Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.3.1. Total Crop Yield
2.3.2. Competition Parameters
2.4. Silage Preparation
2.5. Silage Profiles Determination
2.6. Statistical Analysis
3. Results
3.1. Field Profiles
3.2. Chemical Composition of the Maize and Soybean
3.3. Silage Quality
3.4. Correlation Analysis
4. Discussion
4.1. Effect of Different Maize–Soybean Intercropping Patterns on Yield and Competition Parameters
4.2. Effect of Different Maize–Soybean Intercropping Patterns on Chemical Composition of the Maize and Soybean
4.3. Effect of Different Maize–Soybean Intercropping Patterns on Silage Quality
4.4. The Relation between Yield and Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins Flores, D.R.; Patrícia da Fonseca, A.F.; Schmitt, J.; José Tonetto, C.; Rosado Junior, A.G.; Hammerschmitt, R.K.; Facco, D.B.; Brunetto, G.; Nörnberg, J.L. Lambs fed with increasing levels of grape pomace silage: Effects on meat quality. Small Rumin. Res. 2021, 195, 106234. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect on the ensilage performance and microbial community of adding Neolamarckia cadamba leaves to corn stalks. Microb. Biotechnol. 2020, 13, 1502–1514. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef]
- Carpici, E.B. Nutritive values of soybean silages ensiled with maize at different rates. Legume Res. Int. J. 2016, 39, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X. Dynamic microbial diversity and fer mentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 123655. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Klevenhusen, F.; Zebeli, Q. A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. J. Sci. Food Agric. 2021, 101, 5737–5746. [Google Scholar] [CrossRef]
- Parra, C.S.; Bolson, D.C.; Jacovaci, F.A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Influence of soybean-crop proportion on the conservation of maize-soybean bi-crop silage. Anim. Feed Sci. Technol. 2019, 257, 114295. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Eskandari, H. A general overview on intercropping and its advantages in sustainable agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Li, X.-F.; Wang, Z.-G.; Bao, X.-G.; Sun, J.-H.; Yang, S.-C.; Wang, P.; Wang, C.-B.; Wu, J.-P.; Liu, X.-R.; Tian, X.-L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Iqbal, N.; Khan, I.; Khan, A.; Din, A.M.U.; Naeem, M.; Meraj, T.A.; Hassan, M.J. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 2020, 9, e199. [Google Scholar] [CrossRef] [Green Version]
- Matusso, J.; Mugwe, J.; Mucheru-Muna, M. Effects of different maize (Zea mays L.) soybean (Glycine max (L.) Merrill) intercropping patterns on yields and land equivalent ratio. J. Cereals Oilseeds 2013, 4, 48–57. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Batista, V.V.; Adami, P.F.; Moraes, P.; Oligini, K.F.; Giacomel, C.L.; Link, L. Row arrangements of maize and soybean inter crop on silage quality and grain yield. J. Agric. Sci. 2019, 11, 286–300. [Google Scholar] [CrossRef]
- Htet, M.N.S.; Soomro, R.N. Effect of different planting structure of maize and soybean intercropping on fodder production and silage quality. Curr. Agric. Res. J. 2016, 4, 125. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Broderick, G.; Kang, J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Dyke, N.; Anderson, P. Interpreting a Forage Analysis. Circ. ANR 1994. Available online: https://agris.fao.org/agris-search/search.do?recordID=US9563057 (accessed on 8 April 2022).
- Cao, Y.; Takahashi, T.; Horiguchi, K.-I.; Yoshida, N. Guide Book for Forage Evaluation, 1-196, 2001. Grassl. Sci. 2010, 56, 19–25. Available online: https://ci.nii.ac.jp/naid/10027253859/ (accessed on 8 April 2022). [CrossRef]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.; Liu, W.; Yong, T.; Du, J.; Shu, K.; Yang, W. Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Prod. Sci. 2019, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Iqbal, N.; Khan, I.; Hassan, M.J.; Ansar, M.; Chen, Y.K.; Xi, Z.J.; Shi, J.Y.; et al. Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 2019, 244, 107647. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in light environment, morphol ogy, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Qin, R.; Khalid, M.H.B.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H. Land produc tivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Metwally, A.; Safina, S.; Sherief, M.; Abo-Hegazy, D.R. Evaluation of High Densities of Some Corn Verities on Soybean Productivity. Plant Arch. 2019, 19, 3431–3436. [Google Scholar]
- Nourbakhsh, F.; Koocheki, A.; Mahallati, M.N. Investigation of biodiversity and some of the ecosystem services in the inter cropping of corn, soybean and marshmallow. Int. J. Plant Prod. 2019, 13, 35–46. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Li, Z.; Chen, Y.; Khalid, M.H.B.; Du, J.; Liu, W.; Wu, X.; Song, C.; Yu, L. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 2019, 9, 1952. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Wang, X.L.; Zhang, S.Q.; Palta, J.A.; Chen, Y.L. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 2017, 415, 131–144. [Google Scholar] [CrossRef]
- Moriri, S.; Owoeye, L.; Mariga, I. Influence of component crop densities and planting patterns on maize production in dry land maize/cowpea intercropping systems. Afr. J. Agric. Res. 2010, 5, 1200–1207. [Google Scholar] [CrossRef]
- Ariel, C.E.; Eduardo, O.A.; Benito, G.E.; Lidia, G. Effects of two plant arrangements in corn (Zea mays L.) and soybean (Glycine max L. Merrill) intercropping on soil nitrogen and phosphorus status and growth of component crops at an Argentinean Argiudoll. Am. J. Agric. For. 2013, 1, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Tripathi, A.; Bandyopadhyay, K.; Manna, M. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Eur. J. Agron. 2009, 31, 43–50. [Google Scholar] [CrossRef]
- Ahmed, S.; Raza, M.A.; Zhou, T.; Hussain, S.; Khalid, M.H.B.; Feng, L.; Wasaya, A.; Iqbal, N.; Ahmed, A.; Liu, W. Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize. Agronomy 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Costa, N.R.; Andreotti, M.; Crusciol, C.A.C.; Pariz, C.M.; Bossolani, J.W.; de Castilhos, A.M.; do Nascimento, C.A.C.; da Rocha Lima, C.G.; Bonini, C.d.S.B.; Kuramae, E.E. Can palisade and Guinea grass sowing time in intercropping systems affect soybean yield and soil chemical properties? Front. Sustain. Food Syst. 2020, 4, 81. [Google Scholar] [CrossRef]
- Erdal, S.; Pamukcu, M.; Curek, M.; Kocaturk, M.; Dogu, O.Y. Silage yield and quality of row intercropped maize and soybean in a crop rotation following winter wheat. Arch. Agron. Soil Sci. 2016, 62, 1487–1495. [Google Scholar] [CrossRef]
- Cui, L.; Yang, W.; Huang, N.; Liu, J.; Wang, Y.; Wang, X.; Liu, Y.; Yan, S. Effects of maize plant types on dry matter accumu lation characteristics and yield of soybean in maize-soybean intercropping systems. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2015, 26, 2414–2420. [Google Scholar] [CrossRef]
- Zaeem, M.; Nadeem, M.; Pham, T.H.; Ashiq, W.; Ali, W.; Gillani, S.S.M.; Moise, E.; Elavarthi, S.; Kavanagh, V.; Cheema, M. Corn-Soybean Intercropping Improved the Nutritional Quality of Forage Cultivated on Podzols in Boreal Climate. Plants 2021, 10, 1015. [Google Scholar] [CrossRef]
- Chen, Y. Effects of Field Configuration on Soybean Light Utilization, Intraspecific Competition, and Yield Benefits under Maize Soybean Relay Strip Intercropping System; Sichuan Agricultural University: Ya’an, Sichuan, 2019. [Google Scholar] [CrossRef]
- Htet, M.N.S.; Ping, Y.; Xu, Y.; Soomro, R.N.; Hai, J. Effect of Intercropping Maize (Zea mays L.) with Soybean (Glycine max L.) on Green Forage yield, and Quality Evaluation. J. Agric. Vet. Sci. 2016, 9, 232–239. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef]
- Kolver, E.; Roche, J.; Miller, D.; Densley, R. Maize silage for dairy cows. In Proceedings of the New Zealand Grassland Association, Hamilton, New Zealand, 1 January 2001; pp. 195–201. [Google Scholar] [CrossRef]
- Aydemir, S.K. Maize and soybean intercropping under different seed rates of soybean under ecological condition of Bilecik, Turkey. Int. J. Environ. Sci. Technol. 2019, 16, 5163–5170. [Google Scholar] [CrossRef]
- Soe Htet, M.N.; Hai, J.-B.; Bo, P.T.; Gong, X.-W.; Liu, C.-J.; Dang, K.; Tian, L.-X.; Soomro, R.N.; Aung, K.L.; Feng, B.-L. Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages. Agriculture 2021, 11, 452. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation Quality and Additives: A Case of Rice Straw Silage. BioMed Res. Int. 2016, 2016, 7985167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Ohmomo, S.; Ogawa, M.; Kumai, S. Effect of NaCl-tolerant lactic acid bacteria and NaCl on the fermentation charac teristics and aerobic stability of silage. J. Appl. Microbiol. 1997, 83, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Jeranyama, P.; Garcia, A.D. Understanding Relative Feed Value (RFV) and Relative Forage Quality (RFQ). 2004. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1351&context=extension_extra (accessed on 27 February 2022).
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic com ponents of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Denek, N.; Aydin, S.S.; Can, A. The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production. J. Appl. Anim. Res. 2017, 45, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, Y.; Yang, F.; Wang, Y.; Zhang, H. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J. Appl. Microbiol. 2020, 129, 233–242. [Google Scholar] [CrossRef]
- Lei, C.; Yuan, X.-J.; Li, J.-F.; Wang, S.-R.; Dong, Z.-H.; Tao, S. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J. Integr. Agric. 2017, 16, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Muck, R. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Ghizzi, L.G.; Del Valle, T.A.; Zilio, E.M.C.; Sakamoto, L.Y.; Marques, J.A.; Dias, M.S.S.; Nunes, A.T.; Gheller, L.S.; Silva, T.B.d.P.; Grigoletto, N.T.S.; et al. Partial replacement of corn silage with soybean silage on nutrient digestibility, ruminal fermentation, and milk fatty acid profile of dairy cows. Anim. Feed Sci. Technol. 2020, 266, 114526. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, C.; He, L.; Zhou, W.; Yang, F.; Zhang, Q. The bacterial community and fermentation quality of mulberry (Morus alba) leaf silage with or without Lactobacillus casei and sucrose. Bioresour. Technol. 2019, 293, 122059. [Google Scholar] [CrossRef] [PubMed]
- Jahanzad, E.; Sadeghpour, A.; Hashemi, M.; Keshavarz Afshar, R.; Hosseini, M.; Barker, A. Silage fermentation profile, chem ical composition and economic evaluation of millet and soya bean grown in monocultures and as intercrops. Grass Forage Sci. 2016, 71, 584–594. [Google Scholar] [CrossRef]
- Baytok, E.; Muruz, H. The effects of formic acid or formic acid plus molasses additives on the fermentation quality and DM and ADF degradabilities of grass silage. Turk. J. Vet. Anim. Sci. 2003, 27, 425–431. [Google Scholar]
- Gao, R.; Wang, B.; Jia, T.; Luo, Y.; Yu, Z. Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture 2021, 11, 58. [Google Scholar] [CrossRef]
- Thierry, A.; Valence, F.; Deutsch, S.-M.; Even, S.; Falentin, H.; Le Loir, Y.; Jan, G.; Gagnaire, V. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese—A review. Dairy Sci. Technol. 2015, 95, 895–918. [Google Scholar] [CrossRef] [Green Version]
Treatment | MFM | SFM | MSFM | MDM | SDM | MSDM |
---|---|---|---|---|---|---|
2018 | t ha−1 | t ha−1 | t ha−1 | t ha−1 | t ha−1 | t ha−1 |
2M2S1 | 65.26 | 10.34 | 75.60 | 23.36 | 3.40 | 26.76 |
2M3S1 | 63.05 | 11.84 | 74.90 | 23.23 | 3.98 | 27.20 |
2M4S1 | 59.39 | 12.58 | 71.98 | 21.58 | 4.17 | 25.75 |
2M2S2 | 65.20 | 7.65 | 72.85 | 23.43 | 2.45 | 25.87 |
2M3S2 | 62.51 | 8.89 | 71.4 | 23.58 | 2.90 | 26.48 |
2M4S2 | 59.26 | 9.60 | 68.86 | 21.85 | 3.25 | 25.09 |
SS1 | - | 14.94 | 14.94 | - | 4.73 | 4.73 |
SS2 | - | 11.46 | 11.46 | - | 3.48 | 3.48 |
SM | 62.49 | - | 62.49 | 21.49 | - | 21.49 |
SEM | 1.41 | 0.35 | 3.29 | 1.25 | 0.18 | 1.44 |
V means | ||||||
S1 | 62.57 | 12.43 a | 59.35 a | 22.72 | 4.07 a | 21.11 |
S2 | 62.33 | 9.40 b | 56.14 b | 22.95 | 3.02 b | 20.23 |
P means | ||||||
2M2S | 65.23 a | 8.99 b | 74.22 a | 23.39 a | 2.93 c | 26.32 a |
2M3S | 62.78 b | 10.37 b | 73.15 a | 23.40 a | 3.44 bc | 26.84 a |
2M4S | 59.33 c | 11.09 b | 70.42 b | 21.71 b | 3.71 b | 25.42 b |
SM | 62.49 b | 0 | 62.49 c | 21.49 b | 0 | 21.49 c |
SS | 0 | 13.20 a | 13.20 d | 0 | 4.10 a | 4.10 d |
Significance | ||||||
V | 0.78 | <0.01 | <0.01 | 0.44 | <0.01 | 0.08 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | 0.13 | 0.6 | 0.21 | 0.93 | 0.33 | 0.31 |
Treatment | MFM | SFM | MSFM | MDM | SDM | MSDM |
---|---|---|---|---|---|---|
2019 | t ha−1 | t ha−1 | t ha−1 | t ha−1 | t ha−1 | t ha−1 |
2M2S1 | 63.40 | 11.14 | 74.54 a | 20.75 | 3.42 | 24.17 |
2M3S1 | 60.84 | 12.44 | 73.29 a | 21.77 | 3.90 | 25.68 |
2M4S1 | 57.32 | 13.38 | 70.70 b | 19.66 | 4.06 | 23.72 |
2M2S2 | 63.61 | 7.15 | 70.76 b | 21.24 | 2.25 | 23.49 |
2M3S2 | 61.37 | 8.93 | 70.30 b | 22.02 | 2.94 | 24.96 |
2M4S2 | 57.38 | 9.70 | 67.08 c | 19.29 | 3.00 | 22.3 |
SS1 | - | 15.83 | 15.83 f | - | 4.79 | 4.79 |
SS2 | - | 12.29 | 12.29 j | - | 3.73 | 3.73 |
SM | 60.10 | - | 60.10 e | 20.88 | - | 20.88 |
SEM | 2.96 | 0.85 | 2.11 | 1.03 | 0.02 | 1.6 |
V means | ||||||
S1 | 60.52 | 13.20 a | 58.59 | 20.73 | 4.04 a | 19.59 a |
S2 | 60.79 | 9.51 b | 55.11 | 20.85 | 2.98 b | 18.62 b |
P means | ||||||
2M2S | 63.50 a | 9.15 b | 72.65 | 20.99 b | 2.83 b | 23.83 b |
2M3S | 61.11 b | 10.69 b | 71.79 | 21.90 a | 3.42 b | 25.32 a |
2M4S | 57.35 d | 11.54 b | 68.89 | 19.48c | 3.53 b | 23.01 c |
SS | 0 | 14.06 a | 14.06 | 0 | 4.26 a | 4.26 e |
SM | 60.10 c | 0 | 60.10 | 20.88 b | 0 | 20.88 d |
Significance | ||||||
V | 0.51 | <0.01 | <0.01 | 0.58 | <0.01 | <0.01 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | 0.92 | 0.70 | <0.01 | 0.31 | 0.56 | 0.28 |
Treatment 2018 | FLERm | FLERs | Total FLER | DLERm | DLERs | Total DLER | Treatment 2019 | FLERm | FLERs | Total FLER | DLERm | DLERs | Total DLER |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2M2S1 | 1.05 | 0.69 | 1.74 | 1.09 | 0.72 | 1.80 | 2M2S1 | 1.05 | 0.70 | 1.76 | 0.99 c | 0.71 c | 1.71 |
2M3S1 | 1.01 | 0.79 | 1.80 | 1.08 | 0.84 | 1.92 | 2M3S1 | 1.01 | 0.79 | 1.80 | 1.04 a | 0.81 ab | 1.86 |
2M4S1 | 0.95 | 0.84 | 1.80 | 1.01 | 0.88 | 1.89 | 2M4S1 | 0.95 | 0.85 | 1.80 | 0.94 d | 0.85 a | 1.79 |
2M2S2 | 1.04 | 0.67 | 1.71 | 1.09 | 0.70 | 1.79 | 2M2S2 | 1.06 | 0.58 | 1.64 | 1.02 b | 0.60 d | 1.62 |
2M3S2 | 1.00 | 0.78 | 1.78 | 1.10 | 0.84 | 1.93 | 2M3S2 | 1.02 | 0.73 | 1.75 | 1.05 a | 0.79 b | 1.84 |
2M4S2 | 0.95 | 0.84 | 1.79 | 1.02 | 0.93 | 1.95 | 2M4S2 | 0.95 | 0.79 | 1.74 | 0.92 d | 0.81 ab | 1.73 |
SEM | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | SEM | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 |
V means | V means | ||||||||||||
S1 | 1.00 | 0.78 | 1.78 | 1.06 | 0.81 | 1.87 | S1 | 1.01 | 0.78 a | 1.79 a | 0.99 | 0.79 | 1.78 a |
S2 | 1.00 | 0.76 | 1.76 | 1.07 | 0.82 | 1.89 | S2 | 1.01 | 0.70 b | 1.71 b | 1.00 | 0.73 | 1.73 b |
P means | P means | ||||||||||||
2M2S | 1.05 a | 0.68 b | 1.73 b | 1.09 a | 0.71 c | 1.80 b | 2M2S | 1.06 a | 0.64 b | 1.70 b | 1.01 | 0.66 | 1.66 c |
2M3S | 1.01 a | 0.79 a | 1.79 a | 1.09 a | 0.84 b | 1.93 a | 2M3S | 1.02 b | 0.76 a | 1.77 a | 1.05 | 0.80 | 1.85 a |
2M4S | 0.95 b | 0.84 a | 1.80 a | 1.01 b | 0.91 a | 1.92 a | 2M4S | 0.95 c | 0.82 a | 1.77 a | 0.93 | 0.83 | 1.76 b |
Significance | Significance | ||||||||||||
V | 0.86 | 0.56 | 0.33 | 0.53 | 0.48 | 0.39 | V | 0.28 | <0.01 | <0.01 | 0.26 | <0.01 | <0.01 |
P | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | 0.99 | 0.95 | 0.86 | 0.95 | 0.11 | 0.36 | V*P | 0.72 | 0.07 | 0.12 | 0.02 | 0.02 | 0.13 |
Treatment | WDM % | WSC (%WDM) | CP (%WDM) | NDF (%WDM) | ADF (%WDM) | RFV |
---|---|---|---|---|---|---|
2M2S1 | 35.40 c | 15.51 b | 8.10 d | 42.78 b | 22.39 c | 155.38 ab |
2M3S1 | 36.32 b | 13.69 bc | 8.69 c | 41.72 b | 21.89 c | 160.20 a |
2M4S1 | 35.77 bc | 13.67 bc | 8.85 c | 42.10 b | 22.09 c | 158.41 ab |
2M2S2 | 35.52 c | 14.56 b | 7.98 d | 47.75 a | 25.81 b | 134.02 c |
2M3S2 | 37.09 a | 16.22 ab | 8.67 c | 41.67 b | 23.86 bc | 156.97 ab |
2M4S2 | 36.44 b | 15.28 b | 9.63 b | 43.40 b | 23.13 c | 151.93 b |
SS1 | 31.67 e | 7.81 d | 14.79 a | 47.94 a | 31.39 a | 125.05 d |
SS2 | 30.34 e | 8.99 c | 14.60 a | 47.41 a | 29.67 a | 129.08 cd |
SM | 34.38 d | 17.63 a | 6.85 e | 42.94 b | 21.03 c | 157.10 ab |
SEM | 0.42 | 0.66 | 0.53 | 0.47 | 0.66 | 2.655 |
V means | ||||||
S1 | 34.79 | 12.67 | 10.11 | 43.64 | 24.44 | 149.80 |
S2 | 34.85 | 14.26 | 10.22 | 45.06 | 25.82 | 143.02 |
P means | ||||||
2M2S | 35.46 | 15.04 | 8.04 | 45.27 | 24.10 | 144.74 |
2M3S | 36.71 | 15.94 | 8.68 | 41.69 | 22.87 | 158.64 |
2M4S | 36.11 | 14.49 | 9.24 | 42.75 | 22.61 | 155.17 |
SM | 34.38 | 17.63 | 6.85 | 42.94 | 21.03 | 157.13 |
SS | 31.01 | 8.40 | 14.70 | 47.68 | 30.53 | 127.09 |
Significance | ||||||
V | <0.01 | <0.01 | 0.16 | <0.01 | 0.02 | <0.01 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Treatment | WDM % | WSC (%WDM) | CP (%WDM) | NDF (%WDM) | ADF (%WDM) | RFV |
---|---|---|---|---|---|---|
2M2S1 | 34.92 c | 4.98 | 7.81 cd | 43.79 d | 25.08 c | 147.35 a |
2M3S1 | 35.15 c | 3.64 | 7.96 c | 43.61 d | 24.27 d | 149.30 a |
2M4S1 | 34.38 cd | 2.30 | 7.46 e | 47.08 a | 25.21 c | 136.85 b |
2M2S2 | 35.17 c | 4.41 | 7.40 e | 47.35 a | 25.82 c | 135.14 b |
2M3S2 | 36.43 a | 3.25 | 7.73 cd | 44.04 cd | 24.35 d | 147.71 a |
2M4S2 | 36.15 b | 2.47 | 7.58 de | 45.14 c | 23.64 e | 145.25 a |
SS1 | 31.27 e | 1.37 | 13.07 b | 46.47 b | 28.41 b | 133.66 b |
SS2 | 29.75 e | 1.69 | 13.90 a | 45.26 c | 30.76 a | 133.47 b |
SM | 33.82 d | 2.98 | 6.44f | 44.28 c | 24.63 d | 146.45 a |
SEM | 0.37 | 0.23 | 0.47 | 0.27 | 0.41 | 1.32 |
V means | ||||||
S1 | 33.93 | 3.07 | 9.07 | 45.24 | 25.74 | 141.83 |
S2 | 34.38 | 2.95 | 9.15 | 45.45 | 26.14 | 140.41 |
P means | ||||||
2M2S | 35.05 | 4.70 a | 7.60 | 45.57 | 25.45 | 141.28 |
2M3S | 35.79 | 3.44 b | 7.84 | 43.82 | 24.31 | 148.53 |
2M4S | 35.27 | 2.39 c | 7.52 | 46.11 | 24.43 | 141.07 |
SM | 33.82 | 2.98 c | 6.44 | 44.28 | 24.63 | 146.45 |
SS | 30.51 | 1.53 c | 13.48 | 45.87 | 29.58 | 133.61 |
Significance | ||||||
V | <0.01 | 0.60 | 0.11 | 0.53 | 0.25 | 0.28 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | <0.01 | 0.49 | <0.01 | <0.01 | <0.01 | <0.01 |
Treatment | pH | NH3-N TN−1 % | LA (g kg−1 WDM) | AA (g kg−1 WDM) | PA (g kg−1 WDM) | V-Score |
---|---|---|---|---|---|---|
2M2S1 | 3.91 | 9.54 bc | 20.02 e | 2.18 f | 0.94 c | 90.92 |
2M3S1 | 3.81 | 7.03 c | 30.95 c | 4.19 e | 1.95 b | 95.93 |
2M4S1 | 4.11 | 10.51 bc | 24.19 de | 5.11 de | 1.14 c | 87.95 |
2M2S2 | 3.92 | 8.86 bc | 27.39 cd | 7.65 c | 2.50 ab | 91.68 |
2M3S2 | 3.88 | 8.69 c | 36.73 b | 6.42 cd | 2.46 ab | 92.26 |
2M4S2 | 3.99 | 9.15 bc | 36.13 b | 10.27 b | 2.77 a | 90.77 |
SS1 | 4.43 | 15.52 a | 6.41 f | 20.70 a | ND | 65.84 |
SS2 | 4.31 | 12.23 b | 6.23 f | 19.90 a | ND | 79.18 |
SM | 3.90 | 9.27 bc | 45.77 a | 5.33 de | 2.25 ab | 91.45 |
SEM | 0.39 | 0.45 | 1.22 | 1.15 | 0.19 | 1.32 |
V means | ||||||
S1 | 4.07 | 10.65 | 20.39 | 8.05 | 1.00 | 85.16 |
S2 | 4.02 | 9.73 | 26.62 | 11.06 | 1.93 | 88.47 |
P means | ||||||
2M2S | 3.85 c | 9.20 | 23.70 | 4.92 | 2.20 | 91.30 b |
2M3S | 3.92 c | 7.86 | 33.84 | 5.31 | 1.72 | 94.10 a |
2M4S | 4.05 b | 9.83 | 30.16 | 7.69 | 1.95 | 89.36 b |
SM | 3.90 c | 9.27 | 45.77 | 5.33 | 2.25 | 91.45 b |
SS | 4.37 a | 13.88 | 6.32 | 20.30 | 0.00 | 72.51 c |
Significance | ||||||
V | 0.33 | 0.11 | <0.01 | <0.01 | <0.01 | 0.07 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
V*P | 0.36 | 0.03 | <0.01 | <0.01 | <0.01 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Wu, Y.; Xin, Y.; Chen, C.; Du, Z.; Li, X.; Zhong, J.; Tahir, M.; Kang, B.; Jiang, D.; et al. Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns. Fermentation 2022, 8, 174. https://doi.org/10.3390/fermentation8040174
Zeng T, Wu Y, Xin Y, Chen C, Du Z, Li X, Zhong J, Tahir M, Kang B, Jiang D, et al. Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns. Fermentation. 2022; 8(4):174. https://doi.org/10.3390/fermentation8040174
Chicago/Turabian StyleZeng, Tairu, Yushan Wu, Yafen Xin, Chen Chen, Zhaochang Du, Xiaoling Li, Junfeng Zhong, Muhammad Tahir, Bo Kang, Dongmei Jiang, and et al. 2022. "Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns" Fermentation 8, no. 4: 174. https://doi.org/10.3390/fermentation8040174
APA StyleZeng, T., Wu, Y., Xin, Y., Chen, C., Du, Z., Li, X., Zhong, J., Tahir, M., Kang, B., Jiang, D., Wang, X., Yang, W., & Yan, Y. (2022). Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns. Fermentation, 8(4), 174. https://doi.org/10.3390/fermentation8040174