions of localized variations in sulfur oxidation, aerosol formation, and radiative forcing in methane-rich environments. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

37 pages, 11112 KB  
Article
Adaptive Dynamic Prediction-Based Cooperative Interception Control Algorithm for Multi-Type Unmanned Surface Vessels
by Yuan Liu, Bowen Tang, Lingyun Lu, Zhiqing Bai, Guoxing Li, Shikun Geng and Xirui Xu
J. Mar. Sci. Eng. 2026, 14(1), 88; https://doi.org/10.3390/jmse14010088 - 2 Jan 2026
Viewed by 315
Abstract
In the dynamic marine environment, the high mobility of intrusion targets, complex interference, and insufficient multi-vessel coordination accuracy pose significant challenges to the cooperative interception mission of multiple unmanned surface vehicles (USVs). This paper proposes an adaptive dynamic prediction-based cooperative interception control algorithm [...] Read more.
In the dynamic marine environment, the high mobility of intrusion targets, complex interference, and insufficient multi-vessel coordination accuracy pose significant challenges to the cooperative interception mission of multiple unmanned surface vehicles (USVs). This paper proposes an adaptive dynamic prediction-based cooperative interception control algorithm and establishes a “mission planning—anti-interference control—phased coordination” system. Specifically, it ensures interception accuracy through threat-level-oriented target assignment and extended Kalman filter multi-step prediction, offsets environmental interference by separating the cooperative encirclement and anti-interference modules using an improved Two-stage architecture, and optimizes the movement of nodes to form a stable blockade through the “target navigation—cooperative encirclement” strategy. Simulation results show that in a 1000 m × 1000 m mission area, the node trajectory deviation is reduced by 40% and the heading angle fluctuation is decreased by 50, compared with the limit cycle encirclement algorithm, the average interception time is shortened by 15% and the average final distance between the intrusion target and the guarded target is increased by 20%, when the target attempts to escape, the relevant collision rates are all below 0.3%. The TFMUSV framework ensures the stable optimization of the algorithm and significantly improves the efficiency and reliability of multi-USV cooperative interception in complex scenarios. This paper provides a highly adaptable technical solution for practical tasks such as maritime security and anti-smuggling. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 3710 KB  
Article
Tracking the Transmission Pathway of Rhadinorhynchus lintoni (Echinorhynchida: Rhadinorhynchidae) in Temperate NE Atlantic
by Andrea Ramilo, Lara García-Alves, Francisco Javier Aznar, Helena Rodríguez, Elvira Abollo and Santiago Pascual
Fishes 2026, 11(1), 14; https://doi.org/10.3390/fishes11010014 - 27 Dec 2025
Viewed by 207
Abstract
Rhadinorhynchus is a parasitic genus within the order Echinorhynchida (family Rhadinorhynchidae), comprising over 50 species found in marine ecosystems. The life cycle of Rhadinorhynchus species generally includes marine fish as definitive hosts and zooplankton as intermediate hosts. During a routine marine parasitological survey [...] Read more.
Rhadinorhynchus is a parasitic genus within the order Echinorhynchida (family Rhadinorhynchidae), comprising over 50 species found in marine ecosystems. The life cycle of Rhadinorhynchus species generally includes marine fish as definitive hosts and zooplankton as intermediate hosts. During a routine marine parasitological survey carried out in temperate waters off the NE Atlantic, we recorded adults (from fish) and cystacanths (from mesozooplankton) of an acanthocephalan morphologically corresponding to the genus Rhadinorhynchus. Species identification as R. lintoni was confirmed based on morphological features. Additionally, new genetic data were added for this species based on several molecular markers, including 18S-ITS1-5.8S-ITS2-28S region of the rRNA gene and cytochrome c oxidase subunit 1 gene. Molecular data also provide evidence of a key trophic transmission involving the primary intermediate host—the euphausiid Nyctiphanes couchii—and higher-level consumers (definitive hosts), including the pelagic fish Sardina pilchardus, Scomber scombrus, and Trachurus trachurus. Genetic matching of different life cycle stages of R. lintoni across these host–parasite assemblages underscores the complexity of transmission dynamics within this ecoregion. These findings are discussed in relation to the growing interest of integrating genetic profiles of host–parasite assemblages to understand the life-cycle of marine parasites, especially for those having seafood security and safety concerns. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Figure 1

22 pages, 4047 KB  
Article
Spatiotemporal Dynamics and Budget of Particulate Organic Carbon in China’s Marginal Seas Based on MODIS-Aqua
by Xudong Cui, Guijun Han, Wei Li, Xuan Wang, Haowen Wu, Lige Cao, Gongfu Zhou, Qingyu Zheng, Yang Zhang and Qiang Luo
Remote Sens. 2026, 18(1), 92; https://doi.org/10.3390/rs18010092 - 26 Dec 2025
Viewed by 333
Abstract
Using MODIS-Aqua satellite observations, this study analyzes the spatiotemporal distribution characteristics of particulate organic carbon (POC) in China’s marginal seas from 2003 to 2024. The statistical relationships between various marine environmental variables, including sea surface temperature (SST), nutrients, and primary production (PP), and [...] Read more.
Using MODIS-Aqua satellite observations, this study analyzes the spatiotemporal distribution characteristics of particulate organic carbon (POC) in China’s marginal seas from 2003 to 2024. The statistical relationships between various marine environmental variables, including sea surface temperature (SST), nutrients, and primary production (PP), and POC concentrations are explored using partial least squares path modeling (PLS-PM). Finally, a box model approach is conducted to assess the POC budget in the study area. The results indicate that the POC concentration in the marginal seas of China generally exhibits a characteristic of being high in spring and low in summer. The highest concentration of POC is observed in the Bohai Sea, followed by the Yellow Sea, and the lowest in the East China Sea, with coastal waters exhibiting higher POC concentrations compared to the central areas. The spatial distribution and seasonal changes in POC are jointly influenced by PP, water mass exchange, resuspended sediments, and terrestrial inputs. Large-scale climate modes show statistical associations with POC concentration in the open waters of China’s marginal seas. PP and respiratory consumption are identified as the predominant input and output fluxes, respectively, in China’s marginal seas. This study enriches the understanding of carbon cycling processes and carbon sink mechanisms in marginal seas. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Water and Carbon Cycles)
Show Figures

Figure 1

24 pages, 2941 KB  
Article
Life Cycle Assessment of a Wave Cycloidal Rotor: Environmental Performance and Improvement Pathways
by Paula Bastos, Abel Arredondo-Galeana, Fiona Devoy-McAuliffe, Julia Fernandez Chozas, Paul Lamont-Kane and Pedro A. Vinagre
J. Mar. Sci. Eng. 2026, 14(1), 41; https://doi.org/10.3390/jmse14010041 - 25 Dec 2025
Viewed by 318
Abstract
Wave energy technology needs to be reliable, efficient, and environmentally sustainable. Therefore, life cycle assessment (LCA) is a critical tool in the design of marine renewable energy devices. However, LCA studies of floating type wave cycloidal rotors remain limited. This study builds on [...] Read more.
Wave energy technology needs to be reliable, efficient, and environmentally sustainable. Therefore, life cycle assessment (LCA) is a critical tool in the design of marine renewable energy devices. However, LCA studies of floating type wave cycloidal rotors remain limited. This study builds on previous work by assessing the cradle-to-grave environmental impacts of a cycloidal rotor wave farm, incorporating updated material inventories, site-dependent energy production, and lifetime extension scenarios. The farm with the steel cyclorotor configuration exhibits a carbon intensity of 21.4 g CO2 eq/kWh and an energy intensity of 344 kJ/kWh, which makes it a competitive technology compared to other wave energy converters. Alternative materials, such as aluminium and carbon fibre, yield mass reductions but incur higher embodied emissions. Site deployment strongly influences performance, with global warming potential reduced by up to 50% in high-power-density sites, while extending the operational lifetime from 25 to 30 years further reduces the impact by 17%. Overall, the results highlight the competitive environmental performance of floating wave cycloidal rotors and emphasize the importance of material selection, site selection, and lifetime extension strategies in reducing life cycle impacts. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

13 pages, 12941 KB  
Article
Isolation and Identification of Pseudoalteromonas agarivorans LJ53, a Pathogenic Bacterium Causing Bleaching Disease in Saccharina japonica
by Ying Ouyang, Ruojing Tu, Jiapeng Li, Xianzhen Zhou, Chenhui Zhong, Lijun Fu and Jiangwei Li
Water 2026, 18(1), 66; https://doi.org/10.3390/w18010066 - 25 Dec 2025
Viewed by 380
Abstract
As a major export crop in China, Saccharina japonica cultivation suffers from significant economic losses due to disease outbreaks, with pathogen identification remaining a critical bottleneck for mariculture. In this study, a dominant bacterial strain, LJ53, was isolated from the diseased farmed S. [...] Read more.
As a major export crop in China, Saccharina japonica cultivation suffers from significant economic losses due to disease outbreaks, with pathogen identification remaining a critical bottleneck for mariculture. In this study, a dominant bacterial strain, LJ53, was isolated from the diseased farmed S. japonica. Artificial challenge assay confirmed that this strain is the direct causative agent of bleaching symptoms on sporophytes. Based on morphological characteristics and 16S rRNA gene-based phylogeny, it was identified as Pseudoalteromonas agarivorans LJ53. Ultrastructural observation revealed that this strain destroyed host cells and caused typical pathological changes such as chloroplast disintegration. Interestingly, metagenomic analysis showed no significant difference in the relative abundance of this pathogen between healthy and diseased S. japonica tissues. However, the co-occurrence network of the disease community exhibited increased connectivity, altered modularity, and features characteristic of microbial dysbiosis. This dysbiosis disrupts the water ecological balance by destabilizing microbial symbiosis and nutrient cycling, which are essential for overall ecosystem resilience. As a result, these imbalances can exacerbate disease transmission and weaken the self-regulating capacity of marine environment, highlighting the need for integrated management strategies to restore equilibrium. These findings provide a theoretical basis for elucidating the mechanisms of bacterial diseases in S. japonica and developing future control strategies. Full article
(This article belongs to the Special Issue Aquaculture Productivity and Environmental Sustainability)
Show Figures

Figure 1

30 pages, 7108 KB  
Article
Evaluating the Greenhouse Gas Fuel Intensity of Marine Fuels Under the Maritime Net-Zero Framework
by Murat Bayraktar, Kubilay Bayramoğlu and Onur Yuksel
Sustainability 2026, 18(1), 184; https://doi.org/10.3390/su18010184 - 24 Dec 2025
Viewed by 451
Abstract
Greenhouse gas (GHG) emissions from maritime transport account for nearly 3% of global totals, making the decarbonisation of this sector a critical priority. In response, the International Maritime Organization (IMO) adopted the GHG Strategy, targeting the full decarbonisation of international shipping by 2050, [...] Read more.
Greenhouse gas (GHG) emissions from maritime transport account for nearly 3% of global totals, making the decarbonisation of this sector a critical priority. In response, the International Maritime Organization (IMO) adopted the GHG Strategy, targeting the full decarbonisation of international shipping by 2050, with interim milestones in 2030 and 2040. This study evaluates the greenhouse gas fuel intensity of three representative vessel types, an oil tanker, a container ship, and a bulk carrier, using one-year operational fuel consumption data in line with the Regulations of the IMO Net-Zero Framework. Both conventional fuels, including conventional marine fuels, and alternative options, encompassing liquefied natural gas (LNG), e-hydrogen, e-ammonia, e-methanol, and biodiesel, are assessed for compliance during 2028–2035. The findings reveal that conventional fuels are unable to meet future targets, resulting in significant compliance deficits and balancing costs of remedial units. LNG provides short-term benefits but is limited by methane slip. In contrast, e-hydrogen and e-ammonia enable long-term compliance and generate surplus units. E-methanol shows a partial potential, while biodiesel delivers only modest improvements. The results underscore the need for a transition toward near-zero-well-to-wake-emission fuels. This study contributes by combining life cycle assessments with regulatory compliance analysis, offering insights for policymakers and industry stakeholders. Full article
Show Figures

Figure 1

Back to TopTop