Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,427)

Search Parameters:
Keywords = magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 507 KB  
Article
A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework
by Xinxin Liu, Daoling Peng and Feng Long Gu
Chemistry 2025, 7(6), 181; https://doi.org/10.3390/chemistry7060181 - 14 Nov 2025
Abstract
A unified electromagnetic response theory has been formulated in terms of quasi-energy derivatives within the nonrelativistic single-determinant framework. The formalism is applicable to any type of optical response, without restriction to monochromatic fields. Electromagnetic properties are expressed through quasi-energy derivatives, providing a consistent [...] Read more.
A unified electromagnetic response theory has been formulated in terms of quasi-energy derivatives within the nonrelativistic single-determinant framework. The formalism is applicable to any type of optical response, without restriction to monochromatic fields. Electromagnetic properties are expressed through quasi-energy derivatives, providing a consistent and general description under arbitrary static or dynamic perturbations. Magnetic properties obtained from this framework are inherently gauge-invariant, since a gauge transformation of the electromagnetic potentials corresponds to a unitary phase transformation acting on both the Hamiltonian and molecular orbitals. The present theory thus offers a comprehensive foundation for evaluating (hyper)polarizabilities, (hyper)magnetizabilities, and other related response properties. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

25 pages, 2357 KB  
Article
Nonlinear Combined Resonance of Thermo-Magneto-Electro-Elastic Cylindrical Shells
by Gui-Lin She and Lei-Lei Gan
Dynamics 2025, 5(4), 48; https://doi.org/10.3390/dynamics5040048 - 14 Nov 2025
Abstract
This study investigates the combined resonance phenomenon in magneto-electro-elastic (MEE) cylindrical shells under longitudinal and lateral excitations with thermal factors, addressing the complex interaction between mechanical, electrical, and magnetic fields in smart structures. The research aims to establish a theoretical framework for predicting [...] Read more.
This study investigates the combined resonance phenomenon in magneto-electro-elastic (MEE) cylindrical shells under longitudinal and lateral excitations with thermal factors, addressing the complex interaction between mechanical, electrical, and magnetic fields in smart structures. The research aims to establish a theoretical framework for predicting resonance behaviors in energy harvesting and sensing applications. Using Maxwell’s equations and Hamilton’s principle, the governing equations for combined resonance are derived. The method of varying amplitude (MVA) is employed to acquire the combined resonance response across varying parameters. Furthermore, the Runge–Kutta method is applied to investigate the bifurcation and chaotic motion characteristics under different longitudinal and lateral excitation conditions. Key findings reveal the coupling effects of multi-physical fields on resonance frequencies, demonstrating quantitative agreement with prior studies. The results provide fundamental insights into the dynamic characteristics of MEE materials, offering theoretical support for optimizing their performance in adaptive engineering systems. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—3rd Edition)
20 pages, 1263 KB  
Article
Nuclear Magnetic Resonance Dynamics of LiTFSI–Pyrazole Eutectic Solvents
by Emilia Pelegano-Titmuss, Muhammad Zulqarnain Arif, Giselle de Araujo Lima e Souza, Phillip Stallworth, Yong Zhang, Adam Imel, Thomas Zawodzinski and Steven Greenbaum
Materials 2025, 18(22), 5184; https://doi.org/10.3390/ma18225184 - 14 Nov 2025
Abstract
Deep Eutectic Solvents (DESs) have emerged as promising candidates to replace conventional organic solvents in various technological applications due to their low vapor pressure, non-flammability, and ease of preparation at low costs. In particular, Type IV DESs, which are composed of metal salts [...] Read more.
Deep Eutectic Solvents (DESs) have emerged as promising candidates to replace conventional organic solvents in various technological applications due to their low vapor pressure, non-flammability, and ease of preparation at low costs. In particular, Type IV DESs, which are composed of metal salts and hydrogen bond donors, are possible replacements for lithium-ion battery electrolytes. In this study, we investigate the molecular dynamics of solvents of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and pyrazole (PYR) at varying LiTFSI:PYR molar ratios (1:2, 1:3, 1:4, 1:5) using Nuclear Magnetic Resonance Dispersion (NMRD) and Pulsed Field Gradient (PFG) Nuclear Magnetic Resonance (NMR). PFG NMR reveals composition-dependent diffusion trends, while NMRD provides molecular-level insights into the longitudinal relaxation rate (R1 = 1/T1). Notably, the LiTFSI:PYR (1:2) sample shows distinct behavior across both techniques, exhibiting enhanced relaxation rates and lower self-diffusion for 1H compared to the other nuclei (19F and 7Li), suggestive of stronger and more efficient Li+–pyrazole interactions, as confirmed by the modeling of the relaxation profiles. Our study advances understanding of ion dynamics in azole-based eutectic solvents, supporting their potential use in safer battery electrolytes. Full article
(This article belongs to the Special Issue Ionic Liquid-Based Materials: Fundamentals and Applications)
46 pages, 1696 KB  
Review
Niosomes as Vesicular Carriers: From Formulation Strategies to Stimuli-Responsive Innovative Modulations for Targeted Drug Delivery
by Andra Ababei-Bobu, Bianca-Ștefania Profire, Andreea-Teodora Iacob, Oana-Maria Chirliu, Florentina Geanina Lupașcu and Lenuța Profire
Pharmaceutics 2025, 17(11), 1473; https://doi.org/10.3390/pharmaceutics17111473 - 14 Nov 2025
Abstract
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in [...] Read more.
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in the aqueous core and lipophilic compounds within the lipid bilayer, offering remarkable versatility in therapeutic applications. This article provides an overview of the key principles underlying niosomal formulations, including their composition, preparation methods, formulation conditions and the critical physicochemical parameters influencing vesicle formation and performance. Special emphasis is placed on recent innovations in surface and content modifications that have led to the development of stimuli-responsive niosomal systems, with precise and controlled drug release. These smart carriers are designed to respond to endogenous stimuli (such as pH variations, redox gradients, enzymatic activity, or local temperature changes in pathological sites), as well as to exogenous triggers (including light, ultrasound, magnetic or electric fields, and externally applied hyperthermia), thereby enhancing therapeutic precision. These surface and content modulation strategies effectively transform conventional NIOs into intelligent, stimuli-responsive platforms, reinforcing their innovative role in drug delivery and highlighting their significant potential in the development of smart nanomedicine. Full article
23 pages, 6147 KB  
Article
Super-Resolution Reconstruction Approach for MRI Images Based on Transformer Network
by Xin Liu, Chuangxin Huang, Jianli Meng, Qi Chen, Wuzheng Ji and Qiuliang Wang
AI 2025, 6(11), 291; https://doi.org/10.3390/ai6110291 - 14 Nov 2025
Abstract
Magnetic Resonance Imaging (MRI) serves as a pivotal medical diagnostic technique widely deployed in clinical practice, yet high-resolution reconstruction frequently introduces motion artifacts and degrades signal-to-noise ratios. To enhance imaging efficiency and improve reconstruction quality, this study proposes a Transformer network-based super-resolution framework [...] Read more.
Magnetic Resonance Imaging (MRI) serves as a pivotal medical diagnostic technique widely deployed in clinical practice, yet high-resolution reconstruction frequently introduces motion artifacts and degrades signal-to-noise ratios. To enhance imaging efficiency and improve reconstruction quality, this study proposes a Transformer network-based super-resolution framework for MRI images. The methodology integrates Nonuniform Fast Fourier Transform (NUFFT) with a hybrid-attention Transformer network to achieve high-fidelity reconstruction. The embedded NUFFT module adaptively applies density compensation to k-space data based on sampling trajectories, while the Mixed Attention Block (MAB) activates broader pixel engagement to amplify feature extraction capabilities. The Interactive Attention Block (IAB) facilitates cross-window information fusion via overlapping windows, effectively suppressing artifacts. Evaluated on the fastMRI dataset under 4× radial undersampling, the network demonstrates 3.52 dB higher PSNR and 0.21 SSIM improvement over baselines, outperforming state-of-the-art methods across quantitative metrics. Visual assessments further confirm superior detail preservation and artifact suppression. This work establishes an effective pipeline for high-quality radial MRI reconstruction, providing a novel technical pathway for low-field MRI systems with significant research and application value. Full article
Show Figures

Figure 1

23 pages, 5813 KB  
Article
Design and Performance Study on an Annular Magnetorheological Damper for Propeller Shafting
by Wencai Zhu, Yangfan Hu, Guoliang Hu and Ming Xu
Modelling 2025, 6(4), 147; https://doi.org/10.3390/modelling6040147 - 13 Nov 2025
Abstract
This paper addresses the issue that traditional magnetorheological (MR) dampers have limited improvements in magnetic field utilization and damping channel length in confined spaces. It proposes an annular MR damper with an annular cylinder for propeller shafting. The piston head forms damping gaps [...] Read more.
This paper addresses the issue that traditional magnetorheological (MR) dampers have limited improvements in magnetic field utilization and damping channel length in confined spaces. It proposes an annular MR damper with an annular cylinder for propeller shafting. The piston head forms damping gaps with the cylinder’s inner and outer walls. This doubles the damping channel length without increasing axial size. The paper explains its working principle, completes the magnetic circuit design and damping force modeling, and utilizes COMSOL 5.6 Multiphysics to construct a magneto-fluid coupling model for analysis. Results show that, under 10 mm amplitude, 1 Hz sinusoidal excitation, and 2.0 A current, the damper outputs a damping force of 67.65 kN, with a damping adjustable coefficient of 10.87. Its force-displacement curve has a full hysteresis loop, showing excellent energy dissipation. The study proves the annular structure boosts the damper’s performance, offering a new way to achieve high damping force and a wide dynamic range in a compact space. Full article
Show Figures

Figure 1

24 pages, 3892 KB  
Article
Corrosion and Fracture Localization in Grounding Grids and State Evaluation Based on Analysis of the Evolution of Magnetic Field Distributions
by Jiao Xue, Fei Gao, Zhen Li, Xiaoming Li, Yufeng Yin and Fuqiang Tian
Appl. Sci. 2025, 15(22), 12079; https://doi.org/10.3390/app152212079 - 13 Nov 2025
Abstract
The grounding grid of a substation is a crucial component for ensuring normal operation. However, since it is buried underground for long periods, it is highly susceptible to electrochemical corrosion. This corrosion leads to a reduction in its grounding performance, and severe corrosion [...] Read more.
The grounding grid of a substation is a crucial component for ensuring normal operation. However, since it is buried underground for long periods, it is highly susceptible to electrochemical corrosion. This corrosion leads to a reduction in its grounding performance, and severe corrosion may endanger the reliable operation of high-voltage equipment and secondary relay-protection equipment, as well as the safety of personnel. In this paper, the electromagnetic field analysis method is used to conduct simulation modeling of the grounding grid. A different-frequency current is injected into the grounding grid to study the variation law of the surface magnetic field distribution when corrosion occurs to different degrees at different positions in the grounding grid. Through the analysis of the evolutionary characteristics of the magnetic field distribution, the corrosion-induced breakages in the grounding grid are located and a comprehensive state evaluation is carried out. The results show that when a fault occurs in a conductor at the same position, the variation amplitude of the surface magnetic field gradually increases with increased corrosion. Based on this finding, an online monitoring algorithm for the location of corrosion-induced breakages and state evaluation of the grounding grid is proposed. A comprehensive evaluation model is constructed by combining the grounding resistance value and corrosion characteristic value to accurately locate the fault. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 3742 KB  
Article
Stability of Higher-Order Skyrmion Crystals Under Competing Magnetic Anisotropies in D3d Systems
by Satoru Hayami
Crystals 2025, 15(11), 978; https://doi.org/10.3390/cryst15110978 - 13 Nov 2025
Abstract
We investigate the stability of higher-order skyrmion crystals with large topological charges in the presence of crystal-dependent magnetic anisotropies. Focusing on the competition between two types of bond-dependent anisotropy allowed by D3d crystalline symmetry on a two-dimensional triangular lattice, we systematically [...] Read more.
We investigate the stability of higher-order skyrmion crystals with large topological charges in the presence of crystal-dependent magnetic anisotropies. Focusing on the competition between two types of bond-dependent anisotropy allowed by D3d crystalline symmetry on a two-dimensional triangular lattice, we systematically construct a low-temperature magnetic phase diagram using simulated annealing. Our analysis reveals that the stability of the higher-order skyrmion crystal with skyrmion number of two is strongly controlled by the relative sign of the bond-dependent anisotropy to the D3d-type anisotropy: a positive anisotropy, which favors spin oscillations perpendicular to the ordering wave vector, enhances its stability, whereas a negative anisotropy, favoring oscillations parallel to the ordering wave vector, suppresses it and instead stabilizes a topologically trivial double-Q state. We further examine the field evolution of these phases under an out-of-plane magnetic field and show that distinct types of skyrmion crystals with the skyrmion number of one emerge in the intermediate-field regime. These results highlight that the competition between different magnetic anisotropies in crystalline systems is a key factor governing the stability of both zero-field and field-induced skyrmion crystals. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 5174 KB  
Article
Design and Testing of a Helmholtz Coil Device to Generate Homogeneous Magnetic Field for Enhancing Solid-State Fermentation of Agricultural Biomass
by Han Chen, Yang Zhang, Zhuofan He, Chunhua Dai, Yansheng Du, Ronghai He and Haile Ma
AgriEngineering 2025, 7(11), 385; https://doi.org/10.3390/agriengineering7110385 - 13 Nov 2025
Abstract
The bio-conversion of agricultural biomass into value-added products via solid-state fermentation (SSF) represents a cost-effective and eco-friendly approach, though it is often limited by low efficiency and prolonged processing times. While low-intensity magnetic fields (LMFs) have shown potential to enhance microbial metabolism and [...] Read more.
The bio-conversion of agricultural biomass into value-added products via solid-state fermentation (SSF) represents a cost-effective and eco-friendly approach, though it is often limited by low efficiency and prolonged processing times. While low-intensity magnetic fields (LMFs) have shown potential to enhance microbial metabolism and improve mass and heat transfer during SSF, the effects of conventional inhomogeneous magnetic fields remain inconsistent and may even cause localized microbial damage due to uneven field distribution. In this study, we designed and optimized a Helmholtz coil system capable of generating a highly homogeneous low-intensity magnetic field to overcome this limitation. Through electromagnetic simulation and experimental validation, an optimized aluminum profile-supported coil configuration was developed, achieving an average magnetic field intensity of 142.77 G under 70% power load with high spatial homogeneity (maximum deviation: ±1.32%). Applied to the solid-state fermentation of peanut meal, the homogeneous LMF treatment (40 G, 4 h) significantly increased peptide content by 77.76% compared to non-treated samples, and by 42.95% over traditional inhomogeneous LMF treatment. This work establishes homogeneous magnetic-field-assisted SSF as a novel, efficient, and scalable bioprocessing strategy, providing both a robust technological framework and new insights into the role of field uniformity in the magneto-fermentation of agricultural biomass. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

22 pages, 4342 KB  
Article
Differential Single-Crystal Waveguide Ultrasonic Temperature Measurements Based on Magnetostriction
by Yanlong Wei, Gang Yang, Gao Wang, Haijian Liang, Hui Qi, Xiaofang Mu, Zhen Tian, Fujiang Yuan and Qianxiang Zhang
Micromachines 2025, 16(11), 1274; https://doi.org/10.3390/mi16111274 - 13 Nov 2025
Viewed by 88
Abstract
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive [...] Read more.
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive flexural structure and uses two single-crystal sapphire waveguides of the same material, same diameter, and slightly different lengths as sensing elements. By measuring the time delay difference between their end-face echoes, the sound velocity is inverted and the temperature is measured. COMSOL multi-physics v6.1 simulation was used to optimize the bias magnetic field design of the magnetostrictive transducer, which improved the system’s energy conversion efficiency and high-temperature stability. Experimental results show that in the range of 300–1200 °C, the sensor delay increases monotonically with increasing temperature, the sound speed shows a downward trend, and the repeatability error is less than 5%; the differential processing method effectively suppresses common mode noise in the range of 300–700 °C, and still shows high sensitivity above 800 °C. This research offers a technical solution with high reliability and accuracy for temperature monitoring in extreme environments such as those characterized by high temperatures and high pressures. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 3327 KB  
Article
Mechanism of Grinding Mineral Binders During Mechano-Magnetic Activation
by Ibragimov Ruslan, Korolev Evgeny and Zigangirova Leysan
Buildings 2025, 15(22), 4076; https://doi.org/10.3390/buildings15224076 - 12 Nov 2025
Viewed by 154
Abstract
The study of the destruction mechanisms of mineral component particles during processing in grinding units is a relevant scientific problem that requires further theoretical and experimental solutions. This work is dedicated to determining the kinetic characteristics of ferromagnetic bodies moving under the influence [...] Read more.
The study of the destruction mechanisms of mineral component particles during processing in grinding units is a relevant scientific problem that requires further theoretical and experimental solutions. This work is dedicated to determining the kinetic characteristics of ferromagnetic bodies moving under the influence of an electromagnetic field within a vortex mill. Dependencies of the velocity of these bodies on the radial coordinate for various values of magnetic induction and its gradient were obtained, establishing that velocities can reach approximately 50 m/s. A model for the disintegration of Portland cement particles, caused by their interaction during mechanical processing in a vortex mill, has been developed. It is shown that the average number of disintegration events for the predominant portion of the studied particles is two, which is significantly lower than the total number of collisions. An analysis of the key factors influencing the intensity and nature of particle destruction was conducted, including the magnitude of magnetic induction, the switching frequency of electromagnets, and the magnetic susceptibility of the processed materials. Based on a statistical analysis of the particle size distributions of the mineral raw material after dispersion, a principle for dividing the space within the working volume of the unit into functional zones was formulated: (1) a zone of mixing, grinding, and particle activation (at ferromagnetic element speeds of 0–12 m/s); (2) a zone of intensive grinding and particle activation (with speeds of 12–50 m/s). Full article
(This article belongs to the Special Issue Advanced Research in Cement and Concrete)
Show Figures

Figure 1

17 pages, 4118 KB  
Article
Research on the Design and Control Method of Robotic Flexible Magneto-Rheological Actuator
by Ran Shi, Sheng Jian, Guangzeng Chen and Pengpeng Yao
Sensors 2025, 25(22), 6921; https://doi.org/10.3390/s25226921 - 12 Nov 2025
Viewed by 117
Abstract
To meet the safety and compliance requirements pertaining to robots when interacting physically with humans or the environment in unstructured settings such as households and factories, in this study, we focus on methods for the design and control of a flexible robotic magneto-rheological [...] Read more.
To meet the safety and compliance requirements pertaining to robots when interacting physically with humans or the environment in unstructured settings such as households and factories, in this study, we focus on methods for the design and control of a flexible robotic magneto-rheological actuator (MRA). Firstly, for the magneto-rheological fluid clutch (MRC), which is the core component of the MRA, an equivalent magnetic circuit model was established to accurately calculate the magnetic field inside the clutch, and a thermal circuit model was constructed to analytically determine the operating temperature of each component. Considering practical engineering constraints, including mechanical structure, magnetic saturation, maximum current, and maximum temperature, a genetic algorithm was used to optimize parameters of the MRC. Secondly, based on the dynamic characteristics of the MRA, a dynamic model incorporating the motor, reducer, MRC, and load link was established. Given scenarios where torque sensors cannot be installed due to cost and structural space limitations, a model reference PID feedforward control strategy was designed. Torque was estimated using input current. Finally, an experimental platform was built, and static and dynamic torque output experiments were conducted. These experiments verified the excellent torque tracking performance of the designed MRA. Through multi-physics modeling, parameter optimization, and control strategy design, this paper provides a solution for flexible robotic joints that integrates high torque, high compliance, and safety. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

31 pages, 827 KB  
Article
Asymptotic Freedom and Vacuum Polarization Determine the Astrophysical End State of Relativistic Gravitational Collapse: Quark–Gluon Plasma Star Instead of Black Hole
by Herman J. Mosquera Cuesta, Fabián H. Zuluaga Giraldo, Wilmer D. Alfonso Pardo, Edgardo Marbello Santrich, Guillermo U. Avendaño Franco and Rafael Fragozo Larrazabal
Universe 2025, 11(11), 375; https://doi.org/10.3390/universe11110375 - 12 Nov 2025
Viewed by 227
Abstract
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and [...] Read more.
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and the asymptotic freedom, a key feature of quantum chromodynamics (QCD), is presented. These QCD stars can be the final figures of the equilibrium of collapsing stellar cores permeated by magnetic fields with strengths well beyond the Schwinger threshold due to being self-bound, and for which post-supernova fallback material pushes the nascent remnant beyond its stability, forcing it to collapse into a hybrid hypermassive neutron star (HHMNS). Hypercritical accretion can drive its innermost core to spontaneously break away color confinement, powering a first-order hadron-to-quark phase transition to a sea of ever-freer quarks and gluons. This core is hydro-stabilized by the steady, endlessly compression-admitting asymptotic freedom state, possibly via gluon-mediated enduring exchange of color charge among bound states, e.g., the odderon: a glueball state of three gluons, or either quark-pairing (color superconductivity) or tetraquark/pentaquark states (LHCb Coll.). This fast—at the QGP speed of sound—but incremental quark–gluon deconfinement unbinds the HHMNS’s baryons so catastrophically that transforms it, turning it inside-out, into a neat self-bound QGP star. A solution to the nonlinear Tolman–Oppenheimer–Volkoff (TOV) equation is obtained—that clarifies the nonlinear effects of both NLED and QCD on the compact object’s structure—which clearly indicates the occurrence of hypermassive QGP/QCD stars with a wide mass spectrum (0MStarQGP 7 M and beyond), for star radii (0RStarQGP24 km and beyond) with B-fields (1014BStarQGP1016 G and beyond). This unexpected feature is described by a novel mass vs. radius relation derived within this scenario. Hence, endowed with these physical and astrophysical characteristics, such QCD stars can definitively emulate what the true (theoretical) black holes are supposed to gravitationally do in most astrophysical settings. This color quark star could be found through a search for its eternal “yo-yo” state gravitational-wave emission, or via lensing phenomena like a gravitational rainbow (quantum mechanics and gravity interaction), as in this scenario, it is expected that the light deflection angle—directly influenced by the larger effective mass/radius (MStarQGP(B), RStarQGP(B)) and magnetic field of the deflecting object—increases as the incidence angle decreases, in view of the lower values of the impact parameter. The gigantic—but not infinite—surface gravitational redshift, due to NLED photon acceleration, makes the object appear dark. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

14 pages, 7491 KB  
Article
Impact of Overdeposition on Magnetic Behavior in Ferromagnetic Nanowire Arrays
by Oleksandr Pastukh
Condens. Matter 2025, 10(4), 57; https://doi.org/10.3390/condmat10040057 - 12 Nov 2025
Viewed by 122
Abstract
Owing to their dimensions and high aspect ratio, magnetic nanowires possess distinctive physical and chemical properties and are of great importance in building nanoelectronics devices. Nanowires are traditionally produced by electrochemical deposition methods using alumina or polycarbonate membranes, and their parameters (porosity, size, [...] Read more.
Owing to their dimensions and high aspect ratio, magnetic nanowires possess distinctive physical and chemical properties and are of great importance in building nanoelectronics devices. Nanowires are traditionally produced by electrochemical deposition methods using alumina or polycarbonate membranes, and their parameters (porosity, size, and arrangement of pores) strongly influence the magnetic properties of nanowires. However, very often, the effect that cannot be neglected during synthesis is overdeposition. The influence of overdeposition on the magnetic properties of nanowires is often overlooked, but it can strongly alter the magnetic behavior of the system. In this study, we use micromagnetic simulations to investigate how different levels of overdeposition affect the hysteretic behavior of nanowires and their magnetization switching mechanism. It was shown that the formation of hemispherical caps on the ends of the nanowires may alter the out-of-plane magnetic anisotropy of the nanowires and strongly influence the squareness of the hysteresis loop. The demagnetizing field distribution for nanowires with overdeposition was also investigated, showing a strong influence of its spatial distribution change on the reversal mechanism and interaction between nanowires. The obtained results were compared to existing experimental observations, showing good agreement with the magnetic behavior of the system. Performed research can be of great interest to experimental groups, as it highlights the importance of controlling overdeposition during nanowire synthesis and its potential influence on magnetic performance. Full article
Show Figures

Figure 1

16 pages, 8537 KB  
Article
Design of a Rat Transcranial Magnetic Stimulation Coil Based on the Inverse Boundary Element Method
by Chenyu Zhao, Yun Xu, Lixin Jiao, Linhai Hu, Haoran Lv and Peng Yang
Magnetism 2025, 5(4), 28; https://doi.org/10.3390/magnetism5040028 - 12 Nov 2025
Viewed by 93
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique extensively utilized in neuroscience and clinical medicine; however, its underlying mechanisms require further elucidation. Due to ethical safety considerations, low cost, and physiological similarities to humans, rodent models have become the primary subjects for [...] Read more.
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique extensively utilized in neuroscience and clinical medicine; however, its underlying mechanisms require further elucidation. Due to ethical safety considerations, low cost, and physiological similarities to humans, rodent models have become the primary subjects for TMS animal studies. Nevertheless, existing TMS coils designed for rodents face several limitations, including size constraints that complicate coil fabrication, insufficient stimulation intensity, suboptimal focality, and difficulty in adapting coils to practical experimental scenarios. Currently, many studies have attempted to address these issues through various methods, such as adding magnetic nanoparticles, constraining current distribution, and incorporating electric field shielding devices. Integrating the above methods, this study designs a small arc-shaped TMS coil for the frontoparietal region of rats using the inverse boundary element method, which reduces the coil’s interference with experimental observations. Compared with traditional geometrically scaled-down human coil circular and figure-of-eight coils, this coil achieves a 79.78% and 57.14% reduction in half-value volume, respectively, thus significantly improving the focusing of stimulation. Meanwhile, by adding current density constraints while minimizing the impact on the stimulation effect, the minimum wire spacing was increased from 0.39 mm to 1.02 mm, ensuring the feasibility of the coil winding. Finally, coil winding was completed using 0.05 mm × 120 Litz wire with a 3D-printed housing, which proves the practicality of the proposed design method. Full article
Show Figures

Figure 1

Back to TopTop