Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = maize-soybean strip intercropping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 278
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

28 pages, 2543 KiB  
Article
Rational Water and Nitrogen Regulation Can Improve Yield and Water–Nitrogen Productivity of the Maize (Zea mays L.)–Soybean (Glycine max L. Merr.) Strip Intercropping System in the China Hexi Oasis Irrigation Area
by Haoliang Deng, Xiaofan Pan, Guang Li, Qinli Wang and Rang Xiao
Plants 2025, 14(13), 2050; https://doi.org/10.3390/plants14132050 - 4 Jul 2025
Viewed by 350
Abstract
The planting area of the maize–soybean strip intercropping system has been increasing annually in the Hexi Corridor oasis irrigation area of China. However, long-term irrational water resource utilization and the excessive mono-application of fertilizers have led to significantly low water and nitrogen use [...] Read more.
The planting area of the maize–soybean strip intercropping system has been increasing annually in the Hexi Corridor oasis irrigation area of China. However, long-term irrational water resource utilization and the excessive mono-application of fertilizers have led to significantly low water and nitrogen use efficiency in this cropping system. To explore the sustainable production model of high yield and high water–nitrogen productivity in maize–soybean strip intercropping, we established three irrigation levels (low: 60%, medium: 80%, and sufficient: 100% of reference crop evapotranspiration) and three nitrogen application levels (low: maize 230 kg ha−1, soybean 29 kg ha−1; medium: maize 340 kg ha−1, soybean 57 kg ha−1; and high: maize 450 kg ha−1, soybean 85 kg ha−1) for maize and soybean, respectively. Three irrigation levels without nitrogen application served as controls. The effects of different water–nitrogen combinations on multiple indicators of the maize–soybean strip intercropping system, including yield, water–nitrogen productivity, and quality, were analyzed. The results showed that the irrigation amount and nitrogen application rate significantly affected the kernel quality of maize. Specifically, the medium nitrogen and sufficient water (N2W3) combination achieved optimal performance in crude fat, starch, and bulk density. However, excessive irrigation and nitrogen application led to a reduction in the content of lysine and crude protein in maize, as well as crude fat and crude starch in soybean. Appropriate irrigation and nitrogen application significantly increased the yield in the maize–soybean strip intercropping system, in which the N2W3 treatment had the highest yield, with maize and soybean yields reaching 14007.02 and 2025.39 kg ha−1, respectively, which increased by 2.52% to 138.85% and 5.37% to 191.44% compared with the other treatments. Taking into account the growing environment of the oasis agricultural area in the Hexi Corridor and the effects of different water and nitrogen supplies on the yield, water–nitrogen productivity, and kernel quality of maize and soybeans in the strip intercropping system, the highest target yield can be achieved when the irrigation quotas for maize and soybeans are set at 100% ET0 (reference crop evapotranspiration), with nitrogen application rates of 354.78~422.51 kg ha−1 and 60.27~71.81 kg ha−1, respectively. This provides guidance for enhancing yield and quality in maize–soybean strip intercropping in the oasis agricultural area of the Hexi Corridor, achieving the dual objectives of high yield and superior quality. Full article
Show Figures

Figure 1

15 pages, 3444 KiB  
Article
A LiDAR-Driven Approach for Crop Row Detection and Navigation Line Extraction in Soybean–Maize Intercropping Systems
by Mingxiong Ou, Rui Ye, Yunfei Wang, Yaoyao Gu, Ming Wang, Xiang Dong and Weidong Jia
Appl. Sci. 2025, 15(13), 7439; https://doi.org/10.3390/app15137439 - 2 Jul 2025
Viewed by 218
Abstract
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of [...] Read more.
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of four primary stages: point cloud preprocessing, crop row region identification, feature point clustering, and navigation line extraction. Specifically, a combination of K-means and Euclidean clustering algorithms is employed to extract feature points representing crop rows. The central lines of the crop rows are then fitted using the least squares method, and a stable navigation path is constructed based on angle bisector principles. Field experiments were conducted under three representative scenarios: broken rows with missing plants, low occlusion, and high occlusion. The results demonstrate that the proposed method exhibits strong adaptability and robustness across various environments, achieving over 80% accuracy in navigation line extraction, with up to 90% in low-occlusion settings. The average navigation angle was controlled within 0.28°, with the minimum reaching 0.17°, and the average processing time remained below 75.62 ms. Moreover, lateral deviation tests confirmed the method’s high precision and consistency in path tracking, validating its feasibility and practicality for application in strip intercropping systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

14 pages, 4800 KiB  
Article
The Impact of Fluroxypyr Drift on Soybean Phytotoxicity and the Safety Drift Thresholds
by Qingqing Zhou, Songchao Zhang, Tianqi Lin, Yuxuan Jiao, Chen Cai, Chenchen Xue, Jinwen Ye and Xinyu Xue
Agriculture 2024, 14(12), 2203; https://doi.org/10.3390/agriculture14122203 - 2 Dec 2024
Cited by 1 | Viewed by 1067
Abstract
Maize–soybean intercropping can increase soybean yields and stabilize maize yields, and this practice has been widely promoted in China. Fluroxypyr is a recommended herbicide for maize seedlings, and its drift will cause phytotoxicity to neighboring soybean seedlings. A laboratory toxicity test was performed [...] Read more.
Maize–soybean intercropping can increase soybean yields and stabilize maize yields, and this practice has been widely promoted in China. Fluroxypyr is a recommended herbicide for maize seedlings, and its drift will cause phytotoxicity to neighboring soybean seedlings. A laboratory toxicity test was performed on soybeans by using a mobile bioassay spray tower. It showed that both the carrier volume and the drift deposition rate of fluroxypyr significantly influenced soybean fresh weight. The soybean fresh weight inhibition rate increased with the increase in the drift deposition rate, especially in the range of 1% to 6%, and soybean fresh weight decreased rapidly. The lack of fit R2 was 0.6875, with a 9% maximum deviation between experimental values and simulated values. The drift deposition rate upper threshold for mild phytotoxicity (10% fresh weight inhibition rate, ED10) was determined to be 3.35%, while the threshold for no phytotoxicity (0% fresh weight inhibition rate, ED0) was 1.01%. To ensure soybean safety, isolation devices and anti-drift nozzles were installed on the boom sprayer to maintain drift below ED0 or, at most, ED10. Maize seedling strip weed control field tests showed that the highest drift deposition rate was 0.689% under the carrier volume of 330 L·ha−1. There was no phytotoxicity observed on soybeans after 21 days of application, which was consistent with laboratory research results. In this study, the phytotoxicity risk and safe thresholds for the fluroxypyr drift on soybean seedlings were established, which provide a theoretical basis for the safe production of soybeans. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 3223 KiB  
Article
Effect of Maize (Zea mays) and Soybean (Glycine max) Cropping Systems on Weed Infestation and Resource Use Efficiency
by Aamir Ali, Shoaib Ahmed, Ghulam Mustafa Laghari, Abdul Hafeez Laghari, Aijaz Ahmed Soomro and Nida Jabeen
Agronomy 2024, 14(12), 2801; https://doi.org/10.3390/agronomy14122801 - 25 Nov 2024
Cited by 1 | Viewed by 1113
Abstract
Agriculture has consistently improved to meet the needs of a growing global population; however, traditional monoculture farming, while highly productive, is facing challenges such as weed infestation and inefficient resource utilization. Herbicides effectively control weeds. However, their widespread use in weed management has [...] Read more.
Agriculture has consistently improved to meet the needs of a growing global population; however, traditional monoculture farming, while highly productive, is facing challenges such as weed infestation and inefficient resource utilization. Herbicides effectively control weeds. However, their widespread use in weed management has the potential to contaminate soil and water, endangering the ecosystem by damaging non-target plant and animal species. Therefore, the main objective of this study was to evaluate the impact of different maize and soybean cropping systems on weed infestation and resource utilization. The experiment was a randomized complete block design with three replications consisting of three cropping systems: sole maize (SM), sole soybean (SS), and maize–soybean strip intercropping (MSI). In this study, the main difference between SM, SS, and MSI was the planting density, which was 60,000 (SM), 100,000 (SS), and 160,000 (maize–soybean in MSI). We observed that a higher total leaf area index in MSI resulted in increased soil cover, which reduced the solar radiations for weeds and suppressed the weed growth by 17% and 11% as compared to SS and SM, respectively. Whereas the radiation use efficiency for companion crops in MSI was increased by 39% and 42% compared to SS and SM, respectively. Moreover, the increased soil cover by total leaf area index in MSI also increased the efficiency of water use. Furthermore, our results indicated that reduced weed-crop competition increased the resource use in MSI, which resulted in increased crop yield and land equivalent ratio (LER 1.6). Eventually, this resulted in reduced inputs and increased land productivity. Therefore, we suggest that MSI should be adopted in resource-limiting conditions with higher weed infestation as it can simultaneously promote ecological balance and improve agricultural output, thereby reducing the environmental effects of traditional cropping systems. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

18 pages, 4042 KiB  
Article
Optimizing Nitrogen Input Increased Yield and Efficiency in Maize-Soybean Strip Intercropping System
by Yuwen Liang, Qiannan Liu, Jinghan Zeng, Fei Xiong, Jian Guo, Guanghao Li and Dalei Lu
Agronomy 2024, 14(11), 2472; https://doi.org/10.3390/agronomy14112472 - 23 Oct 2024
Viewed by 1311
Abstract
Optimizing nitrogen (N) fertilizer combination is a crucial measure to maximize yield and production efficiency in a maize-soybean strip intercropping system (MSSI). In this field experiment, six maize/soybean N input combinations (0 kg ha−1, F0; 255/30 kg ha−1, F1; [...] Read more.
Optimizing nitrogen (N) fertilizer combination is a crucial measure to maximize yield and production efficiency in a maize-soybean strip intercropping system (MSSI). In this field experiment, six maize/soybean N input combinations (0 kg ha−1, F0; 255/30 kg ha−1, F1; 255/45 kg ha−1, F2; 255/60 kg ha−1, F3; 210/45 kg ha−1, F4; 300/45 kg ha−1, F5) were set in 2022 and 2023. The results indicated that optimizing N combination (maize/soybean, 255/45 kg ha−1) could synergistically increase yield and economic benefits. Path analysis results showed that the grain numbers in maize and soybean emerged as the most critical yield-affecting factors. Compared with F0, F5 showed the highest grain yield during the 2-year experiment, and the net return increased by 86.1% (F1), 133.3% (F2), 87.4% (F3), 104.7% (F4), and 128.3% (F5), respectively. Optimizing N input under F2 and F5 notably enhanced the leaf area index (LAI) of maize at the milk stage (R3) and soybean at the full pod stage (R4). Additionally, optimization of N distribution in maize stems at the tassel stage (VT) and soybean leaves at the initial flowering stage (R1) facilitated increased dry matter and N accumulation at the maturity stage, resulting in final land equivalent ratios (LER) of 1.44 and 1.55, respectively. Our results provide a more valuable field N combination for summer maize planting areas (sandy soil areas) in Huang-Huai-Hai and southern China, thus promoting the wider application of MSSI. Full article
Show Figures

Figure 1

29 pages, 9005 KiB  
Article
Rational Maize–Soybean Strip Intercropping Planting System Improves Interspecific Relationships and Increases Crop Yield and Income in the China Hexi Oasis Irrigation Area
by Haoliang Deng, Xiaofan Pan, Xuemei Lan, Qinli Wang and Rang Xiao
Agronomy 2024, 14(6), 1220; https://doi.org/10.3390/agronomy14061220 - 5 Jun 2024
Cited by 5 | Viewed by 1786
Abstract
Abundant light and heat in the Hexi Oasis Irrigation Area in China provide superior natural conditions for agricultural development. To study the maize–soybean planting system of intercropping and determine superior group yield and economic benefits in the Hexi Oasis Irrigation Area, eight treatments [...] Read more.
Abundant light and heat in the Hexi Oasis Irrigation Area in China provide superior natural conditions for agricultural development. To study the maize–soybean planting system of intercropping and determine superior group yield and economic benefits in the Hexi Oasis Irrigation Area, eight treatments were set up in 2022–2023: maize–soybean intercropping with a bandwidth of 1.8 m and a row ratio of 2:3 (M1S3), a bandwidth of 1.8 m and a row ratio of 2:4 (M1S4), a bandwidth of 2.0 m and a row ratio of 2:3 (M2S3), a bandwidth of 2.0 m and a row ratio of 2:4 (M2S4), a bandwidth of 2.2 m and a row ratio of 2:3 (M3S3), a bandwidth of 2.2 m and a row ratio of 2:4 (M3S4), monocropping maize (M), and monocropping soybean (S). We analyzed the effects of changes in bandwidth–row ratios on photosynthetic characteristics, yield, and interspecific relationships in these treatments during two crop reproductive periods. Our results showed the following: (1) Under the intercropping system, the photosynthetic capacity of maize was highest when the row ratio was 2∶3 and bandwidth was 1.8 m. The net photosynthetic rate (Pn) increased by 1.72% to 48.90%, the transpiration rate (Tr) increased by 5.53% to 118.10%, and stomatal conductance (Gs) increased by 2.82% to 86.49% compared with other planting systems. Increasing the bandwidth from 1.8 m to 2.2 m improved the photosynthetic characteristics of soybean, increasing Pn, Tr, and Gs by 3.44% to 74.21%, 3.92% to 53.69%, and 2.41% to 55.22%, respectively. (2) The yield of maize and soybean under monocropping was significantly higher than that under intercropping. In the intercropping treatments, the average yield of crops in the M3S3 system was 16,519.4 kg ha−1, an increase of 6.48% compared with the M3S4 system, indicating that the reduction of one row of soybean in the same bandwidth system increases crop yield; The average economic benefit of the M3S3 system over two years was 35,171.73 CNY ha−1, which increased by 13.3 and 80% compared with the average economic benefit of maize and soybean monocropping, indicating that the intercropping system leads to better economic results for farmers than monocropping. (3) In the two-year experiment, the land equivalent ratio (LER) was highest in the M3S3 model, averaging 1.25 over the two years, showing better land productivity compared with other intercropping systems. (4) When bandwidth was 1.8, 2.0, or 2.2 m, the LER decreased by 8.3, 5.9, and 5.6% when planting an additional row of soybeans, the relative crowding coefficient of soybeans in the respective bandwidths increased by 4.59, 4.72, and 0.75%, the competition ratio of maize (CRM) increased by 22.94, 16.97, and 12.74%, the competition ratio of soybean (CRS) decreased by 20.47, 17.61, and 16.78%, and the competitive power of maize was greater than that of soybean, indicating that the increase in soybean rows in the same bandwidth system would weaken the competitive advantage of soybean, resulting in crop yield and economic benefit reduction. When the row ratio was 2:3 or 2:4, bandwidth increased from 1.8 m to 2.2 m, LER decreased by 3.31 and 0.86%, intercropping maize aggressiveness (AM) decreased by 7.55 and 12.50%, CRM decreased by 18.04 and 24.84%, and CRS increased by 17.32 and 22.77%, respectively, which indicated that the increase in bandwidth under different row ratio systems could improve the competitive advantage of intercropping soybean, thereby improving crop yield and economic benefits. (5) The AHP method, entropy weight method, and TOPSIS analysis showed that M3S3 ranked first, with the highest comprehensive evaluation (0.6017). In conclusion, the M3S3 planting system can better coordinate crop interspecies relationships, with higher land yield and economic benefit, and can be used as a suitable maize–soybean intercropping system in the Hexi oasis irrigation area. Full article
(This article belongs to the Special Issue Promoting Intercropping Systems in Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 2046 KiB  
Article
Coordination of Density and Nitrogen Fertilization Improves Stalk Lodging Resistance of Strip-Intercropped Maize with Soybeans by Affecting Stalk Quality Traits
by Xuyang Zhao, Yun Hu, Bing Liang, Guopeng Chen, Liang Feng, Tian Pu, Xin Sun, Taiwen Yong, Weiguo Liu, Jiang Liu, Junbo Du, Feng Yang, Xiaochun Wang and Wenyu Yang
Agriculture 2023, 13(5), 1009; https://doi.org/10.3390/agriculture13051009 - 4 May 2023
Cited by 6 | Viewed by 1783
Abstract
To ensure yield in strip-intercropped maize with soybeans (SM), it is crucial to plant at a density comparable to that of monoculture maize (MM). This requires reducing spacing by more than half, increasing intraspecific competition, and altering stalk lodging resistance traits compared with [...] Read more.
To ensure yield in strip-intercropped maize with soybeans (SM), it is crucial to plant at a density comparable to that of monoculture maize (MM). This requires reducing spacing by more than half, increasing intraspecific competition, and altering stalk lodging resistance traits compared with MM. Nitrogen fertilization can effectively mediate stalk lodging resistance. However, it is still unclear how nitrogen rates influence SM’s stalk lodging resistance under high-density conditions and how that resistance compares to MM. The experiment involved four N fertilizer treatments with two planting densities: medium density (60,000 plants/ha) and high density (75,000 plants/ha). Additionally, different planting patterns of strip-cropped (S) and monoculture (M) were implemented. The N fertilizer application rates were N0 (0 kg/ha), N225 (225 kg/ha), N300 (300 kg/ha), and N375 (375 kg/ha). The stalk lodging resistance was represented by the breaking strength of the third basal internode. The study revealed that, at the same planting density, the third basal internode of the stalk exhibited consistent results in terms of its diameter, crushing strength, total number and area of vascular bundles, and N content. Notably, all these traits exhibited a significant positive relationship with breaking strength. The highest values for these parameters and yield were observed under N225 and N300 fertilization rates for medium-density monoculture and strip-cropped maize, respectively. In contrast, the high-density monoculture and strip-cropped maize showed peak performance under N300 and N375 fertilization rates. At both medium and high planting densities, the strip-cropped maize exhibited 8.9% and 10.9% lower breaking strength than the monoculture maize under N225 treatment. However, increasing the N fertilizer application resulted in comparable lodging resistance between the strip-cropped maize and the maximum values of the monoculture maize, at N300 treatment for medium density and N375 treatment for high density. Hence, strip-cropped maize planted at high density (75,000 plants/ha) with a lower nitrogen rate had lower lodging resistance than monoculture maize, but it can be improved to match the monoculture maize by increasing the nitrogen rate. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

14 pages, 4060 KiB  
Article
Effects of Different Soybean and Maize Mixed Proportions in a Strip Intercropping System on Silage Fermentation Quality
by He Meng, Yan Jiang, Lin Wang, Sui Wang, Zicheng Zhang, Xiaohong Tong and Shaodong Wang
Fermentation 2022, 8(12), 696; https://doi.org/10.3390/fermentation8120696 - 1 Dec 2022
Cited by 11 | Viewed by 2951
Abstract
Soybean (Glycine max Merr.), with a high nutritional value, is an important oil crop and a good protein feed crop. Due to the shortage of high-protein feed and the high import pressure on soybean, scarce high-protein feed is the main research target [...] Read more.
Soybean (Glycine max Merr.), with a high nutritional value, is an important oil crop and a good protein feed crop. Due to the shortage of high-protein feed and the high import pressure on soybean, scarce high-protein feed is the main research target for improving feed quality. High-quality soybean (Qihuang 34) and high-yield silage maize (Zea mays L.) (Jingling silage 386) varieties were used as the experimental materials in this study. The silage quality and the microbial community of the mixed silage of soybean and maize were analyzed, and the compatible intercropping ratios of maize–soybean mixed silage were evaluated. This experiment designed five strip intercropping systems (SIS) in a randomized block. The intercropping row ratios of maize and soybean were 0:1 (pure soybean, S), 1:0 (pure maize, M), 1:1 (MS1), 1:3 (MS2), and 1:5 (MS3). Dry matter yield and fresh matter yield were improved in the treatments of MS1 and MS2. In the mixed silage systems of maize and soybean, with an increase in soybean proportion, crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents gradually increased, but the contents of water-soluble carbohydrates (WSC) and dry matter (DM) reduced to different degrees (p < 0.05). Moreover, the soybean silage alone had a poor fermentation performance, as indicated by high pH, high acetic acid (AA), propionic acid (PA), butyric acid (BA), and ammonia-N (NH3-N) concentrations, and low lactic acid (LA) concentration. By contrast, the mixed silage materials were conducive to reducing the pH, PA, BA, and NH3-N, and increasing the LA content. The relative abundance of Lactobacillus and Weissella in the MS were higher, and the abundance of undesirable bacteria were lower than in the S. The MS2 materials had the lowest pH, the highest LA concentration, and the highest relative abundance of Lactobacillus and Weissella among the three mixed silage groups. Therefore, the mixed silage in the SIS modified the microbial communities and improved the feed fermentation quality while increasing yields. The better intercropping ratio of maize–soybean mixed silage was 1:3. These results could provide a theoretical basis for the wide application and popularization of soybean as a high-protein silage forage source. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

13 pages, 971 KiB  
Article
Effects of Row Spacing and Planting Pattern on Photosynthesis, Chlorophyll Fluorescence, and Related Enzyme Activities of Maize Ear Leaf in Maize–Soybean Intercropping
by Haoyuan Zheng, Jingyu Wang, Yue Cui, Zheyun Guan, Liu Yang, Qingquan Tang, Yifan Sun, Hongsen Yang, Xueqing Wen, Nan Mei, Xifeng Chen and Yan Gu
Agronomy 2022, 12(10), 2503; https://doi.org/10.3390/agronomy12102503 - 14 Oct 2022
Cited by 13 | Viewed by 3213
Abstract
With the continuous improvement of the mechanization level and the development of new crop varieties, the optimal strip width for intercropping crops is important. In this study, field experiments were conducted to analyze the effects of different row spacings and planting patterns on [...] Read more.
With the continuous improvement of the mechanization level and the development of new crop varieties, the optimal strip width for intercropping crops is important. In this study, field experiments were conducted to analyze the effects of different row spacings and planting patterns on photosynthesis, chlorophyll fluorescence, and the related enzyme activities of maize ear leaves in a maize–soybean intercropping system using two planting patterns (wide–narrow rows of 80–50 cm and uniform ridges of 65 cm) and two intercropping ratios (four rows of maize and four rows of soybean; six rows of maize and six rows of soybean). The results showed that the pattern of wide–narrow-row spacing significantly improved the photosynthetic capacity of maize compared with the uniform-ridge planting pattern, along with marked elevation in the values of stomatal conductance (Gs), the transpiration rate (Tr), and the photosynthetic rate (Pn). On the other hand, the values of photochemical quenching (qP), actual photochemical efficiency (φPSII), and maximum photochemical efficiency (Fv/Fm) also significantly increased, and the effect of D-M6S6 treatment was the most significant on these parameters. Similarly, the activities of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase also increased significantly. Among different treatments, the yield under the D-M6S6 treatment was the highest. Therefore, based on the planting pattern of the wide–narrow-row spacing, the intercropping of six rows of maize and six rows of soybean is the better design in the semi-arid regions of western China. Full article
Show Figures

Figure 1

18 pages, 5289 KiB  
Article
Soil Organic Matter, Aggregates, and Microbial Characteristics of Intercropping Soybean under Straw Incorporation and N Input
by Benchuan Zheng, Ping Chen, Qing Du, Huan Yang, Kai Luo, Xiaochun Wang, Feng Yang, Taiwen Yong and Wenyu Yang
Agriculture 2022, 12(9), 1409; https://doi.org/10.3390/agriculture12091409 - 7 Sep 2022
Cited by 14 | Viewed by 2913
Abstract
Soil organic matter (SOM), soil aggregates, and soil microbes play key roles in agriculture soil fertility. In intercropping systems, the influences of straw incorporation and N input on the dynamics of soil physicochemical and microbial properties and their relationships are still unclear. We [...] Read more.
Soil organic matter (SOM), soil aggregates, and soil microbes play key roles in agriculture soil fertility. In intercropping systems, the influences of straw incorporation and N input on the dynamics of soil physicochemical and microbial properties and their relationships are still unclear. We explore the changes in soil physicochemical and microbial properties with two straw managements, i.e., wheat straw incorporation (SI) and straw removal (SR), and four N supply rates for intercropped soybean, i.e., 60 (N60), 30 (N30), 15 (N15), and 0 (N0) kg N ha−1, in the wheat–maize–soybean relay strip intercropping systems. The results showed that SOM and SOM fractions contents, soil macroaggregate stability, and microbial and fungal α-diversity, e.g., Chao1 and Shannon indices, increased through straw incorporation and N input. The α-diversity was significantly positively correlated with soil physicochemical characteristics. Compared with SR, the relative abundance of ActinobacteriaandMortierellomycota in SI increased, but the relative abundance of Proteobacteria, Acidobacteria, and Ascomycota in SI decreased. In SI treatment, soil physicochemical characteristics and microbial diversity improved through N input, but that difference was not significant between N60 and N30. In conclusion, SI+N30 was the most effective way to maintain soil fertility and reduce the N fertilizer input in the wheat–maize–soybean relay strip intercropping. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 3058 KiB  
Article
Changes in the Density and Composition of Rhizosphere Pathogenic Fusarium and Beneficial Trichoderma Contributing to Reduced Root Rot of Intercropped Soybean
by Huiting Xu, Li Yan, Mingdi Zhang, Xiaoli Chang, Dan Zhu, Dengqin Wei, Muhammd Naeem, Chun Song, Xiaoling Wu, Taiguo Liu, Wanquan Chen and Wenyu Yang
Pathogens 2022, 11(4), 478; https://doi.org/10.3390/pathogens11040478 - 16 Apr 2022
Cited by 23 | Viewed by 4181
Abstract
The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize–soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere [...] Read more.
The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize–soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere microbial community participates in the regulation of intercropped soybean root rot. In this study, rhizosphere Fusarium and Trichoderma communities were compared in either healthy or root-rotted rhizosphere soil from monocultured and intercropped soybean, and our results showed the abundance of rhizosphere Fusarium in intercropping was remarkably different from monoculture. Of four species identified, F. oxysporum was the most aggressive and more frequently isolated in diseased soil of monoculture. In contrast, Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. T. harzianum dramatically increased in the rhizosphere of intercropping, while T. virens and T. afroharzianum also exhibited distinct isolation frequency. For the antagonism test in vitro, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging from 50.59–92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along the cell–cell lumen and even dissolving cell walls of the target fungus. These results indicate maize–soybean relay strip intercropping significantly increases the density and composition proportion of beneficial Trichoderma to antagonize the pathogenic Fusarium species in rhizosphere, thus potentially contributing to the suppression of soybean root rot under the intercropping. Full article
(This article belongs to the Special Issue Fungal Pathogenicity Factors)
Show Figures

Figure 1

16 pages, 1261 KiB  
Article
Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns
by Tairu Zeng, Yushan Wu, Yafen Xin, Chen Chen, Zhaochang Du, Xiaoling Li, Junfeng Zhong, Muhammad Tahir, Bo Kang, Dongmei Jiang, Xiaochun Wang, Wenyu Yang and Yanhong Yan
Fermentation 2022, 8(4), 174; https://doi.org/10.3390/fermentation8040174 - 9 Apr 2022
Cited by 16 | Viewed by 6933
Abstract
Intercropping improves land-use efficiency under conditions of limited land and resources, but no information is currently available pertaining to land-use efficiency and silage quality based on whole-plant utilization. Therefore, a two-year field experiment was conducted with the following conditions: three maize–soybean strip intercropping [...] Read more.
Intercropping improves land-use efficiency under conditions of limited land and resources, but no information is currently available pertaining to land-use efficiency and silage quality based on whole-plant utilization. Therefore, a two-year field experiment was conducted with the following conditions: three maize–soybean strip intercropping patterns (SIPs), comprising two maize rows along with two, three, or four soybean rows (2M2S, 2M3S, and 2M4S, respectively); and two sole cropping patterns of maize (SM) and soybean (SS). The aim was to evaluate the biomass yield and silage quality under each condition. Our results showed that all SIPs had a land equivalent ratio (LER) of over 1.6 based on both fresh and dry matter yield, and a higher whole plant yield, compared to sole cropping. Specifically, 2M3S exhibited the highest whole crop dry matter LER (1.8–1.9) and yield (24.6–27.2 t ha−1) compared to SM and SS (20.88–21.49 and 3.48–4.79 t ha−1, respectively). Maize–soybean mixed silages also showed better fermentation quality with higher lactic acid content (1–3%) and lower ammonia-N content (2–8%) compared to SS silages, and higher crude protein content (1–1.5%) with lower ammonia-N content (1–2%) compared to SM silage. Among the intercropping patterns, 2M3S had the highest fermentation quality index V-score (92–95). Consequently, maize–soybean strip intercropping improved silage quality and biomass yield, with 2M3S being recommended, due to its highest LER and biomass yield, and most optimal silage quality. Full article
(This article belongs to the Topic Food Processing and Preservation)
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Transcriptional Responses of Fusarium graminearum Interacted with Soybean to Cause Root Rot
by Muhammd Naeem, Maira Munir, Hongju Li, Muhammad Ali Raza, Chun Song, Xiaoling Wu, Gulshan Irshad, Muhammad Hyder Bin Khalid, Wenyu Yang and Xiaoli Chang
J. Fungi 2021, 7(6), 422; https://doi.org/10.3390/jof7060422 - 27 May 2021
Cited by 8 | Viewed by 3580
Abstract
Fusarium graminearum is the most devastating pathogen of Fusarium head blight of cereals, stalk and ear of maize, and it has recently become a potential threat for soybean as maize-soybean strip relay intercropping is widely practiced in China. To elucidate the pathogenesis mechanism [...] Read more.
Fusarium graminearum is the most devastating pathogen of Fusarium head blight of cereals, stalk and ear of maize, and it has recently become a potential threat for soybean as maize-soybean strip relay intercropping is widely practiced in China. To elucidate the pathogenesis mechanism of F. graminearum on intercropped soybean which causes root rot, transcriptional profiling of F. graminearum at 12, 24, and 48 h post-inoculation (hpi) on soybean hypocotyl tissues was conducted. In total, 2313 differentially expressed genes (DEGs) of F. graminearum were annotated by both KEGG pathway and Gene Ontology (GO) analysis. Among them, 128 DEGs were commonly expressed at three inoculation time points while the maximum DEGs were induced at 24 hpi. In addition, DEGs were also rich in carbon metabolism, ribosome and peroxisome pathways which might contribute to carbon source utilization, sexual reproduction, virulence and survival of F. graminearum when infected on soybean. Hence, this study will provide some basis for the deep understanding the pathogenesis mechanism of F. graminearum on different hosts and its effective control in maize-soybean strip relay intercropping systems. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Plant–Fungal Interactions)
Show Figures

Figure 1

21 pages, 2704 KiB  
Article
Variable Light Condition Improves Root Distribution Shallowness and P Uptake of Soybean in Maize/Soybean Relay Strip Intercropping System
by Li Wang, Tao Zhou, Bin Cheng, Yongli Du, Sisi Qin, Yang Gao, Mei Xu, Junji Lu, Ting Liu, Shuxian Li, Weiguo Liu and Wenyu Yang
Plants 2020, 9(9), 1204; https://doi.org/10.3390/plants9091204 - 15 Sep 2020
Cited by 11 | Viewed by 3492
Abstract
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P [...] Read more.
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P (phosphorus) treatments of 0 and 20 kg P ha yr−1 (P0 and P20, respectively) in field experiment over 4 years. In 2019, a pot experiment was conducted as the supplement to the field experiment. Shade from sowing to V5 (Five trifoliolates unroll) and light (SL) was used to imitate the light condition of soybeans in a relay trip inter-cropping system, while light then shade from V5 to maturity (LS) was used to imitate the light condition of soybeans when monocropped. Compared to monocropping, P uptake and root distribution in the upper 0–15 cm soil layer increased when inter-cropped. Inter-cropped soybeans suffered serious shade by maize during a common-growth period, which resulted in the inhibition of primary root growth and a modified auxin synthesis center and response. During the solo-existing period, plant photosynthetic capacity and sucrose accumulation increased under ameliorated light in SL (shade-light). Increased light during the reproductive stage significantly decreased leaf P concentration in SL under both P-sufficient and P-deficient conditions. Transcripts of a P starvation response gene (GmPHR25) in leaves and genes (GmEXPB2) involved in root growth were upregulated by ameliorated light during the reproductive stage. Furthermore, during the reproductive stage, more light interception increased the auxin concentration and expression of GmYUCCA14 (encoding the auxin synthesis) and GmTIR1C (auxin receptor) in roots. Across the field and pot experiments, increased lateral root growth and shallower root distribution were associated with inhibited primary root growth during the seedling stage and ameliorated light conditions in the reproductive stage. Consequently, this improved topsoil foraging and P uptake of inter-cropped soybeans. It is suggested that the various light conditions (shade-light) mediating leaf P status and sucrose transport can regulate auxin synthesis and respond to root formation and distribution. Full article
Show Figures

Graphical abstract

Back to TopTop