A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework
Abstract
1. Introduction
2. General Formalism
2.1. Time-Harmonic Electromagnetic Fields
2.2. Quasi-Energy Response
2.3. Density-Matrix Response
2.4. Orthonormality
2.5. Determination of U: The CP-HF/KS Equations
2.5.1. The First-Order CP-HF/KS Equation
2.5.2. The Second-Order CP-HF/KS Equation
2.6. Quasi-Energy Response: Working Form
- The First Order:
3. Applications
3.1. Polarizabilities
3.2. Magnetizabilities
Comparison with the GIAO Method
4. Results and Discussion
4.1. Numerical Tests
4.2. Inelastic Response Properties
4.3. Gauge-Invariant Magnetic Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of T-Response
Appendix B. Derivation of W-Response
Appendix B.1. The First-Order W-Response
Appendix B.2. The Second-Order W-Response
Appendix B.3. The Third-Order W-Response
Appendix C. Evaluation of (ρ a (ω A)|k xc |ρ b (ω B)|ρ c (ω C))
| LDA | GGA | mGGA | |
|---|---|---|---|
| spin-restricted | |||
| collinear | a | b | |
| locally-collinear | c | d | |
| non-collinear |
Appendix D. Gauge Transformations
References
- Bursulaya, B.D.; Kim, H.J. Optical Kerr effect spectroscopy of liquid water: Role of fluctuating electronic polarizability. J. Phys. Chem. B 1997, 101, 10994–10999. [Google Scholar] [CrossRef]
- Ghanadzadeh, A.; Zeini, A.; Kashef, A.; Moghadam, M. Solvent polarizability and anisotropy effects on the photophysical behavior of oxazine 1: An appropriate polarizability indicator dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Egorochkin, A.N.; Kuznetsova, O.V.; Khamaletdinova, N.M.; Domratcheva-Lvova, L.G. Infrared spectroscopic studies of transition metal complexes and polarizability effect. J. Organomet. Chem. 2011, 696, 2199–2205. [Google Scholar] [CrossRef]
- Bender, J.S.; Coasne, B.; Fourkas, J.T. Assessing polarizability models for the simulation of low-frequency Raman spectra of benzene. J. Phys. Chem. B 2015, 119, 9345–9358. [Google Scholar] [CrossRef]
- Gasbarri, C.; Angelini, G. Polarizability over dipolarity for the spectroscopic behavior of azobenzenes in room-temperature ionic liquids and organic solvents. J. Mol. Liq. 2017, 229, 185–188. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Arun Murthy, T.V.S.; Giri, S.; Roy, D.R. A connection between softness and magnetizability. J. Mol. Struct. THEOCHEM 2007, 813, 63–65. [Google Scholar] [CrossRef]
- Foroutan-Nejad, C. Interatomic magnetizability: A QTAIM-based approach toward deciphering magnetic aromaticity. J. Phys. Chem. A 2011, 115, 12555–12560. [Google Scholar] [CrossRef]
- Yin, Y.; Wan, X.; Tu, X.; Wang, D. Large magneto-optical effects in the van der Waals ferrimagnet Mn3Si2Te6. Phys. Rev. B 2024, 110, 104410. [Google Scholar] [CrossRef]
- Delaire, J.A.; Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 2000, 100, 1817–1846. [Google Scholar] [CrossRef]
- Marder, S.R. Organic nonlinear optical materials: Where we have been and where we are going. Chem. Commun. 2006, 131–134. [Google Scholar] [CrossRef]
- Boyd, R.W.; Prato, D. Nonlinear Optics; Academic Press: New York, NY, USA, 2008; pp. 1–4. [Google Scholar]
- Castet, F.; Rodriguez, V.; Pozzo, J.L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and characterization of molecular nonlinear optical switches. Accounts Chem. Res. 2013, 46, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.L.; Aoki, Y.; Springborg, M.; Kirtman, B. Calculations on Nonlinear Optical Properties for Large Systems: The Elongation Method; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–8. [Google Scholar]
- Gready, J.E.; Bacskay, G.B.; Hush, N.S. Finite-field method calculations of molecular polarisabilities. I. Theoretical basis and limitations of SCF and Galerkin treatments. Chem. Phys. 1977, 22, 141–150. [Google Scholar] [CrossRef]
- Locknar, S.A.; Peteanu, L.A.; Shuai, Z. Calculation of ground and excited state polarizabilities of unsubstituted and donor/acceptor polyenes: A comparison of the finite-field and sum-over-states methods. J. Phys. Chem. A 1999, 103, 2197–2201. [Google Scholar] [CrossRef]
- Bouř, P. Approximate ab initio calculations of polarizabilities via the excitation scheme. Chem. Phys. Lett. 1997, 265, 65–70. [Google Scholar] [CrossRef]
- Bouř, P. Computations of the Raman optical activity via the sum-over-states expansions. J. Comput. Chem. 2001, 22, 426–435. [Google Scholar] [CrossRef]
- Bishop, D.M.; Kirtman, B.; Champagne, B. Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J. Chem. Phys. 1997, 107, 5780–5787. [Google Scholar] [CrossRef]
- Champagne, B.; Kirtman, B. Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. J. Chem. Phys. 2006, 125, 024101. [Google Scholar] [CrossRef]
- Sekino, H.; Bartlett, R.J. Frequency dependent nonlinear optical properties of molecules. J. Chem. Phys. 1986, 85, 976–989. [Google Scholar] [CrossRef]
- Rice, J.E.; Amos, R.D.; Colwell, S.M.; Handy, N.C.; Sanz, J. Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride. J. Chem. Phys. 1990, 93, 8828–8839. [Google Scholar] [CrossRef]
- Karna, S.P.; Dupuis, M. Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program. J. Comput. Chem. 1991, 12, 487–504. [Google Scholar] [CrossRef]
- Rice, J.E.; Handy, N.C. The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives. J. Chem. Phys. 1991, 94, 4959–4971. [Google Scholar] [CrossRef]
- Kutzelnigg, W. Stationary perturbation theory: I. Survey of basic concepts. Theor. Chim. Acta 1992, 83, 263–312. [Google Scholar] [CrossRef]
- Sasagane, K.; Aiga, F.; Itoh, R. Higher-order response theory based on the quasienergy derivatives: The derivation of the frequency-dependent polarizabilities and hyperpolarizabilities. J. Chem. Phys. 1993, 99, 3738–3778. [Google Scholar] [CrossRef]
- Colwell, S.M.; Murray, C.W.; Handy, N.C.; Amos, R.D. The determination of hyperpolarisabilities using density functional theory. Chem. Phys. Lett. 1993, 210, 261–268. [Google Scholar] [CrossRef]
- Li, S.; Hu, L.; Peng, L.; Yang, W.; Gu, F.L. Coupled-perturbed SCF approach for calculating static polarizabilities and hyperpolarizabilities with nonorthogonal localized molecular orbitals. J. Chem. Theory Comput. 2015, 11, 923–931. [Google Scholar] [CrossRef]
- Peng, D.; Li, S.; Peng, L.; Gu, F.L.; Yang, W. Time-Dependent Coupled Perturbed Hartree–Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper) Polarizabilities with Nonorthogonal Localized Molecular Orbitals. J. Chem. Theory Comput. 2017, 13, 4101–4112. [Google Scholar] [CrossRef]
- Lee, A.M.; Colwell, S.M. The determination of hyperpolarizabilities using density functional theory with nonlocal functionals. J. Chem. Phys. 1994, 101, 9704–9709. [Google Scholar] [CrossRef]
- Van Gisbergen, S.J.A.; Snijders, J.G.; Baerends, E.J. Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory. J. Chem. Phys. 1998, 109, 10644–10656. [Google Scholar] [CrossRef]
- Kamiya, M.; Sekino, H.; Tsuneda, T.; Hirao, K. Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J. Chem. Phys. 2005, 122, 234111. [Google Scholar] [CrossRef]
- Banerjee, A.; Harbola, M.K. Variation-perturbation method in time-dependent density-functional theory. Phys. Lett. A 1997, 236, 525–532. [Google Scholar] [CrossRef]
- Aiga, F.; Tada, T.; Yoshimura, R. Frequency-dependent polarizabilities, hyperpolarizabilities, and excitation energies from time-dependent density-functional theory based on the quasienergy derivative method. J. Chem. Phys. 1999, 111, 2878–2888. [Google Scholar] [CrossRef]
- Kirtman, B.; Gu, F.L.; Bishop, D.M. Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree-Fock theory. J. Chem. Phys. 2000, 113, 1294–1309. [Google Scholar] [CrossRef]
- Thorvaldsen, A.J.; Ruud, K.; Kristensen, K.; Jørgensen, P.; Coriani, S. A density matrix-based quasienergy formulation of the Kohn–Sham density functional response theory using perturbation-and time-dependent basis sets. J. Chem. Phys. 2008, 129, 214108. [Google Scholar] [CrossRef] [PubMed]
- Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev. 2012, 112, 543–631. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsen, A.J.; Ruud, K.; Rizzo, A.; Coriani, S. Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton–Mouton constants using London atomic orbitals. J. Chem. Phys. 2008, 129, 164110. [Google Scholar] [CrossRef]
- Bast, R.; Thorvaldsen, A.J.; Ringholm, M.; Ruud, K. Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models. Chem. Phys. 2009, 356, 177–186. [Google Scholar] [CrossRef]
- Ringholm, M.; Jonsson, D.; Bast, R.; Gao, B.; Thorvaldsen, A.J.; Ekström, U.; Helgaker, T.; Ruud, K. Analytic cubic and quartic force fields using density-functional theory. J. Chem. Phys. 2014, 140, 034103. [Google Scholar] [CrossRef]
- Friese, D.H.; Ringholm, M.; Gao, B.; Ruud, K. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets. J. Chem. Theory Comput. 2015, 11, 4814–4824. [Google Scholar] [CrossRef]
- Di Remigio, R.; Beerepoot, M.T.P.; Cornaton, Y.; Ringholm, M.; Steindal, A.H.; Ruud, K.; Frediani, L. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation. Phys. Chem. Chem. Phys. 2017, 19, 366–379. [Google Scholar] [CrossRef]
- Morgan, W.J.; Matthews, D.A.; Ringholm, M.; Agarwal, J.; Gong, J.Z.; Ruud, K.; Allen, W.D.; Stanton, J.F.; Schaefer, H.F., III. Geometric energy derivatives at the complete basis set limit: Application to the equilibrium structure and molecular force field of formaldehyde. J. Chem. Theory Comput. 2018, 14, 1333–1350. [Google Scholar] [CrossRef]
- Dundas, K.O.H.M.; Beerepoot, M.T.; Ringholm, M.; Reine, S.; Bast, R.; List, N.H.; Kongsted, J.; Ruud, K.; Olsen, J.M.H. Harmonic infrared and Raman spectra in molecular environments using the polarizable embedding model. J. Chem. Theory Comput. 2021, 17, 3599–3617. [Google Scholar] [CrossRef]
- Casida, M.E. Time-dependent density functional response theory for molecules. In Recent Advances in Density Functional Methods: (Part I); World Scientific: Singapore, 1995; pp. 155–192. [Google Scholar] [CrossRef]
- Kutzelnigg, W. Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. Isr. J. Chem. 1980, 19, 193–200. [Google Scholar] [CrossRef]
- Hansen, A.E.; Bouman, T.D. Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors. J. Chem. Phys. 1985, 82, 5035–5047. [Google Scholar] [CrossRef]
- Keith, T.A.; Bader, R.F.W. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 1993, 210, 223–231. [Google Scholar] [CrossRef]
- Ditchfield, R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J. Chem. Phys. 1972, 56, 5688–5691. [Google Scholar] [CrossRef]
- Helgaker, T.; Jo/rgensen, P. An electronic Hamiltonian for origin independent calculations of magnetic properties. J. Chem. Phys. 1991, 95, 2595–2601. [Google Scholar] [CrossRef]
- Ruud, K.; Helgaker, T.; Bak, K.L.; Jo/rgensen, P.; Jensen, H.J.A. Hartree–Fock limit magnetizabilities from London orbitals. J. Chem. Phys. 1993, 99, 3847–3859. [Google Scholar] [CrossRef]
- London, F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium 1937, 8, 397–409. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.S.; Bogdanov, N.A.; Booth, G.H.; Chen, J.; Cui, Z.H.; et al. Recent developments in the PySCF program package. J. Chem. Phys. 2020, 153, 024109. [Google Scholar] [CrossRef]
- Sun, Q. Libcint: An efficient general integral library for Gaussian basis functions. J. Comput. Chem. 2015, 36, 1664–1671. [Google Scholar] [CrossRef]
- Ekström, U.; Visscher, L.; Bast, R.; Thorvaldsen, A.J.; Ruud, K. Arbitrary-order density functional response theory from automatic differentiation. J. Chem. Theory Comput. 2010, 6, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, S.; Steigemann, C.; Oliveira, M.J.T.; Marques, M.A.L. Recent developments in libxc—A comprehensive library of functionals for density functional theory. SoftwareX 2018, 7, 1–5. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003; pp. 157–257. [Google Scholar]
- Liesen, J.; Strakos, Z. Krylov Subspace Methods: Principles and Analysis; Numerical Mathematics and Scie; Oxford University Press: Oxford, UK, 2013; pp. 12–70. [Google Scholar]
- Knoll, D.A.; Keyes, D.E. Jacobian-free Newton–Krylov methods: A survey of approaches and applications. J. Comput. Phys. 2004, 193, 357–397. [Google Scholar] [CrossRef]
- Baker, A.H.; Jessup, E.R.; Manteuffel, T. A technique for accelerating the convergence of restarted GMRES. SIAM J. Matrix Anal. Appl. 2005, 26, 962–984. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; et al. The Dalton quantum chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 269–284. [Google Scholar] [CrossRef] [PubMed]
| Method | Solver | ||||
|---|---|---|---|---|---|
| HF | Krylov | 2.456114 | 2.493836 | 9.724434 | 10.67309 |
| N-K | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| exact | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| Gaussian | 2.456114 | 2.493836 | 9.724434 | 10.67309 | |
| SVWN5 | Krylov | 2.337072 | 2.378101 | 9.601582 | 10.94481 |
| N-K | 2.337072 | 2.378101 | 9.601582 | 10.94481 | |
| exact | 2.337072 | 2.378101 | 9.601582 | 10.94481 | |
| Gaussian | 2.337074 | 2.378104 | 9.601611 | 10.94484 | |
| PBE | Krylov | 2.389041 | 2.430847 | 9.490396 | 10.78105 |
| N-K | 2.389041 | 2.430847 | 9.490396 | 10.78105 | |
| exact | 2.389041 | 2.430847 | 9.490396 | 10.78105 | |
| Gaussian | 2.389024 | 2.430829 | 9.490255 | 10.78088 | |
| TPSS | Krylov | 2.447234 | 2.488514 | 9.555978 | 10.75230 |
| N-K | 2.447234 | 2.488514 | 9.555978 | 10.75230 | |
| exact | 2.447234 | 2.488514 | 9.555978 | 10.75230 | |
| Gaussian | 2.447381 | 2.488667 | 9.563478 | 10.76102 |
| Method | Solver | ||||
|---|---|---|---|---|---|
| HF | Krylov | −3.004265 | 0.354248 | −2.650016 | −2.638684 |
| N-K | −3.004265 | 0.354248 | −2.650016 | −2.638684 | |
| exact | −3.004265 | 0.354248 | −2.650016 | −2.638684 | |
| Dalton | −3.004263 | 0.354248 | −2.650015 | - | |
| SVWN5 | Krylov | −2.997094 | 0.391350 | −2.605744 | −2.589627 |
| N-K | −2.997094 | 0.391350 | −2.605744 | −2.589627 | |
| exact | −2.997094 | 0.391350 | −2.605744 | −2.589627 | |
| Dalton | −2.997093 | 0.391350 | −2.605744 | - | |
| PBE | Krylov | −3.010564 | 0.399143 | −2.611421 | −2.594833 |
| N-K | −3.010564 | 0.399143 | −2.611421 | −2.594833 | |
| exact | −3.010564 | 0.399143 | −2.611421 | −2.594833 | |
| Dalton | −3.010565 | 0.399143 | −2.611422 | - | |
| TPSS | Krylov | −3.017507 | 0.380711 | −2.636796 | −2.622316 |
| N-K | −3.017507 | 0.380711 | −2.636796 | −2.622316 | |
| exact | −3.017507 | 0.380711 | −2.636796 | −2.622316 | |
| Dalton | - | - | - | - |
| Method | |||||
|---|---|---|---|---|---|
| HF | 0.05 | 2.465426 | 10.03915 | −0.096125 | 1.060108 |
| 0.10 | 2.493836 | 11.07370 | −0.087554 | 1.104119 | |
| 0.15 | 2.542842 | 13.17900 | −0.072223 | 1.167423 | |
| 0.20 | 2.615197 | 17.39514 | −0.048216 | 1.254649 | |
| SVWN5 | 0.05 | 2.347162 | 10.04824 | −0.060547 | 1.184807 |
| 0.10 | 2.378101 | 11.58515 | −0.048325 | 1.236818 | |
| 0.15 | 2.432036 | 15.09977 | −0.025942 | 1.318000 | |
| 0.20 | 2.513118 | 24.29370 | -0.010578 | 1.437984 | |
| PBE | 0.05 | 2.399326 | 9.921563 | −0.058666 | 1.182924 |
| 0.10 | 2.430847 | 11.39941 | −0.046085 | 1.233733 | |
| 0.15 | 2.485755 | 14.74416 | −0.023015 | 1.314061 | |
| 0.20 | 2.568186 | 23.14165 | -0.014707 | 1.433669 | |
| TPSS | 0.05 | 2.457400 | 9.962100 | −0.079933 | 1.117914 |
| 0.10 | 2.488514 | 11.33683 | −0.068962 | 1.163513 | |
| 0.15 | 2.542545 | 14.35058 | −0.049021 | 1.234274 | |
| 0.20 | 2.623225 | 21.48152 | −0.016914 | 1.337470 |
| Method | Gauge Basis | STO-3G | 6-31G | cc-pVDZ | Sadlej-pVTZ |
|---|---|---|---|---|---|
| HF | - | −2.650016 | −2.997862 | −2.820516 | −2.949613 |
| GIAO | −2.459860 | −2.798452 | −2.773012 | −2.931758 | |
| SVWN5 | - | −2.605744 | −2.983692 | −2.820797 | −3.062157 |
| GIAO | −2.417908 | −2.784379 | −2.768266 | −3.059146 | |
| PBE | - | −2.611421 | −2.967591 | −2.796043 | −3.032509 |
| GIAO | −2.402182 | −2.754203 | −2.740750 | −3.027743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Peng, D.; Gu, F.L. A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework. Chemistry 2025, 7, 181. https://doi.org/10.3390/chemistry7060181
Liu X, Peng D, Gu FL. A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework. Chemistry. 2025; 7(6):181. https://doi.org/10.3390/chemistry7060181
Chicago/Turabian StyleLiu, Xinxin, Daoling Peng, and Feng Long Gu. 2025. "A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework" Chemistry 7, no. 6: 181. https://doi.org/10.3390/chemistry7060181
APA StyleLiu, X., Peng, D., & Gu, F. L. (2025). A General Formalism for Electromagnetic Response Based on Quasi-Energy Derivatives Within a Single-Determinant Framework. Chemistry, 7(6), 181. https://doi.org/10.3390/chemistry7060181

